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Abstract 

Measuring environmental regulation’s effect on firm competitiveness is central to designing 
optimal policies. Existing studies document significant negative effects of air pollution 
regulations on manufacturing competitiveness as measured by total factor productivity 
(TFP). A separate literature finds that air pollution lowers TFP through its ambient effect on 
workers’ physical and mental health and cognition. Extant empirical measures of the 
competitiveness effect reflect both. We develop a boundary-discontinuity-difference-in-
differences (BD-DD) approach to isolate the competitiveness effect based on the idea that 
only regulated firms suffer the competitiveness effect but both regulated and unregulated 
firms adjacent to each other enjoy the ambient effect via spillovers. We apply the approach 
to a major air pollution regulation in China. The traditional approach to estimating the 
regulation’s effects yields a 3.8% TFP decline among surviving firms at a total cost of CNY 
30.2 billion annually. The true competitiveness effect is 6.4% (51.6 billion). The implied 
ambient effect is 2.6% (21.4 billion) among regulated firms. While difficult to quantify, the 
ambient effect is also enjoyed by all proximate unregulated firms. Consistent with this, we 
find that the ambient effect on control firms declines with distance from a treatment region. 
 
JEL Codes: Q52; Q51; Q53; L51 
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1. Introduction 

Theoretically, binding environmental regulations can raise or lower firms’ costs. 
Regulations impose compliance costs on firms including capital costs, such as 
pollution abatement equipment, and labor costs, such as compliance personnel. On 
the other hand, regulations may increase productivity if it leads firms to rationalize 
their production processes or spurs innovations that lower costs or improve quality 
as argued by Porter (1991).1 The direction and magnitude of the competitiveness 
effect is important for several reasons. Most directly, it is an important input in the 
cost-benefit analysis of environmental policies. Regulations involve implementation 
costs but also impose costs on firms if firm competitiveness is lowered. Second, if 
environmental regulations affect firms’ costs then they affect a country’s trade 
position and balance of payments vis-a-vis other countries. Third, from a political 
economy perspective, the answer to the question determines whether firms will 
resist or encourage the enactment of environmental regulations and how strongly. 

Given the theoretical uncertainty about the direction of the competitiveness effect 
and the important ramifications, empirical estimates are critical. The most notable 
estimates for air pollution are by Greenstone et al. (2012) for the 1970 US Clean Air 
Act Amendments (CAAA) using a large plant-level data set from 1972 to 1993. The 
Act imposed regulations on plants not in compliance with pollution standards across 
multiple pollutants. Comparing non-attainment with attainment plants, the paper 
finds a 2.6% decline in total factor productivity (TFP) among surviving plants that 
were in non-attainment due to any pollutant. The other notable estimate of a 
competitiveness effect is He et al. (2020) for water pollution in China using an 
increase in regulatory stringency in 2003. Using data from 2000 to 2007, the paper 
finds a 24% reduction in TFP for firms subject to monitoring versus those not. 

The typical approach to quantifying a competitiveness effect in the case of air 
pollution is a difference-in-differences (DD) estimate comparing treatment firms 
subject to the regulation to control firms that are not. A separate literature (Graff 
Zivin and Neidell, 2012; Chang et al., 2019; He et al., 2019; Fu et al., 2021) estimates 
how air pollution reduces output due to effects on the physical and mental stamina 
of workers or work absences due to their or family members’ health. This implies 
that regulations that reduce air pollution will result in productivity improvements. 
Because air pollution drifts spatially, these productivity improvements accrue not to 
a specific firm but rather to all firms in the proximate area regardless of whether 
they must comply with the regulations. We call this the “ambient effect.” The 
standard DD approach will estimate the “combined effect” of the competitiveness 
                                                           
1 The evidence for the “Porter Hypothesis” is primarily case-study based (Porter and van der Linde, 
1995). Formal justifications rely on environmental regulations addressing X-inefficiency (Leibenstein, 
1966) or very specific conditions in strategic trade models (Simpson and Bradford, 1996). 
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and ambient effects and understate the competitiveness effect (in absolute value) if 
interpreted as such. 

Figure 1 illustrates these different effects. The competitiveness effect (the goal of our 
estimation) is displayed along the top path. This path reflects the net effect of the 
two forces – compliance costs and process improvements. The bottom path of the 
diagram shows the ambient effect – the extent to which pollution reductions increase 
output via lower morbidity, lower mortality, and improved cognition. The sum of 
these two effects equals the combined effect (shown on the right-hand side of Figure 
1) and is what is measured in previous papers. 

[Insert Figure 1 here] 

Decomposing the combined effect into its two components is necessary in achieving 
socially-optimal air pollution reductions. Consider an environmental regulation 
aimed at reducing manufacturing emissions. The regulation creates a 
competitiveness effect, which is a cost, and an ambient effect, which is a benefit. Any 
associated air pollution reductions will convey the benefit of the ambient effect to all 
firms in the targeted areas. However, the cost of achieving the reduction (the 
competitiveness effect) is borne only by the firms that must comply with the 
regulation. To determine the optimal level of regulation, the competitiveness effect 
should be included as a cost (but applied only to the complying firms) and the 
ambient effect should be included as a benefit (applied to all the proximately-located 
firms). This also means that air pollution restrictions are less costly in regions with 
high firm densities. 

For example, US EPA regulations often target counties in non-compliance with 
mandated pollution levels. In setting these levels optimally, the costs (the 
competitiveness effect) must be estimated accurately. If the competitiveness effect is 
quantified as the combined effect, then regulations will be too strict and the 
complying firms will bear socially-excessive costs. Interpreting the combined effect 
as a competitiveness effect also has relevance for the theoretical debate concerning 
the Porter Hypothesis. For example, Greenstone et al. (2012) estimate a small (1.7 to 
2.2%) productivity increase for firms in non-attainment for CO in response to the 
CAAA. This could be consistent with the Porter Hypothesis, but if the ambient effect 
embedded in their estimate exceeds 2.2% this would be inconsistent. 

To disentangle the competitiveness and ambient effects we develop a boundary-
discontinuity-difference-in-differences (BD-DD) approach and apply it to a major air 
pollution regulation in China. We identify firms that are geographically close to each 
other (ten kilometers or less), some of which are subject to the regulation (the 
treatment group) and others of which are not (the control group). We then compare 
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the response of the two groups to the advent of the regulation (the treatment). Since 
the control and treatment groups are in close proximity, they experience the same air 
pollution concentrations both before and after the policy implementation and differ 
only in the application of the regulation after its advent. This differs from the typical 
DD estimates which use treatment and control firms regardless of distance from 
each other. In this case, the two groups experience different ambient pollution levels 
with the advent of the regulation in addition to the difference in regulatory 
compliance. 

We apply our approach to a regulation known as the “Plan of Key Cities Designation 
for Air Pollution Control” (KCAPC) which imposed air pollution controls on 
selected cities.2 We apply the BD-DD approach to estimate the policy’s 
competitiveness effect on TFP in China’s manufacturing sector. We also apply the 
traditional DD approach to estimate the policy’s combined effect. The difference 
between these two estimates equals the productivity improvements due to ambient 
pollution reductions from the policy. The standard DD approach estimates a 
combined effect of -3.8% among surviving firms for a total annual productivity cost 
to all firms of CNY 30.2 billion. The BD-DD approach estimates a competitiveness 
effect of -6.4% (CNY 51.6 billion annually) implying that the ambient effect is a 2.7% 
productivity increase for firms in treatment cities. Thus, the direct regulatory costs 
on firms would be understated by 2.6 percentage points (CNY 21.4 billion annually) 
or 42% using the pre-existing DD approach. 

This paper is most closely related to Greenstone et al. (2012). It differs in that the 
focus is on developing a method to decompose the combined effect into the 
competitiveness and ambient effects. Also closely related to our work is He et al. 
(2020). The paper employs a regression discontinuity (RD) approach comparing the 
productivity of firms immediately upstream of a water quality monitoring station to 
those immediately downstream. Upstream firms are affected by the regulation while 
downstream firms are not because pollution upstream of a station is measurable 
while that downstream is not; and officials charged with implementing the policy 
are evaluated based on measurable pollution. 

There are two key differences between this paper and ours. First, it is unclear 
whether there are significant productivity effects of cleaner water (the equivalent of 
the ambient effect in our setting). To the extent that polluted water needs to be 
purified before it can be used as a productive input, this “ambient” effect would be a 
byproduct of the regulation. This is likely to be much more localized than the 

                                                           
2 In Chinese, the regulation is named“大气污染防治重点城市划定方案.” 
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ambient effect for air pollution, which can extend hundreds of kilometers.3 It is 
therefore less critical to quantify these for water pollution because they will apply to 
fewer firms. Second, but related, the purpose of He et al. (2020) is not to disentangle 
the competitiveness and ambient effects. 

More broadly, our paper relates to three areas of literature. The first is the literature 
estimating the effects of air quality regulations on competitiveness, in particular 
Greenstone et al. (2012). As that paper notes, there is little other empirical evidence 
concerning the competitiveness effect of air pollution regulation on productivity 
except for specific industries (Gollop and Roberts, 1983; Ryan, 2012). We contribute 
to this area of literature by providing a method to isolate the competitiveness effect 
from the ambient effect in an air pollution context. 

The second area is the literature quantifying the direct effects of air pollution on 
productivity – the ambient effect in our setting. This area of literature began by 
focusing on specific occupations or industries (Graff Zivin and Neidell, 2012; Chang 
et al., 2016; Adhvaryu et al., 2019; Chang et al., 2019; He et al., 2019) and then 
expanded to estimate nationwide or supra-national effects (Dechezleprêtre et al., 
2018; Fu et al., 2021). These papers motivate the need to develop a framework for 
decomposing the combined effect into the competitiveness and ambient effects. In 
particular, Fu et al. (2021) shows that pollution has significant effects on TFP 
nationwide in China’s manufacturing sector emphasizing the need to account for an 
ambient effect in evaluating China’s environmental policies. 

Third, there is a large literature that attempts to explain productivity dispersion 
among firms (Bartelsman and Doms (2000) and Syverson (2011) provide surveys). 
Environmental regulation is a contributing factor to this. However, quantifying this 
as the combined effect masks variation because there are actually two underlying 
contributions that are being averaged. The competitiveness effect applies to firms 
subject to a regulation while the ambient effect will be experienced by other firms 
depending on the density of firms and proximity to regulated regions. 

The remainder of the paper proceeds as follows. The next section describes a 
conceptual framework for our analysis. Section 3 describes the institutional 
background and Section 4 our estimation approach. Section 5 describes the data to 
which we apply the estimation approach. Section 6 discusses identification and 
presents the results. We conclude in Section 7. 

                                                           
3 Firms immediately upstream of a monitoring station might or might not experience an “ambient” 
effect. It depends on whether the purified water is re-used in their production processes versus 
floating downstream. This differs from our setting where pollution affects all firms in close proximity. 
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2. Conceptual framework 

Our conceptual model closely follows that in Greenstone et al. (2012) which shows 
how environmental regulations might affect firm productivity. We augment their 
model to separate the combined effect into the competitiveness and ambient effects. 
We assume a manufacturing firm (also plant)4 𝑖𝑖 produces a product according to a 
constant-returns-to-scale Cobb-Douglas production function employing 𝐿𝐿� units of 
labor and 𝐾𝐾� units of capital: 

𝑄𝑄𝑖𝑖 = 𝐴𝐴𝑖𝑖𝐿𝐿�𝑖𝑖𝛼𝛼𝐾𝐾�𝑖𝑖1−𝛼𝛼, (1) 

where 𝑄𝑄 is the firm’s output and 𝐴𝐴 is a Hicks-neutral technology shifter. 𝐿𝐿� and 𝐾𝐾� are 
production-effective labor and capital – the quantity actually used in production. 
Observed units of the two inputs (𝐿𝐿 and 𝐾𝐾) may differ because regulation may 
require firms to employ ineffective inputs in the production process such as 
compliance officers or pollution-reduction equipment. Observed units are related to 
effective units by: 

𝐿𝐿�𝑖𝑖 = 𝜆𝜆𝐿𝐿(𝑟𝑟,Ω)𝐿𝐿𝑖𝑖 (2a) 
𝐾𝐾�𝑖𝑖 = 𝜆𝜆𝐾𝐾(𝑟𝑟,Ω)𝐾𝐾𝑖𝑖, (2b) 

where 𝜆𝜆𝐿𝐿 and 𝜆𝜆𝐾𝐾 are proportionality factors that reflect the regulatory effect on input 
usage. 𝑟𝑟 denotes regulatory stringency and Ω the ambient pollution faced by the firm. 
If more stringent regulations impose a greater competitiveness effect this decreases 
𝜆𝜆𝐿𝐿, 𝜆𝜆𝐾𝐾, or both: that is, 𝜕𝜕𝜆𝜆𝐿𝐿 𝜕𝜕𝑟𝑟⁄ ≤ 0 and 𝜕𝜕𝜆𝜆𝐾𝐾 𝜕𝜕𝑟𝑟⁄ ≤ 0.5 At the same time, more 
stringent regulations may reduce pollution 𝜕𝜕Ω 𝜕𝜕𝑟𝑟⁄ ≤ 0 and generate an ambient 
effect. This will indirectly increase input effectiveness: 𝜕𝜕𝜆𝜆𝐿𝐿 𝜕𝜕Ω⁄ ≤ 0 and 𝜕𝜕𝜆𝜆𝐾𝐾 𝜕𝜕Ω⁄ ≤ 0. 
To determine the effects of these on productivity, substitute them into the 
production function: 

𝑄𝑄𝑖𝑖 = 𝐴𝐴𝑖𝑖[𝜆𝜆𝐿𝐿(𝑟𝑟,Ω)𝐿𝐿𝑖𝑖]𝛼𝛼[𝜆𝜆𝐾𝐾(𝑟𝑟,Ω)𝐾𝐾𝑖𝑖]1−𝛼𝛼 = 𝐴𝐴𝑖𝑖𝜆𝜆𝐿𝐿(𝑟𝑟,Ω)𝛼𝛼𝜆𝜆𝐾𝐾(𝑟𝑟,Ω)1−𝛼𝛼𝐿𝐿𝑖𝑖𝛼𝛼𝐾𝐾𝑖𝑖1−𝛼𝛼. (3) 

The firm’s TFP is output divided by weighted inputs: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 = 𝑄𝑄𝑖𝑖
𝐿𝐿𝑖𝑖
𝛼𝛼𝐾𝐾𝑖𝑖

1−𝛼𝛼 = 𝐴𝐴𝑖𝑖𝜆𝜆𝐿𝐿(𝑟𝑟,Ω)𝛼𝛼𝜆𝜆𝐾𝐾(𝑟𝑟,Ω)1−𝛼𝛼. (4) 

Taking the derivative of logged TFP with respect to 𝑟𝑟 gives the combined effect of 
regulation on TFP: 

                                                           
4 Only 5.2% of firms in our data set are multi-plant and we exclude them from estimation. 
5 If complying with the regulation forces firms to rationalize their processes resulting in greater 
output according to the Porter Hypothesis, this would increase either or both of these. We assume the 
derivative is negative given most previous evidence (and our results) favor a negative 
competitiveness effect. 
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𝜕𝜕𝜕𝜕𝜕𝜕(𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖)
𝜕𝜕𝜕𝜕

= �𝛼𝛼 𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐿𝐿)
𝜕𝜕𝜕𝜕

+ (1 − 𝛼𝛼) 𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐾𝐾)
𝜕𝜕𝜕𝜕

� + �𝛼𝛼 𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐿𝐿)
𝜕𝜕Ω

+ (1 − 𝛼𝛼) 𝜕𝜕𝜕𝜕𝜕𝜕(𝜆𝜆𝐾𝐾)
𝜕𝜕Ω

� 𝜕𝜕Ω
𝜕𝜕r

. (5) 

The combined effect equals the effect on firm competitiveness (the first bracketed 
term) plus the regulation’s effect on productivity via ambient pollution (the second 
bracketed term). To the extent that 𝜕𝜕Ω 𝜕𝜕𝑟𝑟⁄ < 0, interpreting the overall estimate as 
the competitiveness effect will understate it (in absolute value). Our BD-DD 
approach eliminates the second bracketed term because it is differenced out by 
comparing firms that are exposed to the same pollution concentration levels (Ω). 

3. Institutional background 

On September 5, 1987, the State Environmental Protection Administration (SEPA) 
issued the “Air Pollution Prevention and Control Law of the People's Republic of 
China” (APPCL). The policy, implemented on January 1, 1988, specified air pollution 
reductions for 47 “key” cities. The law was regarded as being of limited effectiveness 
because it specified no formal pollution targets or monitoring mechanism.6 As a 
consequence, it was revised in 1995 and again in 2000. We focus on this last revision 
issued on April 29, 2000. 

On December 2, 2002 as a part of implementing this last revision, SEPA formally 
issued the KCAPC policy. The KCAPC identified 113 cities that were subject to 
regulations with the goal of meeting air quality targets by 2005.7 The target was 
China’s Class II air quality standard (formally designated GB3095-2000) with respect 
to six air pollutants: sulfur dioxide (SO2), nitrogen dioxide (NO2), total suspended 
particulate (TSP), ozone (O3), carbon monoxide (CO), and particulate matter smaller 
than 10 micrometers in diameter (PM10).8 The standard specified maximum average 
annual, daily and hourly concentrations of these pollutants as shown in Appendix A. 

The 113 cities subject to regulation under KCAPC were among the 338 cities with air 
pollution monitoring stations in 2000. They were chosen based on the city not 
meeting the GB3095-2000 standard in 2000 along with other criteria such as whether 
the city was a national key-tourism or culturally-protected city and its demographic 
and economic conditions. These are the treatment cities and all other cities 
(numbering 225) are control cities. The cities are defined by the four-digit level of the 

                                                           
6 See http://www.gov.cn/gongbao/content/2000/content_60224.htm (in Chinese). 
7 A detailed description is at http://www.mee.gov.cn/gkml/zj/wj/200910/t20091022_172141.htm 
(in Chinese). 
8 The ambient air quality standard GB3095-2000 has three classes. Class II applies to residential, 
commercial, and traffic activities located in general industrial and rural areas. Class I is the strictest 
and applies to scenic areas and nature preserves. Class III is the least restrictive and applies to 
specialized industrial areas. 

http://www.gov.cn/gongbao/content/2000/content_60224.htm
http://www.mee.gov.cn/gkml/zj/wj/200910/t20091022_172141.htm
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Administrative Division Codes of the PRC.9 Appendix B shows the locations of the 
treatment and control cities. 

The KCAPC policy did not go into effect until January 6, 2003 when SEPA issued its 
formal implementation.10 We therefore take 2003 as the policy implementation 
threshold for our analysis. After the policy went into effect a city continued to be 
subject to regulation or not for the duration of our sample period.11 The treatment 
cities were subject to oversight and restrictions while the control cities were not. The 
restrictions included promoting clean-energy use, barring high-polluting fuels, 
developing cogeneration and central heating, better controlling coal pollution, better 
restricting motor-vehicle emissions, better controlling construction and 
transportation dust, shutting down high-polluting plants, and requiring firms to 
establish environmental management systems. 

SEPA supervised implementation at the national level. The policy targets were 
incorporated into the evaluation and promotion of government officials at the local 
level. Treatment cities were subject to frequent inspections. Both the national and 
local governments had enforcement powers to ensure compliance. Local city officials 
were required to regularly release information on the concentrations of each of the 
pollutants and their performance would influence promotions and demotions. The 
KCAPC policy achieved significant emissions reductions. By 2005, 48 of the 
treatment cities had met the Grade II standard. 

4. Estimation approach 

4.1 Overall approach 

We first use the DD approach to estimate the combined effect for comparison to the 
previous literature. We then isolate the competitiveness effect using our BD-DD 
approach (see Figure 1 for the correspondence between policy effects and 
estimation). The difference between these estimates equals the ambient effect. To 
illustrate our approach, consider four firms in two cities A and B (Figure 2). City A is 
subject to the KCAPC policy while city B is not. A DD estimate comparing firms 2 
and 4 quantifies the combined effect (competitiveness plus ambient effect). Firm 2 

                                                           
9 The six-digit administrative code is published by the NBS’ Administrative Division: 
http://www.stats.gov.cn/tjsj/tjbz/xzqhdm/201401/t20140116_501070.html (in Chinese). The first 
two digits identify one of the 31 provinces and the third and fourth digits the prefecture or major city. 
10 This is called the “Notice on the Work of Air Pollution Prevention and Control in Key Cities to Meet 
the Deadline.” A detailed description is at 
http://www.mee.gov.cn/gkml/zj/bgt/200910/t20091022_173815.htm (in Chinese). 
11 The treatment cities’ performance was formally evaluated in 2005. In 2005, the KCAPC’s goals 
switched to a different standard (based on emissions rather than concentrations). The treatment cities, 
regardless of whether they had met the Class II air quality standard goal by 2005 or not, continued to 
be subject to controls though the end of the sample period while the control cities were not. 

http://www.stats.gov.cn/tjsj/tjbz/xzqhdm/201401/t20140116_501070.html
http://www.mee.gov.cn/gkml/zj/bgt/200910/t20091022_173815.htm
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suffers from the competitiveness effect but also enjoys the ambient effect, while Firm 
4 experiences neither given its far distance from the treatment city.12 

[Insert Figure 2 here] 

A BD-DD estimate comparing firms 1 and 3 isolates the competitiveness effect. Firm 
3 enjoys the ambient effect because it is close to the boundary of the treatment city 
but does not bear the competitiveness effect because it need not comply with the 
regulation while Firm 1 also benefits from the ambient effect but must bear the 
competitiveness effect. The difference between the DD and BD-DD estimates equals 
the ambient effect. 

We next describe the econometric model corresponding to the extant DD approach 
which estimates the combined effect. We then describe the econometric model for 
the BD-DD approach for isolating the competitiveness effect. 

4.2 Combined effect (DD estimation) 

Previous estimates of the effects of air pollution regulations on productivity (e.g., 
Greenstone et. al., 2012) utilize a DD approach with firms in regulated locales as the 
treatment group and those in unregulated locales as the control group. We use this 
same approach to estimate the combined effect of KCAPC on productivity. For this 
estimation we include all firms in the sample that have data in at least one year 
before the policy and at least one year after:13 

𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇𝑟𝑟𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖) = 𝛽𝛽𝐶𝐶𝐶𝐶𝑇𝑇𝑙𝑙𝑃𝑃𝑃𝑃2003𝑖𝑖 ∗ 𝐾𝐾𝐾𝐾𝐴𝐴𝑇𝑇𝐾𝐾𝑐𝑐𝑖𝑖 + 𝜂𝜂𝑖𝑖𝐶𝐶𝐶𝐶 + 𝜃𝜃𝐶𝐶𝐶𝐶𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶 , (7) 

where 𝑖𝑖 indicates firm, 𝑃𝑃 indicates year, and 𝑃𝑃 indicates city and we index the 
parameters by 𝐾𝐾𝐶𝐶 to indicate combined effect. 𝑇𝑇𝑟𝑟𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 is firm 𝑖𝑖’s productivity 
in year 𝑃𝑃. The firm fixed effects �𝜂𝜂𝑖𝑖𝐶𝐶𝐶𝐶� capture time-persistent unobservables that 
affect firm productivity. Since firm fixed effects are included in all specifications the 
combined effect is identified from inter-temporal variation within firms.14 𝑋𝑋𝑖𝑖𝑖𝑖 
includes fixed effects which vary by specification (region-by-year or province-by-
year and industry-by-year) and in some specifications weather controls. The region- 

                                                           
12 Previous DD estimates, and ours, include firms 1 and 3 in this estimation even though they are not 
separated far enough geographically to experience the difference in pollution levels brought about by 
regulation. They are usually included because studies typically involve large numbers of firms so that 
their influence is very small relative to the overall sample. In our case DD estimates excluding the BD-
DD sample are very similar to those including it. 
13 We do so because firms that appear only before or after do not contribute to identifying the policy 
effects (firm fixed effects absorb the pre- or post-policy effects of any firm appearing only before or 
after the policy) and we want the summary statistics to reflect only data that aids in identification. 
14 Since firms rarely change cities (only 0.7%) and rarely change industries (only 1.1% using the 4-digit 
industry code) over the sample period, we do not include city or industry fixed effects since they 
would be nearly collinear with the firm fixed effects. 
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or province-by-year fixed effects control for geographic-specific unobservables 
within a year and the industry-by-year fixed effects control for industry-specific 
unobservables within a year that affect productivity.15 

𝜀𝜀𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶 captures firm-year specific shocks to productivity. In our baseline estimates we 
follow Greenstone et al. (2012) in clustering the standard errors by city-year to allow 
for spatial correlation across firms within a city-year but examine the robustness to 
clustering at the city level which allows for arbitrary correlations across firms and 
over time within a city. 

The key variables for the DD estimation are the two indicators. 𝑇𝑇𝑙𝑙𝑃𝑃𝑃𝑃2003𝑖𝑖  is set 
equal to zero prior to the imposition of the KCAPC and equal to one after. It captures 
the pre- versus post-policy periods. 𝐾𝐾𝐾𝐾𝐴𝐴𝑇𝑇𝐾𝐾𝑐𝑐𝑖𝑖 is set to one if the city in which firm 𝑖𝑖 is 
located is regulated under KCAPC and zero otherwise. 𝛽𝛽𝐶𝐶𝐶𝐶 captures the combined 
effect of the KCAPC policy on productivity – the differential effect of the policy on 
firms subject to its provisions and resulting ambient pollution reductions versus 
those not. 

4.3 Competitiveness effect (BD-DD estimation) 

To isolate the competitiveness effect, we embed this DD approach within a boundary 
discontinuity (BD) design that matches firms of opposite types (in regulated versus 
unregulated areas) that are geographically close to each other. In sufficiently close 
proximity, the two types of firms are exposed to the same ambient pollution 
concentrations but only those in regulated areas must incur costs to comply with the 
KCAPC. This estimation exploits the spatial discontinuity in regulations between 
treatment and control cities to estimate the causal effect of regulation on firm 
competitiveness. The BD-DD subsample includes all firms of opposite types that are 
sufficiently close that they experience the same PM2.5 concentrations. 

Specifically, we estimate Equation (7) but restrict the sample to treatment and 
control firms that are in close proximity (𝑖𝑖 ∈ {𝐵𝐵𝐵𝐵}): 

𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇𝑟𝑟𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖) = 𝛽𝛽𝐶𝐶𝑇𝑇𝑙𝑙𝑃𝑃𝑃𝑃2003𝑖𝑖 ∗ 𝐾𝐾𝐾𝐾𝐴𝐴𝑇𝑇𝐾𝐾𝑐𝑐𝑖𝑖 + 𝜂𝜂𝑖𝑖𝐶𝐶 + 𝜃𝜃𝐶𝐶𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝐶𝐶 , 𝑖𝑖 ∈ {𝐵𝐵𝐵𝐵}. (8) 

𝛽𝛽𝐶𝐶 captures the competitiveness effect of the KCAPC policy on productivity: the 
differential effect of the policy on firms subject to its provisions versus those not but 
facing the same ambient pollution reduction due to the policy.  

The BD aspect of our BD-DD estimation differs slightly from the typical BD 
approach. In the typical approach, we would compare outcomes for all firms within 

                                                           
15 We divide China into seven geographic regions (North, Northeast, Northwest, East, Central, South, 
and Southwest based on the first digit of the Administrative Division Code as in Zhang et al. (2018). 
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a certain distance on either side of a physical boundary between treatment and 
control areas. Doing so would include many firms that do not have a corresponding 
firm of the opposite type (control versus treatment) in close enough proximity that 
they face similar ambient pollution levels. While including these firms would not 
bias our estimates it would add noise and reduce efficiency. The estimates’ power 
depends on a high concentration of firms on both sides of a border. To ensure this, 
we include only firms that have another firm of the opposite type within a maximum 
distance. For example, suppose a treatment firm (A) has a control firm located eight 
kilometers away (B) and another control firm located fifteen kilometers away (C). If 
we impose a maximum distance cutoff of ten kilometers we would only include data 
for firms A and B in the estimation. If, instead, we impose a maximum distance 
cutoff of twenty kilometers we would include all three firms. An additional 
advantage of this approach is that it can be applied in settings in which air pollution 
regulations are applied to some but not all firms within the same geographic 
jurisdiction. 

4.4 Illustrative example 

To illustrate our estimation approach, consider a simple illustrative example. 
Suppose that a policy reduces pollution by 5.0% and imposes a competitiveness 
effect of -6.0%. Further, assume that the pollution gradient is 0.05% per kilometer 
(i.e., pollution drifts such that the pollution reduction declines by 0.05% per 
kilometer as you move away from a treatment area) and an elasticity of productivity 
with respect to pollution of -0.5. Figure 3a illustrates the policy’s effect on pollution 
as a function of the distance from the boundary between a treatment and control 
region (with negative distances representing moving further into the treatment 
region and positive further into the control region) assuming a dense population of 
firms on both sides of the border. The dashed blue line shows the pollution 
reduction due to the policy. Firms in the treatment region reduce their emissions 
such that pollution concentrations decline uniformly by 5.0% in response to the 
policy while those in the control region do not reduce their emissions. In the control 
region, the further from the border (more positive distances) the lower the pollution 
reduction because the strength of the spillover declines with distance following the 
gradient of 0.05% per kilometer. The ambient pollution effect reaches zero at 100 
kilometers into the control region. 

[Insert Figure 3a here] 

The green solid line in Figure 3a shows the change in productivity due to the 
pollution reduction (the ambient effect). Applying the elasticity, productivity 
improves uniformly by 2.5% in the treatment region. In the control region, the 
ambient productivity effect lessens as you move further from the border (at a rate of 
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0.025% per kilometer) as the strength of the pollution spillover declines, again hitting 
zero at 100 kilometers. 

Figure 3b combines the ambient and competitiveness effects to show the combined 
effect as a function of the distance from the boundary. The solid green line replicates 
the ambient effect as a function of distance developed in Figure 3a (rescaled). The 
small-dashed red line shows the competitiveness effect of -6.0%. Only firms in the 
treatment region suffer from the competitiveness effect so it jumps discontinuously 
from -6.0% to 0% at the boundary between the regions. 

[Insert Figure 3b here] 

The long-dashed black line shows the combined effect (it coincides with the ambient 
effect in the control region) which is what is observed in the data. The discontinuous 
jump at the border equals the competitiveness effect (-6.0%). The combined effect 
hits zero at 100 kilometers since both the competitiveness and ambient effects are 
zero beyond this. Using this observed data, BD-DD estimates based on firms in close 
proximity to the border will yield an unbiased estimate of the competitive effect. DD 
estimates using the observed data, on the other hand, using a full sample that 
extends much deeper (well beyond 100 kilometers) into both the control and 
treatment regions than that illustrated will equal the average combined effect in the 
treatment region (-3.5%) minus the average combined effect in the control region 
(roughly zero since the non-zero effects between 0 and 100 kilometers will be a small 
part of the sample) or -3.5%. This estimate differs from the BD-DD estimates by 2.5% 
which is the average ambient effect. 

5. Data 

Our estimation combines data on firm productivity, pollution, and weather in China 
from 1998 to 2007. The policy change occurs in 2003. 

5.1 Firm productivity data 

Firm-level output and characteristics data is from the Annual Survey of Industrial 
Firms (ASIF) collected by China’s National Bureau of Statistics (NBS). The survey 
includes all state-owned enterprises (SOEs) regardless of size and all non-SOEs 
whose annual sales exceed CNY 5 million (USD 0.75 million)16 and contains detailed 
information on firm location, accounting measures, and firm characteristics. The 
survey includes only manufacturing firms so our results do not apply to the power 
generation sector or services firms. The survey captures 90.7% of China’s total 
manufacturing output in the later years (Brandt et al., 2012). We use the algorithm in 
Brandt et al. (2012) to match firms over time to form an unbalanced panel. This 
                                                           
16 A 2022 exchange rate of 6.7 is used throughout the paper. 
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matching process is careful and avoids interpreting name changes as different firms. 
The panel is unbalanced because firms enter and exit during the sample period and 
non-SOEs may drop below or rise above the CNY 5 million threshold. We provide 
evidence that our estimates are unlikely to be greatly affected by this threshold. We 
also follow Brandt et al. (2012) in converting nominal into real values using industry-
level price indices. 

We drop observations with missing or unreliable data following the previous 
literature (Cai and Liu, 2009; Brandt et al., 2012).17 These represent 10.3% of 
observations and 7.9% of total manufacturing output. Also following the previous 
literature (Cai and Liu, 2009), we winsorize the top and bottom 0.5% of data based 
on each of the values of output, value added, employment, and capital because of 
the risk that these involve data entry or reporting errors; however, we check 
robustness to including these. Each firm is classified in an industry using the 
Chinese Industry Classification (CIC) code.18 

We use the six-digit administrative code of the firm to assign it to a city and, in turn, 
to the treatment or control group. For the BD-DD analysis, we use the address 
provided in ASIF to determine the firm’s latitude and longitude and use these to 
calculate the distance between firms when locating the nearest firm of the opposite 
type. For most firms, ASIF contains the street address. However, for 16.5% of firms, 
ASIF contains only the county or district level address. We drop these from the BD-
DD sample since this is not specific enough to calculate a distance from the nearest 
firm of the opposite type. We drop multi-plant firms (5.2% of the data) because we 
are unable to allocate their productivity to a specific location. 

We use three alternative measures for productivity. Our primary measures are TFP 
estimated using the OP and LP methods. We also check the robustness to labor 
productivity (output per worker) since this is commonly used in the environmental 
literature. We abstract from intermediate inputs and use value added as the measure 
of output. ASIF directly reports value added as the firm’s total production (including 
both sales and inventory) of all goods produced in the year valued at their market 
prices less the cost of all intermediate inputs employed in producing them. 

Appendix C provides summary statistics for the final DD sample which includes 
87,933 firms and 541,887 firm-year observations or 6.2 years of data per firm on 
average. The three productivity measures reveal significant variation and are highly 
                                                           
17 We drop observations with missing or negative values for output, value added, employment, or 
capital; firms with fewer than eight employees as they may have unreliable accounting systems; and 
firms violating accounting identities such as the components of net assets exceeding total assets or 
current depreciation exceeding cumulative depreciation. 
18 We use the National Economic Industry Classification (GB/T4754-2002) defined by the National 
Bureau of Statistics. This is similar to the US Standard Industrial Classification (SIC) code. 
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correlated with each other.19 Appendix D provides summary statistics for the data 
used in our BD-DD estimation applying a maximum distance of ten kilometers 
between treatment and control firms (as we explain later, this is our preferred 
distance threshold). This ten-kilometer sample includes 35,398 unique firms and 
224,334 firm-year observations or 6.3 years of data per firm on average. 

5.2 Pollution data 

We use data on PM2.5 to confirm that the KCAPC policy affected pollution 
concentrations. Although PM2.5 pollution was not directly regulated under KCAPC, 
it is the only pollutant for which data of nationwide coverage and sufficient 
geographic specificity is available. Different air pollutants are highly correlated so 
that our results provide indirect evidence that other pollutants were affected. We 
measure PM2.5 as annual concentrations derived from satellite-based Aerosol Optical 
Depth (AOD) retrieval techniques maintained by the National Aeronautics and 
Space Administration (NASA).20 The PM2.5 concentrations are calculated following 
van Donkelaar et al. (2016) and van Donkelaar et al. (2018). This dataset has been 
used in other studies of China’s air pollution (Freeman et al., 2019; Greenstone et al., 
2021). The AOD pollution data are reported in 1- by 1-kilometer grids which we 
aggregate to the city level using the six-digit administrative code. 

5.3 Weather data 

In some specifications we include data for weather because it has been found to 
affect firm productivity (Zhang et al., 2018) and also affects pollution levels. We 
include this only as a robustness check because it will only confound our estimates if 
weather conditions are correlated with the policy implementation. We obtain daily, 
station-level weather variables from the National Meteorological Information Centre 
of China.21 We aggregate the data to the city level using the inverse-distance 
weighting method (Deschênes and Greenstone, 2011) to give less weight to stations 
more distant from the geographic centroid. We then compute an annual average of 
temperature, relative humidity, wind speed, sunshine duration and barometric 
pressure and a cumulative annual value for precipitation. 

                                                           
19 The Pearson correlation coefficients for TFP via the OP and LP methods is 0.79 and for labor 
productivity with respect to TFP via the LP and OP methods is 0.69 and 0.67 all significant at better 
than the 1% level. 
20 The AOD data are obtained from the Global Annual PM2.5 Grids from MODIS, MISR and SeaWiFS 
Aerosol Optical Depth (AOD) with GWR, v1 (1998–2016) released by the Socioeconomic Data and 
Applications Center of NASA (https://beta.sedac.ciesin.columbia.edu/data/set/sdei-global-annual-
gwr-pm2-5-modis-misr-seawifs-aod). 
21 Available at http://data.cma.cn. 

https://beta.sedac.ciesin.columbia.edu/data/set/sdei-global-annual-gwr-pm2-5-modis-misr-seawifs-aod
https://beta.sedac.ciesin.columbia.edu/data/set/sdei-global-annual-gwr-pm2-5-modis-misr-seawifs-aod
http://data.cma.cn/
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6. Results 

We first confirm that the KCAPC policy had a significant effect on PM2.5 
concentrations before estimating the combined effect of the policy. We then estimate 
the competitiveness effect and back out the ambient effect. We discuss identification 
of each as we proceed. 

6.1 Pollution effect 

A necessary condition for the KCAPC to exert an ambient effect (i.e., separate from a 
competitiveness effect) is that it significantly reduced pollution concentrations. To 
see if this is the case, we estimate Equation (7) replacing productivity with the log 
ambient PM2.5 concentration as the dependent variable. Returning to our earlier 
illustrative example in Figure 3a, this estimates the difference of the average 
pollution reduction (orange-dashed curve) to the left of the boundary relative to the 
right. The unit of observation is a city-year.22 Appendix E tests the parallel trends 
assumption necessary for identifying this effect. The figure presents event-study 
estimates by substituting year dummies for 𝑇𝑇𝑙𝑙𝑃𝑃𝑃𝑃2003 in Equation (7) (normalized to 
zero in 2002) and confirms that PM2.5 concentrations follow a similar trend for 
control and treatment cities in the three years prior to the KCAPC implementation, 
but afterward pollution drops discontinuously for the treatment cities. 

Table 1 shows the DD estimates. Both columns include city fixed effects which 
capture time-invariant factors that affect pollution in the city and year fixed effects 
that capture time-specific factors affecting pollution in all cities in a year. Standard 
errors are clustered at the city level to allow for arbitrary correlations among 
unobservables affecting pollution over time within a city. Column 2 includes the 
weather controls while Column 1 does not. The coefficient is significant for both 
specifications indicating that the KCAPC reduced pollution by 3.2 to 3.8% in 
treatment cities relative to the control cities before versus after the policy. 

[Insert Table 1 here] 

6.2 Combined effect 

To estimate the combined effect we employ DD estimates using the three different 
measures of productivity as the dependent variable and including different 
combinations of fixed effects. It is useful to compare our specification to that in 
Greenstone et al. (2012) as it relates to the sources of variation in the two settings. The 
CAAA and the KCAPC both imposed regulatory measures only on selected regions. 

                                                           
22 This analysis includes 113 treatment and 148 control cities with ten years of data each. PM2.5 
pollution data is not available for all cities because the geographic definition of cities changed over 
time and we are only able to access pollution data that defines cities as of the year 2000. 
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This provides the basis for control and treatment groups and allows firm-specific 
shocks to productivity to be separately identified from regulatory effects. The CAAA 
generated additional variation which we do not have available. Under the CAAA 
only plants that are major emitters of pollution are subject to regulation allowing 
controls for time-specific shocks to productivity within counties. Since we do not 
have intra-city variation, we must rely on province-by-year or region-by-year fixed 
effects. The CAAA also offers additional time-series variation as counties could 
move in and out of regulatory status while in our setting cities retained the same 
status throughout the post-policy period. Nonetheless, the identification conditions 
for our DD estimates are met and the combined effect is precisely estimated. 

The identifying assumption for the DD estimates is that the pre-existing trends for 
the control and treatment groups are parallel prior to the policy intervention. Figure 
4 shows coefficients and 95% confidence intervals for event studies (substituting 
year dummies for 𝑇𝑇𝑙𝑙𝑃𝑃𝑃𝑃2003 in Equation (7)). The interaction terms (normalized to 
zero in 2002) show no significant differential trends prior to 2003 and display a 
downward trend beginning in 2003 that becomes significant in 2005 for all three 
measures. This time lag is similar to that found in Greenstone et al. (2012) which 
notes that it can take plants a couple years to implement abatement actions. 

[Insert Figure 4 here] 

Table 2 shows estimates of the combined effect (𝛽𝛽𝐶𝐶𝐶𝐶 coefficient in Equation (7)). All 
specifications include firm fixed effects while Columns 1 through 3 use region-by-
year fixed effects and Columns 4 through 6 province-by-year fixed effects. Industry-
by-year fixed effects at the two-digit level are included in Columns 1 and 4, at the 
three-digit level in Columns 2 and 5, and at the four-digit level in Columns 3 and 6.23 
The results are very significant and fairly consistent across specifications. The fact 
that the estimates are fairly stable regardless of the region/province and industry 
fixed effects implies that while these factors may determine productivity, they are 
uncorrelated with treatment status. For the most saturated model (Column 6), the 
KCAPC policy reduces TFP as measured by the OP method by 3.4%, TFP as 
measured by the LP method by 4.1%, and labor productivity by 3.9%. We use the 
midpoint of the TFP OP and LP measures (3.8%) as our headline result. At this 
midpoint estimate, total annual value added for the treatment firms would be 
decreased by CNY 30.2 billion (USD 4.5 billion).24 

[Insert Table 2 here] 

                                                           
23 There are 30 two-digit, 162 three-digit, and 425 four-digit industry codes. 
24 The average value added per firm is 13.845 million annually and there are 58,245 treatment firms. 
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Robustness 

We re-estimated clustering the standard errors at the city level to allow for arbitrary 
correlations across firms and over time within a city. The results are shown in 
Column 2 of Appendix F (Panel A) compared to the baseline results in Column 1. As 
in Greenstone et al. (2012), this more general level of clustering results in less 
significant results. The significance levels are 14% for TFP OP, 9% for TFP LP, and 12% 
for labor productivity. Column 3 re-estimates weighting observations by firm value 
added in each year. The results are fairly similar to the baseline results except that 
the OP measure of TFP loses some significance. Column 4 weights instead by firm 
employment in each year. The results are somewhat greater in absolute value 
consistent with larger firms experiencing a larger combined effect. Column 5 adds 
the weather control variables which produces very similar results to the baseline. 

6.3 Competitiveness effect 

Since measuring the competitiveness effect combines BD and DD estimation, there 
are two separate identification conditions. First, the BD aspect of the estimation 
requires that, in the limit, the firms are arbitrarily close to the boundary so that they 
experience the same ambient pollution before and after the policy change. In finite 
samples, there is a practical question of how short a distance is required. The 
relevant question for determining this is how far the regulated pollutants disperse so 
that firms in that proximity experience the same pollution levels. SO2 pollution 
travels hundreds of kilometers (Fisher, 1975), as does O3,25 NOX (EPA, 1999: 5), and 
PM10 (EPA, 1996: IV-6 and IV-7).26 As another point of reference, Chen et al. (2013) 
and Ebenstein et al. (2017) both apply a BD analysis to the Huai River policy 
measuring TSP and PM10 pollution in one-degree buckets. This corresponds to about 
100 kilometers distance.27 Our preferred estimates use a ten-kilometer distance, 
which is well below these distances. 

Second, the DD aspect of the estimation requires that the pre-existing trends in 
productivity for the control and treatment groups are parallel prior to the policy 
intervention. Figure 5 plots coefficients and 95% confidence intervals from 
regressing firm productivity on year dummies interacted with 𝐴𝐴𝑇𝑇𝑇𝑇𝐾𝐾𝐿𝐿𝑐𝑐𝑖𝑖 conditioning 
on firm fixed effects. The interaction terms (normalized to zero in 2002) show a slight, 
but insignificant, downward trend prior to 2003 but a more rapid downward trend 

                                                           
25 “What is Ozone?” (EPA) at https://www.epa.gov/ozone-pollution-and-your-patients-
health/what-ozone, accessed on August 4, 2022. 
26 TSP is an earlier measure of particulate matter and would exhibit similar properties to PM10. 
27 The Huai River is located from 111°55' to 121°25' East longitude and from 30°55' to 36°36' North 
latitude. Calculating the distance in moving one degree from roughly the middle of these coordinates 
(115° East longitude and 33° North latitude) yields a distance of about 100 kilometers. 

https://www.epa.gov/ozone-pollution-and-your-patients-health/what-ozone
https://www.epa.gov/ozone-pollution-and-your-patients-health/what-ozone
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beginning in 2003 that becomes significant in 2005 for all three productivity 
measures. 

[Insert Figure 5 here] 

Table 3 shows estimates of the competitiveness effect from the KCAPC policy. For 
this estimation, we use the most demanding fixed-effects specification including firm, 
province-by-year, and year-by-4-digit industry code (corresponding to Column 6 in 
Table 2 for the DD estimates). The table shows different maximum distances 
between treatment and control firms. There is a tradeoff as the maximum distance 
increases. On the one hand, there is more data available to provide precision. On the 
other hand, as the distance increases the identification requirement that the 
treatment and control firms face the same ambient pollution is less likely to be met. 
The estimates are very significant except for the labor productivity measure at one 
kilometer. 

[Insert Table 3 here] 

We use the ten-kilometer estimates as our baseline since it is the shortest maximum 
distance that yields enough data to generate results significant at the 1% level for all 
three productivity measures. Again using the average of the OP and LP TFP 
estimates as our headline result, the competitiveness effect of the KCAPC is a 6.4% 
decline in TFP. At this midpoint estimate, total annual value added for the treatment 
firms would be decreased by CNY 51.6 billion (USD 7.7 billion) which exceeds the 
combined effect by CNY 21.4 billion (USD 3.2 billion).28 The annual competitiveness 
effect is equivalent to stalling TFP growth by 3.0 years.29 

Robustness 

We re-estimated clustering the standard errors at the city level to allow for arbitrary 
correlations across firms and over time within cities. The results are shown in 
Column 2 of Appendix F (Panel B) compared to the baseline results in Column 1. 
This more general level of clustering reduces the significance of the coefficients 
although the TFP OP and TFP LP results remain significant at the 10% and 5% 
cutoffs. Column 3 weights observations by firm value added. The results are fairly 
similar and remain significant. Weighting by employment in the firm-year (Column 
4) increases the coefficients somewhat in absolute value consistent with somewhat 
greater effects for large firms. Column 5 adds the weather controls. The results are 
fairly similar to the baseline results. 

                                                           
28 The average value added per firm is 13.845 million annually and there are 58,245 treatment firms. 
29 Annual TFP growth over the sample period is 2.1% using the average of the annual growth rates for 
TFP calculated using the OP and LP methods. 
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Placebo tests 

Table 4 extends the maximum distance in the BD-DD estimates between treatment 
and control firms and shows that the ambient effect confounds the competitiveness 
effect at far distances. The table shows estimates for maximum distances in 20-
kilometer increments from 20 to 100 kilometers. As the maximum distance increases, 
the point estimates become monotonically less negative. Although the 
competitiveness effect remains the same as the distance increases (treatment and 
control firms are still being compared) the firms no longer face the same ambient 
pollution. As the maximum distance increases, firms in the control areas benefit less 
and less from the positive productivity spillovers created from reduced pollution in 
the treatment areas as in the illustrative example in Figure 3a (green-solid line). 

[Insert Table 4 here] 

6.4 Ambient effect 

KCAPC’s ambient effect on productivity in the treatment cities30 is the difference 
between the combined and competitiveness effects. Our headline estimate of the 
competitiveness effect is -6.4% and of the combined effect is -3.8%. This implies an 
ambient pollution effect in the treatment cities of 2.6%. At this estimate, total annual 
value added would be increased by CNY 21.4 billion (USD 3.2 billion) for firms in 
the treatment cities. There are additional gains to firms in the control cities which are 
difficult to quantify because they depend on the rate of decay of the pollution 
spillover with distance and the geographic placement of the firms. 

The reasonableness of this calculation depends on treatment firms in the BD-DD 
subsample being similar to treatment firms in the overall DD sample. Appendix G 
makes this comparison. Column 1 provides the mean characteristics for firms in 
treatment cities used in the DD estimation and Column 2 for firms in treatment cities 
used in the BD-DD estimation with a maximum distance of ten kilometers. Column 3 
tests for the difference between the two means. Although many of the characteristics 
are statistically significantly different from each other in the two samples, the 
magnitude of the differences is not large (no more than 8.7%). This is an example of 
Simpson’s Paradox in which a large amount of data results in statistical significance 
for even small differences. 

We can combine the ambient effect estimate with our DD estimate of KCAPC’s 
ambient effect on PM2.5 to obtain an elasticity of productivity with respect to ambient 
pollution. KCAPC reduced PM2.5 by 3.2% (using the estimates with weather controls) 
implying an elasticity of -0.81 for our headline estimates. This is higher than the -0.28 
                                                           
30 In the control cities, the ambient effect will be lower (in absolute value) as the productivity 
improvements fade with distance from treatment cities. 
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estimate obtained in Fu et al. (2021). A possible reason is that the current estimate 
applies to 2003 while that in Fu et al. (2021) is an average across all years from 1998 
to 2007. 

6.5 Alternative specification based on distance 

An alternative approach to identifying the competitiveness effect is to include data 
further from the boundary and include a measure of distance to the nearest firm of 
the opposite type (control versus treatment). The ambient effect declines with 
distance into a control city while the competitiveness effect is invariant to distance. 
Therefore, allowing the productivity to vary with distance forms a triple-differences 
estimator. For example, refer to the illustrative example in Figure 3b. If a control firm 
is located 20 kilometers from the boundary, the ambient effect it experiences would 
be 2.0% compared to 2.5% for the treatment firms (a difference of -0.5%). On the 
other hand, if the control firm is located 40 kilometers from the boundary the 
ambient effect it experiences would be 1.5% compared to 2.5% for the treatment 
firms (a difference of -1.0%). 

Given the competitiveness effect is invariant to distance while the ambient effect is 
not, the two effects can be separated by including a policy-treatment interaction (to 
capture the competitiveness effect) along with a policy-treatment-distance 
interaction (to capture the ambient effect). The sample is the same as that used in the 
DD estimation. In order to assign a unique distance for each firm, if a firm is paired 
with more than one firm of the opposite type we use the distance to the nearest firm 
of the opposite type. Since this is an approximation of the true geospatial 
relationships we regard these estimates as supporting evidence only. We estimate 
the following equation: 

𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇𝑟𝑟𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖) = 𝛽𝛽𝐷𝐷1 ∗ 𝑇𝑇𝑙𝑙𝑃𝑃𝑃𝑃2003𝑖𝑖 ∗ 𝐴𝐴𝑇𝑇𝑇𝑇𝐾𝐾𝐿𝐿𝑐𝑐𝑖𝑖 + 𝛽𝛽𝐷𝐷2 ∗ 𝑇𝑇𝑙𝑙𝑃𝑃𝑃𝑃2003𝑖𝑖 ∗ 𝐴𝐴𝑇𝑇𝑇𝑇𝐾𝐾𝐿𝐿𝑐𝑐𝑖𝑖 ∗ 𝐵𝐵𝑖𝑖𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝑃𝑃𝐷𝐷𝑖𝑖𝑖𝑖 
+𝜂𝜂𝑖𝑖𝐷𝐷 + 𝜃𝜃𝐷𝐷𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝐷𝐷 , (9) 

where 𝐵𝐵𝑖𝑖𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝑃𝑃𝐷𝐷𝑖𝑖𝑖𝑖 is the distance between firm 𝑖𝑖 and its nearest neighbor of the 
opposite type (control versus treatment). 𝛽𝛽𝐷𝐷1 captures the competitiveness effect – 
the policy effect at a distance of zero. 𝛽𝛽𝐷𝐷2 captures the decay of the ambient effect as 
the firms are further apart. We expect 𝛽𝛽𝐷𝐷2 to be negative – the ambient effect for the 
control firms relative to the treatment firms declines as the firms are further apart.31 

Table 5 shows the results of estimating Equation (9) for the different productivity 
measures. For ease of reporting we have rescaled all of the distances to hundreds of 
kilometers. The coefficient on the policy-treatment interaction term is very 
significant and estimates a somewhat smaller competitiveness effect than that 

                                                           
31 A standalone distance term is not included as it would be collinear with the firm fixed effects. 
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estimated by the BD-DD approach for the OP measure (-5.2% versus -6.0%) as well 
as for the LP measure (-5.9% versus -6.8%). The coefficient on the policy-treatment-
distance interaction term indicates that for the OP measure the ambient effect on 
productivity decreases at a rate of 0.083% per kilometer in the distance between the 
treatment and control firms and 0.085% per kilometer for the LP method. These 
correspond to twice the slope of the green, solid line in Figure 3b to the right of the 
threshold.32 

[Insert Table 5 here] 

7. Conclusion 

Choosing optimal environmental regulations requires an accurate cost-benefit 
analysis of their impact. This paper isolates the net private costs to firms from 
complying with a regulation from the spillover benefits of improved productivity 
that accrue to all proximately-located firms regardless of whether they are subject to 
the regulation. Failing to separate these effects understates the private costs to 
regulated firms and ignores the benefits to other firms. While this paper has applied 
the approach to a geographically-targeted regulation, it would also be applicable to 
an industry-targeted regulation in which the private costs accrue to the industry but 
spillover benefits accrue to proximately-located firms in all industries. 

Our paper examines only manufacturing firms. A similar decomposition may be 
necessary for services firms. For example, regulating emissions from transportation 
and distribution industries would impose compliance costs on these firms but also 
benefit other firms in improved productivity from reduced pollution concentrations. 
With slight modification, the approach developed in the paper could be applied to 
water pollution to determine whether productivity spillovers are significant and 
whether these productivity benefits also accrue to the regulated firms. 
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Figure 1: Effects of environmental regulation on firm productivity 

 

Figure 2: Illustrative example of estimating combined, competiveness, and ambient effects 

  

Comparing firms 2 and 4 yield the combined effect while comparing firms 1 and 3 yield the 
competitiveness effect. The difference between the two equals the ambient effect. 

 

Regulation

Compliance costs (-)
Process improvements (+)

↓ Air pollution

↓ TFP (“competitiveness” effect)
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↑ TFP (“ambient” effect)

+

TFP (combined effect): 
DD Estimation

=

City B (not subject 
to KCAPC)

City A
(subject to KCAPC)



2 
 

Figure 3a: Ambient pollution and productivity effects in illustrative example as function of 
distance from border for treatment (negative) and control (positive) regions 

      

Assumes an ambient pollution effect of -5.0%, pollution gradient of 0.05% per kilometer in the control 
region, and an elasticity of productivity with respect to pollution of -0.50. 

Figure 3b: Combined (ambient plus competitiveness) productivity effect in illustrative 
example as function of distance from border for treatment (negative) and control 
(positive) regions 

    

Assumes a competitiveness effect -6.0%, an ambient pollution effect of -5.0%, pollution gradient of 
0.05% per kilometer in the control region, and an elasticity of productivity with respect to pollution of 
-0.50. 
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Figure 4: Test of parallel trends in DD sample for control versus treatment cities (N = 541,845) 

TFP (OP estimates) 

 
TFP (LP Estimates) 

 
Labor productivity 

 

Coefficients and 95% confidence intervals for event studies (substituting year dummies for Post2003 
in Equation (7) of the main text) in the DD sample. 
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Figure 5: Test of parallel trends in BD-DD sample for control versus treatment cities (N = 
224,192) using a ten-kilometer maximum distance 

TFP (OP estimates) 

 
TFP (LP Estimates) 

 
Labor productivity 

 
Coefficients and 95% confidence intervals for event studies (substituting year dummies for Post2003 
in Equation (8) of the main text) in the BD-DD sample using a ten-kilometer maximum distance 
between treatment and control firms. 



5 
 

Table 1: Effect of KCAPC policy on city-level PM2.5 – DD estimation 

   

log(PM2.5) -0.038 ** -0.032 **

(0.015) (0.013)

Number of observations

City FE YES YES

Year FE YES YES

Weather controls YES

2,610 2,610

This table reports results from estimating alternative versions 
of Equation (7) in the main text with log PM2.5 pollution 
concentrations in the city-year as the dependent variable and 
using data from 1998 to 2007. The independent variables 
include the policy dummy interacted with a treatment dummy 
along with alternative sets of fixed effects identified at the 
bottom of the table. The entries are the coefficients and 
standard erorrs (in parentheses) of the policy-treatment 
interaction. Standard errors are clustered at the city level. *** 
p<0.01, ** p<0.05, * p<0.1.

(1) (2)
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Table 2: Combined effect of KCAPC policy on productivity – DD estimation 
 

 

Firm TFP (OP Method) -0.037 *** -0.032 ** -0.030 ** -0.038 *** -0.035 *** -0.034 ***

(0.013) (0.013) (0.013) (0.011) (0.011) (0.011)
Firm TFP (LP Method) -0.040 *** -0.038 *** -0.037 *** -0.043 *** -0.041 *** -0.041 ***

(0.014) (0.013) (0.013) (0.012) (0.012) (0.012)
Firm Labor Productivity -0.051 *** -0.045 *** -0.042 *** -0.045 *** -0.040 *** -0.039 ***

(0.014) (0.014) (0.014) (0.012) (0.012) (0.012)

Number of observations

Firm FE YES YES YES YES YES YES

Region-by-year FE YES YES YES

Province-by-year FE YES YES YES

2-digit-sector-by-year FE YES YES

3-digit-sector-by-year FE YES YES

4-digit-sector-by-year FE YES YES

This table reports results from estimating alternative versions of Equation (7) in the main text which regresses firms' productivity 
levels on the policy dummy interacted with a treatment dummy along with alternative sets of fixed effects identified at the bottom 
of the table using data from 1998 to 2007. The entries are the coefficients and standard erorrs (in parentheses) of the policy-
treatment interaction. Standard errors are clustered at the city-year level. *** p<0.01, ** p<0.05, * p<0.1. Estimates with 3- and 4-
digit industry-by-year interactions contain fewer observations due to singleton observations for some interactions.

(6)(1) (2) (4) (5)(3)

541,887 541,885 541,845 541,887 541,885 541,845
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Table 3: Competitiveness effect of KCAPC policy on productivity – BD-DD estimation using 
different maximum distances between treatment and control firms 

   

  

Firm TFP (OP Method) -0.057 ** -0.053 *** -0.060 *** -0.066 ***

(0.029) (0.020) (0.017) (0.016)
Firm TFP (LP Method) -0.080 *** -0.062 *** -0.068 *** -0.078 ***

(0.029) (0.020) (0.018) (0.016)
Firm Labor Productivity -0.053 -0.055 ** -0.056 *** -0.062 ***

(0.034) (0.023) (0.019) (0.017)

Number of observations

Firm FE YES YES YES YES

Province-by-year FE YES YES YES YES

4-digit-sector-by-year FE YES YES YES YES

1-kilometer 5-kilometer 10-kilometer 20-kilometer
(1) (2) (3) (4)

This table reports results from estimating alternative versions of Equation (8) in the main text 
which regresses firms' productivity on the policy dummy interacted with a treatment dummy 
along with alternative sets of fixed effects identified at the bottom of the table. Regressions use 
data from 1998 to 2007 and apply different maximum distances between treatment and control 
firms identified at the top of the column. The entries are the coefficients and standard erorrs (in 
parentheses) of the policy-treatment interaction. Standard errors are clustered at the city-year 
level. *** p<0.01, ** p<0.05, * p<0.1. 

51,578 146,541 224,192 331,820



8 
 

Table 4: Identification of competitiveness effect of APPCL policy – BD-DD estimation with large 
maximum distances between treatment and control firms 

 
 

Firm TFP (OP Method) -0.066 *** -0.051 *** -0.042 *** -0.035 *** -0.035 ***

(0.016) (0.013) (0.012) (0.012) (0.012)
Firm TFP (LP Method) -0.078 *** -0.062 *** -0.053 *** -0.043 *** -0.043 ***

(0.016) (0.014) (0.013) (0.012) (0.012)
Firm Labor Productivity -0.062 *** -0.052 *** -0.044 *** -0.037 *** -0.037 ***

(0.017) (0.014) (0.013) (0.012) (0.012)

Number of observations

Firm FE YES YES YES YES YES

Province-by-year FE YES YES YES YES YES

4-digit-sector-by-year FE YES YES YES YES YES

(1) (2) (3) (4)

505,597 521,279

(5)
100-kilometer

This table reports results from estimating alternative versions of Equation (8) in the main text which regresses firms' 
productivity on the policy dummy interacted with a treatment dummy along with alternative sets of fixed effects identified at 
the bottom of the table. Regressions use data from 1998 to 2007 and apply different maximum distances between treatment 
and control firms identified at the top of the column. The entries are the coefficients and standard erorrs (in parentheses) of 
the policy-treatment interaction. Standard errors are clustered at the city-year level. *** p<0.01, ** p<0.05, * p<0.1. 

20-kilometer 40-kilometer 60-kilometer 80-kilometer

331,820 429,446 479,024
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Table 5: Combined effect of KCAPC policy on productivity as a function of distance – 
DDD estimation 

    

Policy*treatment -5.152 *** -5.913 *** -4.862 ***

(1.290) (1.361) (1.381)

Policy*treatment*distance -0.083 *** -0.085 *** -0.046 *

(0.022) (0.024) (0.027)

Number of observations

Firm FE YES YES YES

Province-by-year FE YES YES YES

4-digit-sector-by-year FE YES YES YES

(1)

541,845

This table reports results from estimating Equation (9) in the main text which 
regresses firms' productivity on the policy dummy interacted with a treatment 
dummy and further interacted with the distance between firms in the treatment-
control pair using data from 1998 to 2007. Regressions also include fixed effects 
identified at the bottom of the table. The entries are the coefficients and 
standard erorrs (in parentheses) of the policy-treatment interaction terms. 
Standard errors are clustered at the city-year level. *** p<0.01, ** p<0.05, * 
p<0.1. 

541,845

(3)

Firm labor 
productivity

541,845

(2)

Firm TFP (OP 
method)

Firm TFP (LP 
method)

(x 100) (x 100) (x 100)



Appendix A: Class II standards under GB3095-2000 (in mg/m3) 

 

Appendix B: Treatment and control cities under the KCAPC policy 

 
Map displays the 113 treatment cities (shaded) subject to regulation under the KCAPC policy and the 
225 control cities not subject to the regulation (unshaded). 

Annual Daily Hourly

SO2 0.06 0.15 0.50
NO2 0.08 0.12 0.24
O3 N/A N/A 0.20
TSP 0.20 0.30 N/A
PM10 0.10 0.15 N/A
CO N/A 4.00 10.00

Based on Ministry of Environmental Protection of China (MEP) 
https://www.mee.gov.cn/gkml/zj/wj/200910/t20091022_171965.htm. 
N/A indicates not applicable.



Appendix C: Summary statistics for DD sample (N = 541,887) 

  

 
  

(1) (2) (3) (4)
Mean St. Dev Min Max

Log TFP (OP estimates) 2.87 0.99 -2.67 8.40

Log TFP (LP estimates) 5.42 0.94 0.57 9.86

Labor productivity (CNY 1,000/ Worker) 81.21 142.10 0.26 11,137.07

Employment (persons) 227 297 10 3,013

Sales (CNY 1,000) 48,768 90,252 0 7,983,558

Value added (CNY 1,000) 13,845 24,261 74 366,425

Wages (CNY 1,000) 2,741 4,792 1 299,283

Capital (CNY 1,000) 15,881 30,868 64 350,534

Intermediate Inputs (CNY 1,000) 37,364 70,884 0 1,681,560

Number of firms

Firm-level data from 1998 to 2007 used in DD estimation of the combined effect (firms that appear in at 
least one year before and one year after the policy change in 2003).

87,933



Appendix D: Summary statistics for BD-DD sample using a ten-kilometer maximum 
distance (N = 224,334) 

  

 
Appendix E: Pre-treatment trends and policy effect on PM2.5 (N = 2,610) 

 

Coefficients and 95% confidence intervals for event studies (substituting year dummies for Post2003 
in Equation (7) of the main text) using city-year PM2.5 pollution in treatment and control cities as the 
dependent variable. 

Mean
Standard 
Deviation Min Max

Log TFP (OP estimates) 2.90 0.90 -2.67 8.40

Log TFP (LP estimates) 5.41 0.87 0.82 9.86

Labor productivity (CNY 1,000/ Worker) 74.61 128.03 0.46 11,036.47

Employment (persons) 217 286 10 3,012

Sales (CNY 1,000) 49,158 90,456 0 2,153,603

Value added (CNY 1,000) 12,893 23,004 103 353,902

Wages (CNY 1,000) 2,871 4,834 1 241,236

Capital (CNY 1,000) 15,328 30,689 64 350,534

Intermediate Input (CNY 1,000) 38,098 72,184 1 1,574,035

Number of firms 35,398

Firm level data from 1998 to 2007 (firms that appear in at least one year before and one year after the 
policy change in 2003) in the BD-DD sample using a ten-kilomoter maximum distance between 
treatment and control firms.



 
Appendix F: DD (combined effect of KCAPC policy) and BD-DD (competitiveness effect of 

KCAPC policy) estimation robustness checks 

 

 
  

Panel A: DD Robustness Checks

Firm TFP (OP Method) -0.034 *** -0.034 -0.030 * -0.037 *** -0.032 ***

(0.011) (0.023) (0.016) (0.012) (0.011)
Firm TFP (LP Method) -0.041 *** -0.041 * -0.044 *** -0.044 *** -0.039 ***

(0.012) (0.024) (0.017) (0.013) (0.012)
Firm Labor Productivity -0.039 *** -0.039 -0.042 *** -0.045 *** -0.036 ***

(0.012) (0.025) (0.016) (0.012) (0.012)

Number of observations
Panel B: BD-DD Robustness Checks

Firm TFP (OP Method) -0.060 *** -0.060 * -0.062 *** -0.074 *** -0.050 ***

(0.017) (0.033) (0.022) (0.018) (0.015)
Firm TFP (LP Method) -0.068 *** -0.068 ** -0.066 *** -0.079 *** -0.056 ***

(0.018) (0.033) (0.023) (0.020) (0.016)
Firm Labor Productivity -0.056 *** -0.056 -0.070 *** -0.072 *** -0.050 ***

(0.020) (0.040) (0.024) (0.019) (0.018)

Number of observations

Firm FE YES YES YES YES YES

Province-by-year FE YES YES YES YES YES

4-digit-sector-by-year FE YES YES YES YES YES

Weighted by firm value added YES

Weighted by firm employment YES

Weather controls YES

Standard errors clustered by city-year YES YES YES YES

Standard errors clustered by city YES

(1) (2) (3) (4) (5)

Panel A reports results from estimating alternative versions of Equation (7) in the main text which regresses firms' 
productivity on the policy dummy interacted with a treatment dummy. Panel B reports results from estimating alternative 
versions of Equation (8) in the main text which regresses firms' productivity on the policy dummy interacted with a 
treatment dummy and applying a ten-kilometer maximum distance between treatment and control firms. All regressions 
use data from 1998 to 2007 (firms appearing in at least one year before and one year after the policy change in 2003) and 
include alternative sets of fixed effects, control variables, observation weightings, and clustering of standard errors 
identified at the bottom of the table. The entries are the coefficients and standard erorrs (in parentheses) of the policy-
treatment interaction. Standard errors are clustered at the city-year level. *** p<0.01, ** p<0.05, * p<0.1.

541,845 541,885 541,845 541,845 541,845

224,192 224,192 224,192 224,192 224,192



Appendix G: Firm characteristics in treatment cities for the DD and BD-DD (using a ten-
kilometer maximum distance) samples 

 

 

(1) (2)

DD 
Sample

BD-DD 
Sample

Log TFP (OP estimates) 2.893 2.914 -0.021 ***

0.98 0.90 (0.003)
Log TFP (LP estimates) 5.448 5.426 0.022 ***

0.93 0.88 (0.003)
Labor productivity 84.350 77.280 7.070 ***

     (CNY 1,000/ Worker) 147.70 135.50 (0.413)
Employment (persons) 224.7 214.1 10.60 ***

293.7 282.4 (0.8)
Sales (CNY 1,000) 51,105 50,796      309

94,336 93,730 (278)
Value added 14,370 13,264      1,106 ***

     (CNY 1,000) 25,036 23,612 (71)
Wages (CNY 1,000) 2,897 2,970        -73 ***

4,985 4,970 (15)
Capital (CNY 1,000) 16,579 16,023      556 ***

32,107 31,836 (94)
Intermediate input 38,967 39,293      -326
      (CNY 1,000) 73,637 74,667 (220)

Number of Firms 58,425 25,834
Number of Observations 367,399 165,672

Firm-level data from 1998 to 2007 (firms appearing in at least one year 
before and one year after the policy change in 2003) for treatment firms 
used in DD estimation of the combined effect (Column 1) and 
treatment firms used in BD-DD estimation of the competitiveness 
effect using a ten-kilometer maximum distance (Column 2). Standard 
deviations in parentheses. Column 3 provides the difference in means 
and its standard error in parentheses. * = 10% significance, ** = 5% 
significance, *** = 1% significance for a two-sided t-test.

Difference

(3)
Treatment Sub-Sample
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