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Abstract

We study the profitability of frequency reward programs under very general conditions. We begin

by comparing the profitability of a monopolist offering a buy-X-get-one-free program to that of static

pricing. The reward program can never outperform the static one, even though they converge in the

limit as X = +∞. This result is robust to a buy-X-get-Y-free program, flexible cost structures, credit-

specific pricing, and most importantly, fully-flexible specifications of customer heterogeneity. We then

consider a duopoly in which both firms choose simultaneously between offering a reward program and

static pricing. The only Nash equilibrium is for both firms to offer static pricing. Finally, we show that

a reward program can outperform static pricing if credits have finite expiration. We provide intuition

and managerial implications of these results and reconcile previous findings of profit-enhancing reward

programs.

Keywords: customer reward programs, pricing, dynamic competition, switching costs, dynamic pro-

gramming

∗Li (E-mail: xingli@gsm.pku.edu.cn): Guanghua School of Management, Peking University, Viard (E-mail: brian-
viard@ckgsb.edu.cn): Cheung Kong Graduate School of Business. We thank Hongbin Cai, Anthony Dukes, Mengze Shi,
Yi Xiang, Xing Zhang, and seminar participants at Peking University, Hong Kong Quant Marketing Online Series, for helpful
feedback and suggestions. All errors are ours.

1



1 Introduction

Frequency reward programs are ubiquitous in a broad array of industries including airlines, hotels, groceries,

retailers, and coffee shops. The defining feature of a frequency reward program is that prices depend

on cumulative historical purchases. Although these programs have been widely studied in marketing and

economics, results on whether they are profitable marketing tools rely on specific contexts such as behavioral

preferences, particular competitive landscapes, and finite credit expiration (Kim et al., 2001; Lu and Moorthy,

2007; Rossi, 2018; Sun and Zhang, 2019). Most other studies examine the design properties of reward

programs conditional on their adoption (see Bombaij and Dekimpe (2020) for a survey). What remains

under-studied, as far as we know, is the profitability of a frequency reward program in a simple but general

setting with forward-looking customers who are infinitely-lived. An infinite horizon fully accommodates the

inherently dynamic decision-making of customers facing a reward program. This would serve as a benchmark

by which to understand the profitability of frequency reward programs under general conditions and, as a

point of comparison, help to isolate why frequency reward programs are profitable in specific contexts.

In this paper, we analytically examine firms’ incentives to introduce a reward program in an infinite-

horizon setting with very general customer heterogeneity and endogenous purchase frequency. We consider

both a monopoly and duopoly setting. Specifically, we ask whether firms can realize higher profits by launch-

ing a reward program rather than simply charging a static price? We begin by examining a monopolist with

zero marginal cost offering a buy-one-get-one-free (B1G1) program. We consider the steady state of an

infinite-horizon model with heterogeneous and forward-looking customers, which allows for rich patterns of

heterogeneity in customers’ valuations, time preferences, and purchase frequencies. Although customers’

time horizons are infinite, the model is equivalent to customers having finite, but uncertain, shopping lifes-

pans. The key finding is that the reward program cannot outperform static, period-by-period pricing. The

under-performance of a reward program relative to static pricing extends to a fully-flexible specification of

customer heterogeneity (a mixture of distributions), which rules out price discrimination between frequent

and infrequent customers as a motivation for reward programs. It also holds under a very general specifi-

cation of rules for earning and redeeming rewards (a buy-X-get-Y-free (BXGY) program), even though a

reward program converges to static pricing when X → +∞ in a BXG1 program.

The reward program under-performs due to a “down-payment” effect. In a reward program, customers

pay for future consumption in advance. This future consumption faces a time discount, lowering demand

and firm profits. The intuition is most easily seen by considering a B1G1 program in which customers’

valuations are certain. Suppose customers pay a price p to purchase and earn a credit, and 0 when they
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redeem a credit. In this scenario, they have to buy two units immediately, but consume only one today. The

willingness to pay for the unit consumed in the future is discounted. If the firm instead switches to a static

price of 0.5p, customers consume as they pay with no time discounting. This increases their demand and,

as a result, firm profits.1 This intuition holds even when there is uncertainty in customers’ future valuations

defined under very weak distributional assumptions, including those commonly used in empirical work.

This intuition, and therefore the results, extend to frequency reward programs with other commonly-

observed features, including a non-zero marginal cost and credit-specific pricing in which the reward units

are discounted rather than free. Any of the model features (credit-specific pricing, BXGY program, non-zero

marginal cost, and full heterogeneity) can be combined and the under-performance of the reward program

carries through due to the same “down payment” argument. This accommodates, for example, a tiered

reward program which is a combination of a BXGY program with credit-specific pricing for different units of

Y. We also show that our main result is robust to “present bias” in the form of quasi-hyperbolic discounting.2

We then consider the profitability of reward programs under competition, where a switching costs argu-

ment may justify their use. We consider a Hotelling model with a continuum of customers having hetero-

geneous valuations and firms located at each end. Customer heterogeneity is as general as in the monopoly

case. The firms decide simultaneously whether to offer a B1G1 program or charge static prices. Again, the

reward program under-performs relative to static pricing: the only Nash equilibrium is for both firms to

offer static pricing. The intuition parallels that in the monopoly case. Regardless of whether its competitor

offers a reward program or static pricing, the firm increases its demand and profits by offering static pricing

due to the same “down-payment” argument. The reward program does increase switching costs – when a

firm introduces a reward program, potential customers are more likely to buy from it if they hold a credit

with the firm. However, it is not profitable for the firm to induce customers to earn these credits.

Finally, we consider a reward program with finite expiration of credits and show, in the monopoly case,

that with such a feature the reward program may yield higher profits than static pricing. The introduction

of expiring credits highlights an additional feature of reward programs in addition to time discounting. To

illustrate, compare a B1G1 program to static pricing. Static pricing involves only period-by-period spot

purchases, and the monopolist sells only to customers with current valuations above the price. The B1G1

program, in contrast, “bundles” a spot purchase with a future purchase. Since future valuations are uncertain,

customers will value the future product according to their expected rather than realized valuation. Since

1This increase in demand means that customers are also better off under static pricing.
2There are design features or settings that we do not consider. These include reward programs not controlled by the seller

(e.g. a franchisee) (Chung et al., 2022), reward accumulation based on monetary rather than quantity purchases (Chun and
Ovchinnikov, 2019), and coalitions of reward programs (Lederman, 2007).
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expected valuations are more similar across customers than realized, the monopolist’s price-sales tradeoff is

reduced, and it can charge a relatively higher price without losing commensurate sales. The logic is similar

to the smoothing of valuations across different customer segments in the classical bundling literature (Adams

and Yellen, 1976; Bakos and Brynjolfsson, 1999, 2000; Stremersch and Tellis, 2002). This “bundling” feature

of reward programs unravels with no credit expiration because customers delay their future consumption

until they realize a sufficiently high valuation.

The remainder of the paper is organized as follows. The next section reviews related studies. Section 3

presents the monopoly model, Section 4 the duopoly model, and Section 5 the finite-expiration case. Section

6 concludes.

2 Related Literature

Our work relates to three branches of existing literature on reward program profitability: theoretical rational

models, theoretical behavioral models, and empirical analyses. Here we review each branch and identify our

contribution. We then review other rationales in the literature for the profitability of reward programs.

2.1 Theoretical rational models

The earliest justifications for reward programs focused on switching costs. In a competitive environment,

launching a reward program increases customers’ stickiness to a firm and softens price competition (Kim

et al., 2001; Singh et al., 2008). For tractability, these papers make simplifying assumptions, including a

binary distribution of customer preferences and a two-period setting. In equilibrium, one or both firms

launch a reward program. Two recent papers, Bazargan et al. (2018, 2020), extend the time horizon to

multiple, but finite, periods. Assuming a logit distribution of customer valuations, the papers use numerical

analysis to show the existence of different possible equilibria, including one in which neither firm launches a

reward program.

Relative to these studies, our work analytically examines a duopoly with infinitely-lived customers and

a very general distribution of customer preferences, and finds that neither firm offers a reward program

in equilibrium. We also explain the necessity of finite expiration, implicitly assumed in earlier works with

finite periods, to make the reward program profitable by comparing it to no expiration in an infinite-horizon

setting. Besides relaxing assumptions for greater realism, we provide new insights into the switching costs

argument. Although the reward program creates switching costs after customers make their initial purchases,
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it is unprofitable for firms to introduce the program ex-ante if credits do not expire and customers are fully

forward-looking.

More recently, Sun and Zhang (2019) reveals another rationale, price discrimination, for the profitability

of reward programs. In the paper, a monopolist can choose whether to launch a reward program with

finite-credit expiration. Infinitely-lived customers are heterogeneous along two binary dimensions: product

valuation and exogenous market participation frequency. In this setting, a reward program is more profitable

than static pricing when purchase frequency and valuations are negatively correlated. This is because the

frequency reward program shrinks the difference in valuations between the two types of customers: the

valuation for high-valued, low-participation customers are discounted as their credits are likely to expire,

making them more similar to the other low-valued but high-participation customers, whose valuations are

enhanced by redeeming credits before expiration. Firms can extract more profit because they face more

homogeneous customers.

We also identify finite-credit expiration as one critical reason for the profitability of reward programs,

but for a different reason. The reward program with finite expiration expands demand for future products

as customers make decisions based on expected rather than realized payoffs. Such an effect does not rely on

customer heterogeneity and exists in markets with homogeneous customers. Relatedly, we show the necessity

of finite expiration, by proving the sub-optimality of launching a reward program without expiration.3

Besides the new insights on switching costs and finite expiration, our model allows for more general

customer heterogeneity and endogenous purchase frequencies and provides analytical results that guarantee

robustness. We provide intuitions for these results and examine their generalizability along other reward-

program dimensions such as BXGY programs, credit-specific pricing, and time-inconsistent preferences.

There are a number of analytical papers that examine design features of reward programs conditional

on their being offered. These include reward timing (immediate- versus delayed-redemption), reward type

(in-kind products, unrelated products, or price discounts), and rules for accumulating and redeeming points

(Chun et al., 2020; Kopalle et al., 2012; Kim et al., 2021). These decisions depend on customer attributes

including heterogeneity of preferences across individuals and variation in preferences over time (Shin and

Sudhir, 2010), rate of time preference, and frequency of shopping incidents (Sun and Zhang, 2019).

3Liu et al. (2021) finds similar results in a different, more restrictive setting and using numerical analysis. Liu et al. (2021,
p. 1840) states (using the acronym “BXGO” for a buy-X-get-one-free program) that, in the absence of these conditions: “We
also conducted extensive numerical studies and did not find any parameter set under which the BXGO program improves the
firm’s profit.”
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2.2 Theoretical behavioral models

Another branch of literature suggests that reward programs take advantage of customers’ non-rational behav-

iors. These include reward effort to alleviate guilt (Kivetz and Simonson, 2002), reward effort as a perceived

advantage over others (Kivetz and Simonson, 2003), unused credits in the form of “slippage” (Lu and Moor-

thy, 2007), different mental accounting for credits and cash (Zhang and Breugelmans, 2012; Stourm et al.,

2015), increased purchases due to “points pressure” (Taylor and Neslin, 2005; Kivetz et al., 2006; Kopalle

et al., 2012; Wang et al., 2016), “medium maximization” (Hsee et al., 2003), “rewarded-behavior” mech-

anisms (Taylor and Neslin, 2005; Drèze and Nunes, 2011; Kopalle et al., 2012), extra utility from point

redemption (Rossi, 2018; Liu et al., 2021), the existence of hurdle cost for point redemption (Liu et al.,

2021), and other bounded rationality effects (Liu and Ansari, 2020). We rule out behavioral elements to

establish a benchmark of reward program profitability. The effects from any behavioral elements have to be

large enough to compensate for the inferiority of the reward program under rationality.

2.3 Empirical analyses

Empirical studies find mixed results on reward-program effects conditional on their being offered. Sharp and

Sharp (1997) finds no evidence that a retailer reward program increases repeat purchases by customers; while

Iyengar et al. (2022) finds a reward program increases purchases but not necessarily profits. Liu (2007) finds

that a convenience-store reward program does not change the purchase behavior of ex-ante frequent buyers

but does accelerate purchase frequency and size for less-frequent buyers. Lal and Bell (2003) finds that a

grocery reward program is profitable because it reduces “cherry-picking” by infrequent customers, which more

than compensates for rewards paid out to frequent customers. Heerde and Bijmolt (2005) decomposes the

effect of different promotions on reward program members versus non-members and assesses the profitability

of the promotions. Because they consider existing programs, these papers do not evaluate the incentive to

introduce them instead of static pricing. There are two empirical papers that examine the introduction of

reward programs. Gopalakrishnan et al. (2021) finds that a hair salon reward program increases profits by

reducing attrition. Rossi and Chintagunta (2022) finds prices increase in the later periods after a gas station

adopts a reward program, consistent with “lock-in” due to switching costs.

There are a number of empirical papers that find evidence of switching costs conditional on a reward

program being offered.4. These papers measure switching costs or purchase frequency at different levels of

4Papers examining switching costs independent of reward programs include Dubé et al. (2009), Goettler and Clay (2011),
Cosguner et al. (2017) and Lei et al. (2024)
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credit accumulation or nearness to achieving a higher status. Lewis (2004) finds that an online merchant

reward program increases purchase frequencies, holding prices fixed. Orhun et al. (2022) finds that airline

frequent flyer participants sacrifice utility when they are close to achieving a higher status relative to being

far away. Hartmann and Viard (2008), on the other hand, find that the switching costs created by a golf

reward program are small and apply only to infrequent customers who are near to earning a reward, a state

rarely reached. In contrast to these papers, we ask whether it is profitable to introduce a reward program.

Finally, our paper relates to structural empirical models of switching costs and reward programs, (Lewis,

2004; Hartmann, 2006; Hartmann and Viard, 2008; Dubé et al., 2009; Kopalle et al., 2012) as our distribu-

tional assumptions accommodate these commonly-used models.

2.4 Other rationales

Our results imply that additional features are required to make reward programs profit-enhancing. Besides

finite-expiration terms, the existing literature suggests a few reasons within the context of pure rationality.

Shugan (2005) argues that reward programs, especially in travel, may take advantage of a principal-agent

problem between decision-maker and payer. However, Basso et al. (2009) argues this may not hold in duopoly

competition. Orhun et al. (2022) provide empirical evidence for this moral-hazard argument. Shugan (2005)

offers other possible motivations for the use of reward programs, including price discrimination on redemption

effort, shifting revenues and costs, and implementing quantity discounts. Reward programs may also be

employed to strategically manage limited capacity in order to soften price competition (Kim et al., 2004).

3 Monopoly Market

This section examines a monopolist choosing between a reward program and static pricing. We begin

by considering homogeneous customers with independent random utility across time periods, and describe

customers’ decisions under static pricing and a B1G1 reward program. We then present our main result that,

given a weak assumption about the distribution of random utility, the firm always chooses static pricing.

The underperformance of the reward program follows from its effect on customer demand. We show that

customers are better off, and therefore have higher demand, under static pricing with price p/2 compared

to a B1G1 program with price p. We describe the intuition behind this result. We then show that the

underperformance of reward programs extends to much more general specifications of the reward program

structure. These include a non-zero marginal cost, a buy-X-get-Y-free (BXGY) program, credit-specific
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pricing, very general specifications of customer heterogeneity, and a form of time-inconsistent customer

preferences.

3.1 Model setup

We consider a monopolist facing a group of (ex-ante) homogeneous customers. In each period, each customer

realizes a random utility v ∼ F (·), independent and identically distributed across customers and over time.

Let G(v) = 1−F (v) be the survival function of the distribution. Customers are infinitely-lived and maximize

their lifetime benefit applying the discount factor β. This does not mean that customers literally live forever.

Such a geometric discounting utility model is consistent with a finite but uncertain lifetime or “shopping

lifespan” (Blanchard, 1985).5 We relegate all proofs to Appendix A unless otherwise specified.

3.2 Static pricing

If the monopolist charges a static price of p per unit in each period, the per-period demand is:

DS(p) = Pr(v > p) = G(p). (1)

3.3 B1G1 reward program

If the monopolist offers a B1G1 program with price p, customers’ payoffs depend on whether they hold a

credit (s ∈ {0, 1}). They pay price p to consume if s = 0, but pay nothing if s = 1. Their decision rule can

be described by a Bellman equation. Let ua(v, s) be the payoff for a customer with realized random utility

v holding credits s and who takes the action a ∈ {0, 1} representing no-purchase and purchase:

u1(v, s) = v − p · I(s = 0) + β · w(1− s) (2)

u0(v, s) = β · w(s), (3)

5Suppose that a customer has an expected lifespan of 1
ρ

(probability ρ of death in each period with 0 < ρ < 1). The

customer’s discount factor can be redefined as β = λ (1− ρ) where λ is the time discount factor conditional on surviving to the
next period. ρ need not necessarily refer to physical death but rather to a “shopping lifespan”. For example, a customer may
face some probability that they will no longer have need of the firm’s services because they move or their circumstances change.
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where I(·) is the indicator function and w(s) is the continuation value in the next period as a function of

the state variable:

w(0) = Emax (u1(v, 0), u0(v, 0)) (4)

w(1) = Emax (u1(v, 1), u0(v, 1)) . (5)

For any values of {G(·), β, p}, the value functions can be solved for using the above two equations.

Given the value functions, and therefore utility, customers’ consumption probabilities under the two

states (qs, s ∈ {0, 1}) are:

q0 = Pr (u1(v, 0) > u0(v, 0)) = G(p− β∆w) (6)

q1 = Pr (u1(v, 1) > u0(v, 1)) = G(β∆w), (7)

where ∆w = w1 − w0. Only customers not holding a credit (s = 0) will pay when consuming, so we solve

for the steady-state probability of both states. Let (r0, r1) be the probability of customers holding zero and

one credit respectively with r0 + r1 = 1. In a steady-state:

r0 = q1r1 + (1− q0)r0, (8)

which gives

r0 =
q1

q1 + q0
. (9)

Thus demand is:

DR(p) = q0r0 =
q0q1
q0 + q1

=

(
1

q0
+

1

q1

)−1

. (10)

3.4 Comparing B1G1 program and static pricing

Two observations about the reward program demand allow a precise comparison of it to static pricing without

the necessity of analytical solutions. First, the demand function in Equation (10) is a harmonic average of

the purchase likelihood in two states: q0 and q1. Second, the average of the arguments of these likelihoods,

p − β∆w and β∆w shown in Equations (6) and (7), is p/2, which conveniently does not depend on the

complicated parts of the value functions. At the same time, the static pricing demand depends only on price

p. This makes it possible to impose a weak convexity condition and apply Jensen’s inequality to compare

9



the two demands:

Assumption 1. H(v) = (G(v))−1 is convex.

This assumption is met by most commonly-used distributions (as shown in Appendix B) including those

used in empirical structural estimation. It is implied by other commonly-used assumptions, such as an

increasing hazard rate and the monotone likelihood ratio property (Milgrom, 1981; Mayzlin and Shin, 2011;

Miklós-Thal and Zhang, 2013; Lei et al., 2024). Given this assumption, our main result is:

Proposition 1. Under Assumption 1,

DR(p) ≤
1

2
DS

(p
2

)
, (11)

where DS(p) and DR(p) are defined in Equations (1) through (10).

Proof. Since H(v) is convex, Jensen’s inequality implies:

1

2
(H(p− β∆w) +H(β∆w)) ≥ H

(p
2

)
. (12)

Plug in to get: (
1

q0
+

1

q1

)
≥ 2

G
(
p
2

) . (13)

Taking the reciprocal of both sides, yields Equation (11).

We can rearrange Equation (11) as 2 ·DR(p) ≤ DS(p/2) to interpret it. For a B1G1 program with price p,

two units (2 ·DR(p)) are purchased – one consumed now and one consumed later. On the other hand, under

static pricing with price p/2, one unit (DS(p/2)) is purchased and consumed now. The result indicates that

customers facing the two pricing schemes with identical per-unit prices, will consume weakly more under

static pricing. This is because, under the reward program, customers have to make a down-payment for

the unit consumed in the future. This makes them strictly worse off than if they were allowed to pay and

consume as they go.

A direct implication of this result is that the monopolist’s profits are lower under the reward program.

Let (π∗
R, π

∗
S) be the optimal profits under the reward program and static pricing respectively. Then:

Corollary 1. Under Assumption 1, applying the result in Equation (11):

π∗
R = max

p
p ·DR(p) ≤ max

p

p

2
·DS(

p

2
) = π∗

S . (14)
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This corollary follows directly from multiplying both sides of Equation (11) by price p. It implies that

profits are greater under static pricing for any price; therefore, profits must be greater under the optimal

price. A firm charging price p under a B1G1 reward program can always earn higher profits by charging p/2

under static pricing.

3.5 Extensions

Our main result in Proposition 1 is quite robust and can be extended along several dimensions, including a

non-zero marginal cost, a BXGY program, credit-specific pricing, any type of preference heterogeneity, and

a form of time-inconsistent customer preferences. Any of these extensions can be combined with each other.

For example, a reward program with tiers would combine a BXGY program with credit-specific pricing and

potentially non-zero marginal cost. In fact, all these elements can be present in a single model and the

results hold.

3.5.1 Non-zero marginal cost

In this subsection we relax the assumption of a zero marginal cost. Assume that the monopolist incurs a

constant marginal cost, c, to serve a unit of product. This occurs at the time of consumption rather than

purchase (e.g., in a coffee reward program at the time the coffee is served and drunk). The demand function

in Equation (11) does not change, but the profit functions now include the cost of serving. Let πS(p) and

πR(p) be the profit functions for static pricing and the reward program respectively:

πS(p) = (p− c) ·DS(p) (15)

πR(p) = p ·DR(p)− c · (q0r0 + q1r1). (16)

It is easy to derive from Equation (9) that q0r0 = q1r1 = DR(p) so that:

πR(p) = (p− 2c) ·DR(p). (17)

Applying a similar argument as in Equation (14), we have:

π∗
R = max

p
(p− 2c) ·DR(p) ≤ max

p
(p/2− c) ·DS(

p

2
) = π∗

S . (18)
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3.5.2 BXGY program

A natural extension of the main result is a more general structure of earning and redeeming credits: a BXGY

program for integers X,Y ∈ {1, 2, 3, ...}. The “down-payment” intuition holds in this more general case.

Consider a BXGY program with price p. State variables can now take the values s ∈ {0, 1, ..., X,X +

1, ..., X + Y − 1}, which cycle back to zero after consumption of X + Y unites. For s < X, customers have

to pay for the next consumption; whereas for s ≥ X, customers redeem credits for free consumption. The

payoff functions are:

u1(v, s) = v − p · I(s < X) + β · w (g(s)) (19)

u0(v, s) = β · w(s), (20)

where the state transition when the customer consumes is g(s) = s + 1 if s < X + Y − 1, and g(s) = 0 if

s = X + Y − 1. The value function is defined similarly as:

w(s) = Emax (u1(v, s), u0(v, s)) . (21)

The choice probabilities (qs) and steady-state distribution (rs) are:

qs = Pr (u1(v, s) > u0(v, s)) = G (p · I(s < X)− β∆w(s)) (22)

r(g(s)) = rs · qs + rg(s) · (1− qg(s)), (23)

where ∆w(s) = w (g(s))− w(s), and
∑X

s=0 ∆w(s) = 0. Only customers with s < X will pay, so demand is:

DRX(p) =

X−1∑
s=0

rsqs, (24)

and we have a result analogous to that for the B1G1 program:

Proposition 2. Under Assumption 1, the BXGY reward program yields lower profits than static pricing

with the same per-unit price:

DRX(p) ≤ X

X + Y
DS

(
X

X + Y
· p
)
. (25)
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3.5.3 Credit-specific pricing

The baseline model can be extended to allow for prices that vary by credit (ps). For example, a buy-one-get-

one at 50% off program. The standard B1G1 program is a special case where the price is p for s = 0 and 0

for s = 1. The reward program’s underperformance relative to static pricing carriers over to this extension:

Proposition 3. Under Assumption 1, a B1G1 program with credit-specific pricing (p0, p1) yields lower

profits than static pricing at price p̄ = 1
2 (p0 + p1).

3.5.4 Heterogeneity

A potential benefit of a reward program is price discrimination. It charges different effective prices to

customers with different purchase frequencies: frequent customers experience a lower price than infrequent

ones. Such an argument does not appear to be valid when purchase frequencies are endogenously determined.

We show this by extending our model to a rich specification of customer heterogeneity where customers’ types

are captured by one stochastic dimension, v, and show that our main result still holds.

Consider a finite mixture of the type distribution in which there are K types of customers parameterized

by {(Gk(·), βk)}Kk=1, each with probability λk and
∑

k λ
k = 1. Applying Section 3.3 separately to each type,

the demand for each type is {Dk
R(p), D

k
S(p)}, and the result in (11) holds for each type:

Dk
R(p) ≤

1

2
Dk

S(
p

2
). (26)

Therefore, the reward program yields lower profits than static pricing:

π∗
R = max

p
p ·
∑
k

λkDk
R(p) ≤ max

p

p

2

∑
k

λkDk
S(
p

2
) = π∗

S . (27)

3.5.5 Quasi-hyperbolic discounting

Time-inconsistent preferences and lack of self-control are sometimes used to explain agents’ intertemporal

behaviors (Laibson, 1997; O’Donoghue and Rabin, 1999; Jain, 2012; Jain and Li, 2018; Amaldoss and Haru-

tyunyan, 2023). We examine the profitability of a reward program when customers are time-inconsistent

and exhibit quasi-hyperbolic discounting. Consider naive customers who think their behavioral pattern in

the future is determined by time-consistent preferences with discount factor β, whereas in the current period

their discount factor is smaller (γ · β with γ < 1). Suppose the firm launches a B1G1 program at price p.

The customer thinks his value function in the future, denoted as w(s;β), is purely rational, determined by
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(2) – (5). In the current period, however, their utility is:

ũ1(v, s) = v − p · I(s = 0) + γβ · w(1− s;β) (28)

ũ0(v, s) = γβ · w(s;β). (29)

Their purchase likelihood is:

q̃0 = Pr (ũ1(v, 0) > ũ0(v, 0)) = G(p− γβ ·∆w(β)) (30)

q̃1 = Pr (ũ1(v, 1) > ũ0(v, 1)) = G(γβ ·∆w(β)), (31)

and the steady-state distribution (r̃0, r̃1) is determined as in (9). The demand is:

D̃R(p) = q̃0r̃0 =
q̃0q̃1
q̃0 + q̃1

=

(
1

q̃0
+

1

q̃1

)−1

. (32)

The demand from charging a static price of p/2 is the same as in (1). The result from Proposition 1 still

holds here:

D̃R(p) ≤
1

2
DS

(p
2

)
. (33)

Even when facing behavioral customers exhibiting time-inconsistent preferences, it is not optimal for the

firm to launch a reward program.

4 Duopoly Market

Competition is a prevalent reason given to explain the existence of reward programs. The argument is that

after inducing customers to purchase, a firm’s reward (or nearness to it) creates switching costs which makes

it less likely they purchase from competitors. As a result, the firm can exercise market power. However,

these models assume that the firm has already established the program. A reward program may increase

switching costs but still not be worth establishing. In particular, the alternative to a reward program is static

pricing. In this section, we examine the overall profitability of launching a reward program relative to static

pricing under competition by extending the monopoly model to a duopoly in which the firms simultaneously

choose whether to offer a reward program or static pricing. We prove that the only Nash Equilibrium is for

both firms to charge static prices. The intuition parallels the monopoly analysis – either firm can realize

more demand under static pricing than under a reward program regardless of its competitor’s choice. We
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first introduce the setup and then solve for the focal firm’s best-response to the other firm choosing either

static pricing or a reward program.

4.1 Model setup

Two firms (denoted 0 and 1) are located at the extremes of a Hotelling model of length one and face customers

whose preferences are both horizontally and vertically differentiated. Each customer in a period is denoted

by (v, t) where t is their time-persistent location parameter and v is their random utility, which changes

between periods with survival function G(·). A customer with parameter t incurs a transportation cost t

when buying from firm 0 and (1− t) when buying from firm 1. The results hold for any distribution of t on

the unit interval and with the same general preference distribution for v assumed in the monopoly model.

For simplicity, we assume that both firms choose between offering a B1G1 reward program and static pricing.

The timing of the model is:

1. Both firms (j ∈ {0, 1}) choose (pj , xj) simultaneously, where pj is price and xj ∈ {R,S} is the pricing

structure: reward program (R) or static pricing (S). This choice remains over all periods.

2. Given (pj , xj), customers take one of three actions in each period: a ∈ {0, 1, ϕ}, where a = j means

the customer chooses firm-j’s product and a = ϕ means the customer does not consume.

The remainder of this section proves the following result:

Proposition 4. The only Nash equilibrium for both firms is:

x0 = x1 = S (34)

p0 = p1 = p∗, (35)

where p∗ is the equilibrium price in a standard Hotelling model.

We assign firm 0 as the focal firm and derive its best-response in two cases: (1) when firm 1 chooses

static pricing, and (2) when firm 1 chooses a reward program. For both cases, we show that our demand

comparison result in Proposition 1 holds. That is, firm 0’s best response is always to choose static pricing.

4.2 Firm 1 chooses static pricing (x1 = S)

We first solve for firm 0’s profits when launching a reward program and static pricing, respectively, given

that firm 1 chooses static pricing at price p1. We then prove that firm 0’s profits are higher with static
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pricing in both cases, regardless of p1.

4.2.1 Case 1: firm 0 chooses reward program (x0 = R)

If firm 0 chooses a reward program, customers have one state variable (firm 0 credits) in making their

purchase decisions. For customers of type t the value functions
(
w = (w0, w1)

T
)
, corresponding to holding

or not holding a credit, are (going forward we will sometimes suppress t for simplicity):

 w0

w1

 = Emax

 v − t− p+ βw1, v − (1− t)− p1 + βw0, βw0

v − t+ βw0, v − (1− t)− p1 + βw1, βw1

 . (36)

Define:

∆w = w1 − w0. (37)

We have the following properties:

Proposition 5. For any t, the value function solved by Equation (36) satisfies:

(a) w0(t) ≤ w1(t)

(b) β∆w(t) ≤ p
2 .

We now derive the consumption probability under the two states (q0, q1) and the corresponding demand

functions for customers located at t. For customers with s = 0, they will buy from firm 0 if both:

v − (p+ t) + βw1 ≥ βw0, and (38)

v − (p+ t) + βw1 ≥ v − (p1 + 1− t) + βw0. (39)

This implies the choice probability is:

q0(t) · C0(t) = G (p+ t− β∆w(t)) · I (p− β∆w(t) ≤ p1 + 1− 2t) , (40)

where C0(t) is an indicator variable denoting market coverage of firm 0 at location t for customers who do

not hold a credit and I (·) is the indicator function. For s = 1, a customer with type t will buy from firm 0
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if both:

v − t+ βw0 ≥ βw1, and (41)

v − t+ βw0 ≥ v − (p1 + 1− t) + βw1, (42)

which implies:

q1(t) · C1(t) = G (t+ β∆w(t)) · I (β∆w(t) ≤ p1 + 1− 2t) , (43)

where C1(t) is an indicator variable denoting market coverage of firm 0 at location t for customers who hold

a credit.

Depending on their realization of v, customers located at t not holding a credit (s = 0) choose between

firm 0 and not consuming (a ∈ {0, ϕ}) if C0(t) = 1, or choose between firm 1 and not consuming (a ∈ {1, ϕ})

if C0(t) = 0. Applying the result in Proposition 5 in comparing Equations (40) and (43), their choice between

firms, as determined by t, follows:

C0(t) ≤ C1(t). (44)

In other words, customers are more likely to choose firm 0 when they have a credit. This reflects the

switching costs that previous papers have analyzed (Lewis, 2004; Orhun et al., 2022; Hartmann and Viard,

2008). However, this presupposes the existence of a reward program rather than whether it is optimal to

introduce the program.

What remains is mechanical. We follow the monopoly case (analogous to Equation (10)) and derive

the steady-state distribution and the demand function for firm 0. In the steady state, firm 0 only sells to

customers with C0(t) = 1.6 The demand function is therefore:

DRS(p, t) =
q0(t)q1(t)

q0(t) + q1(t)
· I(p− β∆w(p, t) ≤ p1 + 1− 2t), (45)

where the first and second subscripts of D denote firm 0’s and firm 1’s choices, respectively, of static pricing

(S) versus a reward program (R).

6Since C0(t) ≤ C1(t) (the focal firm’s market coverage for customers with a credit extends further on the Hotelling line
than does the coverage for customers without a credit), there is an interval in which C0(t) = 0 but C1(t) = 1. These are not
customers of firm 0 in the steady state because even if the customers in this interval are endowed with a credit in the initial
period, once they redeem the credit they do not return to this state again.
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4.2.2 Case 2: firm 0 chooses static pricing (x0 = S)

When firm 0 chooses static pricing at price p, the model collapses to the standard Hotelling model. A

customer with (v, t) will buy from firm 0 if:

v − (p+ t) ≥ 0, and (46)

v − (p+ t) ≥ v − (p1 + (1− t)), (47)

so that the demand from customers located at t is:

DSS(p, t) = G(p+ t) · I(p+ t ≤ p1 + (1− t)). (48)

4.2.3 Firm 0’s best response comparing cases 1 and 2

The demand functions in both cases are similar to those in the monopoly setting, but multiplied by a dummy

variable which depends on t. It is straightforward to apply Proposition 5 to show that the relationship in

the monopoly case of Proposition 1 also holds here:

Proposition 6. When x1 = S, comparing the demands for firm 0’s two possible choices, DRS(p) and

1
2DSS(

p
2 ) specified by Equations (45) and (48), we have:

(a) Applying Proposition 5, firm 0 can sell to more customers under a static pricing than a reward program:

I (p− β∆w(p, t) ≤ p1 + 1− 2t) ≤ I
(p
2
+ t ≤ p1 + (1− t)

)
. (49)

(b) This implies, by Proposition 1:

DRS(p, t) ≤
1

2
DSS

(p
2
, t
)
. (50)

(c) Therefore, firm 0 can achieve higher profits with static pricing at price p/2 than with a reward program

at price p.

4.3 Firm 1 launches a reward program (x1 = R)

We first solve for firm 0’s profit when offering a reward program versus offering static pricing, respectively,

given that firm 1 chooses a reward program at price p1. We then prove that firm 0’s profits are higher with

static pricing in both cases, regardless of p1.
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4.3.1 Case 3: firm 0 chooses a reward program (x0 = R)

When both firms choose a reward program, each customer has two state variables (s0, s1) ∈ {0, 1}2, rep-

resenting the credits they hold from firm 0 and firm 1 respectively. The value functions wjk given state

variables j = s0 and k = s1 collected as w = (w00, w10, w01, w11)
T , for customers located at t, are:



w00

w10

w01

w11


= Emax



v − (p+ t) + βw10, v − (p1 + 1− t) + βw01, βw00

v − t+ βw00, v − (p1 + 1− t) + βw11, βw10

v − (p+ t) + βw11, v − (1− t) + βw00, βw01

v − t+ βw01, v − (1− t) + βw10, βw11


. (51)

Using similar arguments as in the previous subsection, for customers located at t their realization of v

determines a choice between buying or not rather than a choice between firms (the location t, on the other

hand, influences their choice between firms). We use Ajk(t) ∈ {0, 1} to indicate the choice of firm 0 or 1 for

customers located at t (if not choosing no purchase ϕ), given their state values j = s0 and k = s1.

Intuitively, if customers located at t not holding a credit for firm 0 (s0 = 0) choose firm 0 they will also

do so when they hold a credit for firm 0 (s0 = 1). That is, A0k = 0 ⇒ A1k = 0. Similarly, holding a credit

for firm 1 makes customers less likely to choose firm 0 (i.e., Aj0 = 1 ⇒ Aj1 = 1). These two implications

reflect the switching costs created by reward programs that previous papers have analyzed (conditional on

firms offering a reward program). Figure 1 provides an example of this. It shows the value functions (wjk)

and the corresponding firm choices (Ajk) as a function of the location parameter t. Consistent with the

switching costs argument, the figure shows w10 > w00 and w11 > w01. We formalize this argument in the

following result:

Proposition 7. Let w be the value functions solving (51), and define:

A00 = I(−(p+ t) + βw10 ≤ −(p1 + 1− t) + βw01) (52)

A10 = I(−t+ βw00 ≤ −(p1 + 1− t) + βw11) (53)

A01 = I(−(p+ t) + βw11 ≤ −(1− t) + βw00) (54)

A11 = I(−t+ βw01 ≤ −(1− t) + βw10). (55)

Then:

A10 ≤ {A00, A11} ≤ A01. (56)

19



Figure 1: Numerical examples of possible choices in duopoly model
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Notes: The left figure shows value functions of customers at different states for the given parameter values and the right figure
shows their choices. Parameter values are: (p, p1, β) = (0.8, 0.5, 0.8), and v ∼ Exponential(1).

The market coverage for firm 0’s sales is {t : A00 = 0} – customers holding no credits with firm 0 that

choose firm 0. Applying the above results, these same customers will choose firm 0 if they held a credit with

the firm (A10 = 0). Similarly, firm 1’s market coverage for sales is {t : A00 = 1} and customers who choose

firm 1 when holding no credits will also choose firm 1 when they do (A01 = 1). This again illustrates the

presence of switching costs (ex-post segmentation) conditional on a reward program being offered. That is,

customers are less likely to purchase from the other firm if they hold a credit with a firm.

We show that as t becomes larger, firm 0 becomes less attractive. Such a monotonic property guarantees

firm 0’s market coverage {t : A00 = 0} is an interval. Formally:

Proposition 8. A00(p, p1, t) increases in t.

Firm 0’s market coverage is therefore:

CRR
00 (p, t) = I(t ≤ t̄), (57)

where t̄ is determined by the following identity:

−(p+ t̄) + βw10(t̄) = −(p1 + 1− t̄) + βw01(t̄). (58)
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The demand function is:

DRR(p, t) =
q1(t)q0(t)

q1(t) + q0(t)
· CRR

00 (p, t), (59)

where q0 (t) and q1 (t) are defined in Equations (40) and (43) respectively.

4.3.2 Case 4: firm 0 chooses static pricing (x0 = S)

If firm 0 chooses static pricing, customers have only one state variable, the credit balance with firm 1. The

value functions are: u0

u1

 = Emax

 v − (p+ t) + βu0, v − (p1 + 1− t) + βu1, βu0

v − (p+ t) + βu1, v − (1− t) + βu0, βu1

 . (60)

Let ASR
s1 indicate the customers’ choice of firm 1 with state variable s1:

ASR
0 = I(−(p+ t) + βu0 ≤ −(p1 + 1− t) + βu1) (61)

ASR
1 = I(−(p+ t) + βu1 ≤ −(1− t) + βu0). (62)

Then we can show:

Proposition 9. Customers’ choice probabilities have the following properties:

(a) ASR
0 ≤ ASR

1

(b) ASR
0 (p, p1, t) increases in t.

Given this, the demand curve is:

DSR(p, t) = G(p+ t) · CSR
0 (p, t), (63)

where

CSR
0 (p, t) = I(−(p+ t) + βu0 ≥ −(p1 + 1− t) + βu1). (64)

4.3.3 Firm 0’s best response comparing cases 3 and 4

We now compare firm 0’s demand when it launches a reward program (DRR(p)) with price p, defined by

Equation (59), to that when it offers static pricing at half the price
(
1
2DSR

(
p
2

))
, defined by Equation (63).
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We proceed in two parts corresponding to the two components of demand in these equations: the demand

from type t conditional on it choosing firm 0, and the probability that type t chooses firm 0. Using the

same logic as in the monopoly case, we show that (conditional) demand by type t is less under the reward

program with price p than it is under static pricing with a price p
2 . We then show that firm 0’s market

coverage is weakly smaller when launching a reward program than when it offers static pricing at half the

price (the choice probability in Equation (59) evaluated at p compared to the choice probability in Equation

(63) evaluated at p
2 ):

CRR
0 (p, t) ≤ CSR

00

(p
2
, t
)
. (65)

Since the market coverages on both sides of this equation are decreasing in t and CRR
00 (p, t̄) = 1, we only

need to show that CSR
0

(
p
2 , t̄
)
= 1. This would imply that the above identity holds for t ≤ t̄. This means

that all customers who purchase from firm 0 when it offers a reward program, defined by the cutoff type (t̄

in Equation (58)), will also choose firm 0 if firm 0 chooses static pricing at half the price. Specifically:

Proposition 10. When x1 = R, comparing firm 0’s demand under the two market structures DRR(p) and

1
2DSR(

p
2 ):

(a) Market coverage when firm 0 offers static pricing at p
2 is weakly larger than when it launches a reward

program at price p. That is, for t̄ given by Equation (58):

CSR
0 (

p

2
, t̄) = 1. (66)

(b) This implies:

DRR(p, t) ≤
1

2
DSR

(p
2
, t
)
. (67)

(c) And firm 0 realizes higher profit when choosing static pricing with price p/2 than when launching a

reward program with price p.

5 Finite Expiration

This section analyzes a design feature of reward programs, finite credit expiration, that can increase firm

profits relative to static pricing. This has been shown before in a simulation with a binary distribution

of customer preferences (Liu et al., 2021), and analytically in a model with two dimensions of customer
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heterogeneity (Sun and Zhang, 2019).7 We show, analytically, that a finite expiration reward program can

outperform static pricing in a different setting with only one-dimensional heterogeneity, which exhibits a

different underlying mechanism. Comparing our finite- and no-expiration results provides the intuition for

why this is the case. To simplify the analysis, we examine the monopoly case with homogeneous customers

and focus on an exponential distribution for v:

F (v) =


1− exp(−λv) if v ≥ 0

0 if else.

(68)

The inverse of the survival function, H(v) =
(

1
1−F (v)

)−1

, is globally convex satisfying Assumption 1. We

consider a B1G1 program with one-period expiration: a credit for a free product must be consumed in the

next period. We first derive the demand and profits for the reward program with expiring credits, and then

show that the reward program can outperform static pricing if the discount factor is large enough.

5.1 Reward program with expiring credits

We follow a similar procedure as before: first describing the value functions, then the choice probabilities,

then the steady-state distribution, and finally demand.

Let ua(v, s) be the value of taking action a ∈ {0, 1} with s ∈ {0, 1} credits. When s = 0:

u1(v, 0) = v − p+ β · w(1) (69)

u0(v, 0) = β · w(0), (70)

which is identical to the case without expiring credits. However, when s = 1, the utility becomes:

u1(v, 1) = v + β · w(0) (71)

u0(v, 1) = β · w(0), (72)

where the value of not taking action (u0(v, 1)), differs from the no-expiration case – the credit expires and

7An earlier paper (Chen et al., 2005) shows a similar result in a two-period model which imposes finite expiration by default.
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the state becomes zero. The value functions are determined by the following system of equations:

w(1) = Emax(v + βw(0), βw(0)) = E(v) + βw(0) (73)

w(0) = Emax(v − p+ βw(1), βw(0)) = Emax(v − p+ β∆w, 0) + βw(0), (74)

where ∆w = w (1)−w (0). The first equation reflects the fact that customers will always redeem their credit

since their valuation is always positive under the exponential distribution. Taking the difference between

the two, ∆w is the solution of:

∆w = E(v)− Emax(v − p+ β∆w, 0). (75)

Next, we solve for the consumption likelihood. When s = 1, customers will consume for sure since v > 0,

and the credit will expire if not used:

q1 = 1 = G(0). (76)

When s = 0, the purchase likelihood is:

q0 = Pr(v − p+ βw(1) ≥ βw(0)) = G(p− β∆w). (77)

The steady-state distribution of credits (r0, r1) is determined by:

r1 = r0q0 (78)

r0 + r1 = 1, (79)

which implies:

r0 =
1

1 + q0
. (80)

So the demand under a reward program with one-period expiration is:

DF
R(p) = r0q0 =

q0
1 + q0

=

(
1

q0
+

1

q1

)−1

, (81)

where the last equality holds as q1 = 1.
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Figure 2: Profits under reward program with expiring credits versus static pricing
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5.2 Comparing to static pricing

Note that our main result in Proposition 1 does not hold in the current context. Although the demand

DF
R(·) is still a harmonic mean of the two purchase likelihoods q0, and q1; the quantity q1 = 1 is higher than

in the no-expiration case leading to the possibility that demand is higher here than under static pricing.

Specifically, applying the convexity prescribed in Assumption 1, we have:

DF
R(p) ≤

1

2
G

(
1

2
(p− β∆w)

)
. (82)

The right-hand-side may be larger than demand under static pricing with price p
2 : 1/2 · DS(p/2) = 1/2 ·

G(p/2). Thus, demand with a finite-expiration program may exceed that under static pricing.

Before deriving a more general result, we first compare profits in a numerical example with λ = 1 and

two different discount factors: β ∈ {0.5, 0.9}. Without expiring credits, profits under static pricing would

always weakly exceed those under a reward program regardless of p since:

πR(p) ≤ πS(
p

2
). (83)

However, this does not necessarily hold when credits expire. Figure 2 compares profits under the reward

program with expiring credits versus that under static pricing: the left panel for β = 0.5 and the right for
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β = 0.9. As the figure demonstrates, reward program profits exceed those under static pricing for small values

of p in both panels. However, at higher prices, profits under static pricing exceed those under the reward

program. The two profit functions have a single crossing point, and whether reward program profits exceed

those under static pricing depends on the position of the crossing point relative to the point of maximum

profits. When β = 0.5, the crossing point occurs where static program profits are still increasing and static

pricing outperforms the reward program. When β = 0.9, on the other hand, the crossing point occurs where

static profits are decreasing and the reward program outperforms static pricing.

More generally, we can prove the following result:

Proposition 11. For any value of λ, there exists β̄, such that for all β > β̄:

max
p

p ·DF
R(p) > max

p
p ·DS(p). (84)

Although we are not the first to propose that finite-expiration credits can lead to reward programs

outperforming static pricing in a non-behavioral setting, our explanation differs from previous studies (Sun

and Zhang, 2019; Liu et al., 2021). The reward program with immediate expiration can be regarded as a

bundle of two products: one “spot” product consumed today and one “future” product consumed tomorrow.

If the firm charges separately for the two products, the “spot” price will maximize:

π∗
sp = max

p
p ·D(p) = max

p
p · exp(−λp), (85)

yielding optimal price p∗sp = 1/λ and profit π∗
sp = 1/(λe).

If the firm sells the “future” product in advance, it charges its expected valuation in the future: p∗ft =

E(v) = 1/λ. This is identical to the optimal “spot” price; however, the firm can sell to all customers and

extract all surplus for profits of π∗
ft = β/λ, discounted to the current period. It immediately follows that

when the discount factor β is high
(
β > 1

e

)
, then π∗

ft > π∗
sp. With the more general distribution of valuations

in our model, the finite-expiration program can outperform the no-expiration program even when purchase

frequency and valuation are positively correlated. This is in contrast to (Sun and Zhang, 2019) which finds

that a negative correlation is required with a more restrictive distribution.

The reward program with expiring credits can be interpreted as “bundling” two products. As in classic

bundled pricing (Adams and Yellen, 1976), the firm can increase profits relative to pricing the products

separately by reducing the variance of the distribution of demand. That is, the “future” product makes ex-
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post customers more similar ex-ante so that the firm does not face as extreme a trade-off between pricing high

and losing low-valuation customers versus pricing low and getting more demand. This smoothing of future

demand across customers is more important the higher the discount factor for customers (as demonstrated

in Proposition 11) since the present value of the effect is higher. That is, the gains from this bundling effect

(which derives from customers’ future benefit) outweighs the loss from the “down payment” effect only if

the discount factor is high enough.

Finally, why does this argument not hold for our baseline example with no expiration? In the finite-

expiration case, customers may suffer in the future period when they consume the product: if their valuation

ends up being low the value they obtain is lower than the price they paid in advance. That is, they over-

consume. However, with no expiration, credits can be used any time in the future, and customers will wait to

redeem their credit rather than over-consuming if their realized valuation is low. That is, the finite expiration

is necessary to enforce the “bundling” of the products.

6 Conclusion

In this paper we consider the incentive to introduce a frequency reward program both by a monopolist

and under duopoly competition. Most previous studies focus on the effects of a reward program assuming

its adoption. The few papers that examine the incentives to introduce a program use somewhat specific

assumptions on customer preferences, market participation, or customers’ time horizons. We consider a

very general setting, nesting common empirical specifications, and find static pricing dominates under both

monopoly and competition. Although we consider a reward program which offers price discounts based on

previous cumulative purchases, our analysis also applies to a prepayment program in which customers receive

a discount for purchasing above a certain volume, but consume some units in the future.8

It would be useful to extend the model in order to examine other possible features of reward programs.

There are some extensions that could be incorporated in the model relatively easily to determine whether

they affect the profitability of a reward program relative to static pricing. These include behavioral aspects.

For example, additional utility from consumption gained from points redemption versus through purchase,

and “slippage” from customers failing to redeem earned credits. These would require minimal changes to

the model and could be incorporated while maintaining the model’s analytical tractability.

It would also be useful to examine how the duration of credit expiration affects reward-program prof-

8Li et al. (2023) analyze such a prepayment program in a two-period model.
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itability. The “bundling” intuition which explains our finite-expiration results suggests that a shorter time

frame is advantageous, but it would be useful to confirm this. This could potentially be confirmed empirically

by comparing the effects of changes in expiration limits in actual programs.

Also for empirical work, our results suggest the need for additional results on the profitability of intro-

ducing a reward program – as opposed to examining the effects of an already-established program. There has

been more empirical work on the latter than the former. Our results also suggest empirically examining how

changing from no- to finite-expiration of credits, or vice versa, affects the profitability of a reward program.
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A Proofs

A.1 Proof of Proposition 2

This continues the proof in the main text. First, solve the steady-state distribution {rs} in the BXGY
program:

r0 = qXrX + (1− q0)r0 (A1)

r1 = q0r0 + (1− q1)r1 (A2)

... (A3)

rX+Y−1 = qX+Y−2rX+Y−2 + (1− qX+Y−1)rX+Y−1, (A4)

where
qs = G(p · I(s < X)− β∆w(s)). (A5)

This is a system of linear equations, which has one unique solution:

rs =
1

qs
·

(
X+Y−1∑

s=0

1

qs

)−1

. (A6)

Consequently, the demand function:

DRX(p) =

X−1∑
s=0

rs · qs = X ·

(
X+Y−1∑

s=0

1

qs

)−1

. (A7)

Following similar logic to that in Proposition 1, since
∑

s ∆w(s) = 0 and H(·) is convex, we can apply
Jensen’s inequality to get:

1

X + Y

(
X+Y−1∑

s=0

H(p · I(s < X)− β∆w(s))

)
≥ H

(
X · p
X + Y

)
. (A8)

Plugging back into Equations (A5) and (A7), static pricing demand exceeds reward program demand.

A.2 Proof of Proposition 3

The customers’ payoffs are:

u1(v, s) = v − ps + β · w(1− s) (A9)

u0(v, s) = β · w(s), (A10)

with purchase probabilities:

q0 = Pr(u1(v, 0) > u0(v, 0)) = G(p0 − β∆w) (A11)

q1 = Pr(u1(v, 1) > u0(v, 1)) = G(p1 + β∆w), (A12)

and ∆w = w(1)−w(0). Let πR(p0, p1) be the per-period demand under this program, we have the following
results.

The steady-state distribution under credit-specific pricing takes the same form as in (9), which means
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q0r0 = q1r1 =
(

1
q0

+ 1
q1

)−1

in the case with X = 1 and Y = 1, so:

πR(p0, p1) = p0q0r0 + p1r1q1 = 2 · p̄ ·
(

1

q0
+

1

q1

)−1

, (A13)

where p̄ = (p0 + p1)/2. Applying a procedure analogous to that in Proposition 1 shows the result.

A.3 Proof of Proposition 5

For what follows, we impose a mild regularity condition that guarantees the existence of the market (cus-
tomers with the highest valuation buy):

Assumption 2. The support of v is unbounded:

sup v = +∞.

The value function is determined as (write t1 = 1− t)(
w0

w1

)
= Emax

(
v − (p+ t) + βw1, v − (p1 + t1) + βw0, βw0

v − t+ βw0, v − (p1 + t1) + βw1, βw1

)
, (A14)

which implies:

(1− β)w0 = Emax(v − (p+ t) + β∆w, v − (p1 + t1), 0) (A15)

(1− β)w1 = Emax(v − t− β∆w, v − (p1 + t1), 0). (A16)

We prove both claims by contradiction.

(a) Suppose w1 < w0, then ∆w < 0. Combining this with the regularity assumption in 2, the right-hand
side of Equation (A15) is smaller than the right-hand side of Equation (A16). This implies w0 ≤ w1,
which is a contradiction.

(b) Suppose β∆w > p
2 , then v − (p + t) + β∆w > v − t − β∆w. This implies w0 ≥ w1, which is a

contradiction.

A.4 Proof of Proposition 7

Re-write the one-step contraction mapping T for w = (w00, w10, w01, w11)
T and let q = p1 and s = 1− t,

T (w) = T


w00

w10

w01

w11

 = Emax


v − (p+ t) + βw10, v − (q + s) + βw01, βw00

v − t+ βw00, v − (q + s) + βw11, βw10

v − (p+ t) + βw11, v − s+ βw00, βw01

v − t+ βw01, v − s+ βw10, βw11

 . (A17)

In order to prove the result, we first establish some properties of the value function.

A.4.1 Math preliminaries

Proposition 12. If w satisfies the following properties:

0 ≤ w10 − w00 ≤ p (A18)

0 ≤ w11 − w01 ≤ p (A19)
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and:
w′ = T (w), (A20)

then w′ also satisfies the above property. Similar arguments apply for the two properties

0 ≤ w01 − w00 ≤ q (A21)

0 ≤ w11 − w10 ≤ q. (A22)

As the value function is the limit of the contraction mapping, and the starting vector w(0) = 0 satisfies all
four properties, so is the limit.

Proof. We only prove the first part relating to (w10 − w00) and (w11 − w01). The second part is similar.

(a) Since 0 ≤ w10 −w00 ≤ p, and β ∈ (0, 1), we have β(w10 −w00) ≤ p. Thus βw10 ≤ βw00 + p. Similarly,
for βw11 ≤ βw01 + p.

(b) Applying Equation (A19) and step (a) above, w′
00 ≤ w′

10:

w′
00 = Emax(v − (p+ t) + βw10, v − (q + s) + βw01, βw00) (A23)

≤ Emax(v − t+ βw00, v − (q + s) + βw11, βw10) = w′
10. (A24)

(c) Applying Equation (A18) and step (a) above, w′
10 − w′

00 ≤ p:

w′
10 − p = Emax(v − (p+ t) + βw00, v − (q + s) + βw11 − p, βw10 − p) (A25)

≤ Emax(v − (p+ t) + βw10, v − (q + s) + βw01, βw00) = w′
00. (A26)

(d) Applying Equation (A19) and step (a) above, w′
01 ≤ w′

11:

w′
01 = Emax(v − (p+ t) + βw11, v − s+ βw00, βw01) (A27)

≤ Emax(v − t+ βw01, v − s+ βw10, βw11) = w′
11. (A28)

(e) Applying Equation (A18) and step (a) above, w′
11 − w′

01 ≤ p:

w′
11 − p = Emax(v − (p+ t) + βw01, vt − s+ βw10 − p, βw11 − p) (A29)

≤ Emax(v − (p+ t) + βw11, vt − s+ βw00, βw01) = w′
01. (A30)

Proposition 13. The value function determined by the fixed point of T (·) satisfies

0 ≤ w11 − w00 ≤ max(q + s− t, p+ t− s). (A31)

Proof. It takes several steps.

(a) w11 − w00 = w11 − w01 + w01 − w00 ≥ 0. This follows from Equations (A19) and (A21).

(b) To prove that w11 − w00 ≤ max(q + s − t, p + t − s), we show that for any w that satisfies (A31),
w′ = T (w), That is, w′

11 −max(q + s− t, p+ t− s) ≤ w′
00:

v − t+ βw01 −max(q + s− t, p+ t− s) ≤ v − (q + s) + βw01 (A32)

v − s+ βw10 −max(q + s− t, p+ t− s) ≤ v − (p+ t) + βw10 (A33)

βw11 −max(q + s− t, p+ t− s) ≤ βw00. (A34)
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where the first inequality follows from the fact that −max(q + s − t, p + t − s) ≤ −(q + s − t), the
second inequality follows from the fact that −max(q+s− t, p+ t−s) ≤ −(p+ t−s), the last inequality
follows from Equation (A31). Taking the Emax(·) of the three terms on the left and on the right,
respectively, and apply the definition of contraction mapping in (A17):

w′
11 −max(q + s− t, p+ t− s) ≤ w′

00. (A35)

We also prove one Lemma that is useful in the follow-up proofs.

Lemma 1. For any two numbers {a, b}, if Emax(v − b, 0) ≤ Emax(v − a, 0), then

Emax(v − a, 0)− Emax(v − b, 0) ≤ b− a. (A36)

Proof. We first show b ≥ a. Suppose not, a > b, then max(v−b, 0) ≥ max(v−a, 0), and with strict inequality
for v > a. By Assumption 2, that is in the support of v, thus Emax(v − b, 0) > Emax(v − a, 0), contracts
with the condition.

Thus, Emax(v − a, 0)− (b− a) = Emax(v − b, a− b) ≤ Emax(v − b, 0).

A.4.2 Proof of A10 ≤ A00

Proof. We prove by contradiction. Suppose A10 > A00, then A10 = 1, A00 = 0, which implies:

β(w11 − w00) ≤ q + s− t (A37)

β(w10 − w01) ≥ (p+ t)− (q + s). (A38)

(a) q + s− t < p+ t− s. Suppose not, then by (A31), βw11 − βw00 ≤ q + s− t, this implies A10 = 0.

(b) Using the previous step, A01 = 1, as (A31), w11 − w00 ≤ max(q + s− t, p+ t− s) = p+ t− s.

(c) A11 = 1, as by (A38), β(w10 − w01) ≥ (p+ t)− (q + s) ≥ s− t where the last inequality follows from
step (a) above. Therefore, βw10 − s ≥ βw01 − t.

(d) w10 ≤ w01, since:

w10 = Emax(v − (q + s) + βw11, βw10) (A39)

w01 = Emax(v − s+ βw00, βw01). (A40)

The first line follows from the assumption that A10 = 1 and the second line from step (b) above
(A01 = 1). Furthermore, from step (b) above, we have:

β(w11 − w00) ≤ p+ t− s. (A41)

Manipulating Equation (A39), we have:

w10 − β(w10 − w01) = Emax(v − (q + s) + βw11 − β(w10 − w01), βw01). (A42)

Plugging in Equation (A38):

w10 − β(w10 − w01) ≤Emax(v + βw11 − (p+ t), βw01), (A43)

and plugging in Equation (A41) and (A40):

Emax(v + βw11 − (p+ t), βw01) ≤Emax(v − s+ βw00, βw01) = w01. (A44)
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Therefore, combining Equation (A43) and Equation (A44):

(1− β)(w10 − w01) ≤ 0, (A45)

which implies
w10 ≤ w01. (A46)

(e) Thus, we have:
βw00 ≤ βw10 ≤ βw01 ≤ βw11., (A47)

where the first inequality follows from Equation (A18), the second inequality from Equation (A46),
and the third inequality from Equation (A19). Define:

x = βw10 − βw00 (A48)

y = βw01 − βw10 (A49)

z = βw11 − βw01. (A50)

From A00 = 0 and A10 = 1, plug in (A37) and (A38)

y ≤ (q + s)− (p+ t) (A51)

x+ y + z ≥ q + s− t. (A52)

(f) The value functions are (since A00 = 0, A10 = 1, A01 = 1 (see step (b) above), and A11 = 1 (see step
(c) above), respectively):

(1− β)w00 = Emax(v − (p+ t) + β(w10 − w00), 0) = Emax(v − (p+ t) + x, 0) (A53)

(1− β)w10 = Emax(v − (q + s) + β(w11 − w10), 0) = Emax(v − (q + s) + y + z, 0) (A54)

(1− β)w01 = Emax(v − s− β(w01 − w00), 0) = Emax(v − s− x− y, 0) (A55)

(1− β)w11 = Emax(v − s− β(w11 − w10), 0) = Emax(v − s− y − z, 0), (A56)

Using the above and applying the result from Lemma 1 (the precondition is satisfied as w00 ≤ w10 and
w01 ≤ w11):

(1− β)(w10 − w00) ≤ (p+ t− x)− (q + s− y − z) ≤ z − x (A57)

(1− β)(w11 − w01) ≤ (s+ x+ y)− (s+ y + z) = x− z, (A58)

where the last inequality in the first line follows from Equation (A51). This means, by Equation (A47),
that x = z = 0. By Equations (A52) and (A51) in turn, that q+s− t ≤ x+y+z = y ≤ (q+s)−(p+ t).
This is a contradiction.

A.4.3 Proof of A10 ≤ A11

Proof. Again, we prove by contradiction. Suppose A10 > A11, then A10 = 1, A11 = 0, and:

β(w01 − w10) ≥ t− s. (A59)

(a) q + s− t < p+ t− s. Suppose not, then by (A31), βw11 − βw00 ≤ q + s− t , this implies A10 = 0.

(b) A01 = 1, as by (A31), w11 − w00 ≤ max(q + s− t, p+ t− s) = p+ t− s.

(c) A00 = 1, as by (A59), β(w01 − w10) ≥ t− s ≥ (q + s)− (p+ t), where the last inequality follows from
step (a) above.
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(d) w01 ≤ w10, since:

w10 = Emax(v − (q + s) + βw11, βw10) (A60)

w01 = Emax(v − s+ βw00, βw01). (A61)

The first line follows from the assumption that A10 = 1 and the second line from the assumption that
A01 = 1. Furthermore, as A10 = 1, we have:

β(w11 − w00) ≥ (q + s)− t. (A62)

Using Equations (A59), (A62) and (A60) sequentially:

w01 − β(w01 − w10) (A63)

≤Emax(v − t+ βw00, βw10) (A64)

≤Emax(v − (q + s) + βw11, βw10) = w10, (A65)

where the last inequality follows from Equation (A62) and the last equality follows from A10 = 1.
Therefore:

(1− β)(w01 − w10) ≤ 0 (A66)

which implies:
w01 ≤ w10. (A67)

(e) Thus, we have
βw00 ≤ βw01 ≤ βw10 ≤ βw11, (A68)

where the first inequality follows from Equation (A18), the second inequality from the equation directly
above, and the third inequality from Equation (A22). Define:

x = βw01 − βw00 (A69)

y = βw10 − βw01 (A70)

z = βw11 − βw10. (A71)

From (A62), we have

x+ y + z ≥ q + s− t. (A72)

(f) The value functions are (since A00 = 1 and A11 = 0 respectively):

(1− β)w00 = Emax(v − (q + s) + β(w01 − w00), 0) = Emax(v − (q + s) + x, 0) (A73)

(1− β)w11 = Emax(v − t− β(w11 − w01), 0) = Emax(v − t− y − z, 0), (A74)

Applying the result from Lemma 1:

(1− β)(w11 − w00) ≤ (q + s− x)− (t+ y + z) = (q + s− t)− β(w11 − w00), (A75)

which means:
w11 − w00 ≤ q + s− t. (A76)

and given w00 ≤ w11:
β (w11 − w00) ≤ q + s− t. (A77)

This contradicts (A62).
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A.4.4 Other parts of the proposition

Showing that A00 ≤ A01 is identical to the proof of A10 ≤ A00 with the two firms interchanged. Similarly,
proving A11 ≤ A01 is identical to proving A10 ≤ A11 with the two firms interchanged.

A.5 Proof of Proposition 8

Proof. As w = (w10, w10, w01, w11)
T is the fixed point of the following contraction mapping:

T (w) = Emax


v − (p+ t) + βw10, v − 1− q + t+ βw01, βw00

v − t+ βw00, v − 1− q + t+ βw11, βw10

v − (p+ t) + βw11, v − 1 + t+ βw00, βw01

v − t+ βw01, v − 1 + t+ βw10, βw11

 , (A78)

and:
A00 = I(2t+ βw01 − βw10 ≤ q − p+ 1). (A79)

Therefore, it suffices to show:
ψ(t) = 2t+ βw01(t)− βw10(t), (A80)

increases in t.
As all elements in the contraction mapping are continuous and Emax(·) preserves continuity, the value

function (fixed point) is continuous in t. Therefore, so is ψ(t). Since A10 ≤ A00 ≤ A01 by Proposition 7, we
consider the following four cases and show that ψ(t) is increasing in all four:9

1. A10 = A00 = A01 = 0

2. A10 = A00 = 0, A01 = 1

3. A10 = A00 = A01 = 1

4. A10 = 0, A00 = A01 = 1

A.5.1 Case 1: A10 = A00 = A01 = 0

Since A11 ≤ A01 by Proposition 7, A11 = 0. In this case, the value function is also the fixed point of the
following mapping:

T (w) = Emax


v − (p+ t) + βw10, βw00

v − t+ βw00, βw10

v − (p+ t) + βw11, βw01

v − t+ βw01, βw11

 , (A81)

so that w00 = w01 = w0, w10 = w11 = w1, and ψ(t) = 2t + βw0 − βw1. The contraction mapping collapses
to:

w′
0 = Emax(v − p− t+ βw1, βw0) (A82)

w′
1 = Emax(v − t+ βw0, βw1). (A83)

Define ∆w = w1−w0. We show that if t+∆w and t−∆w are increasing in t, then t+∆w′ and t−∆w′ are
also increasing in t. This then implies that this holds in the limit as well and ψ(t) = (2−β)t+β(t+w0−w1)
increases in t.

9Let the domain of ψ(t), the unit interval, be the union of mutually-disjoint compact sets (i.e., [0, 1] = I1 ∪ I2... ∪ IK). To
show that ψ(t) is increasing in t, it suffices to show it increases in t in each Ik.
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These increasing properties hold since:

t+∆w′ = t+ Emax(v − t+ βw0, βw1)− Emax(v − p− t+ βw1, βw0) (A84)

= Emax(v, t+ β∆w)− Emax(v − p− t+ β∆w, 0) (A85)

t−∆w′ = t+ Emax(v − p− t+ βw1, βw0)− Emax(v − t+ βw0, βw1) (A86)

= Emax(v − p, t− β∆w)− Emax(v − t− β∆w, 0), (A87)

both increase in t.

A.5.2 Case 2: A10 = A00 = 0, A01 = 1

In this case, A11 can be disregarded since A10 = 0 and A01 = 1. Thus, the value function is also the fixed
point of the following mapping:

w′
00 = Emax(v − p− t+ βw10, βw00) (A88)

w′
10 = Emax(v − t+ βw00, βw10) (A89)

w′
01 = Emax(v − 1 + t+ βw00, βw01). (A90)

That t± (w10 −w00) increases in t follows directly from above. Suppose that t+ (w01 −w10) increases in t.
We can show that the contraction mapping is also increasing in t:

t+ w′
01 − w′

10 (A91)

=t+ Emax(v − 1 + t+ βw00, βw01)− Emax(v − t+ βw00, βw10) (A92)

=Emax(v − 1 + 2t+ β(w00 − w10), t+ β(w01 − w10))− Emax(v − t− β(w10 − w00), 0) (A93)

which increases in t. Therefore, in the limit so does ψ(t).

A.5.3 Case 3: A10 = A00 = A01 = 1

Since A11 ≥ A10 by Proposition 7, A11 = 1. Therefore, w00 = w10 = w0, w01 = w11 = w1. Define u = v − 1.
(w0, w1)

T is the fixed point of the following contraction mapping:

w′
0 = Emax(u− q + t+ βw1, βw0) (A94)

w′
1 = Emax(u+ t+ βw0, βw1). (A95)

Define ∆w = w1 − w0. Suppose t±∆w increases in t, then:

t+ w′
0 − w′

1 = Emax(u− q + t+ β∆w, 0)− Emax(u,−t+ β∆w) (A96)

t+ w′
1 − w′

0 = Emax(u+ t− β∆w, 0)− Emax(u− q,−t− β∆w), (A97)

both increase in t.

A.5.4 Case 4: A10 = 0, A00 = A01 = 1

In this case, A11 can be disregarded since A10 = 0 and A01 = 1. Then (w00, w01, w10)
T is the limit of the

following contraction mapping

w′
00 = Emax(u− q + t+ βw01, βw00) (A98)

w′
10 = Emax(v − t+ βw00, βw10) (A99)

w′
01 = Emax(u+ t+ βw00, βw01). (A100)
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That t ± (w00 − w01) increases in t follows directly from the above. Suppose t + w01 − w10 increases in t.
Then we can show the contraction mapping is also increasing in t:

t+ w′
01 − w′

10 (A101)

=t+ Emax(u+ t+ βw00, βw01)− Emax(v − t+ βw00, βw10) (A102)

=Emax(u+ t+ β(w00 − w01), 0)− Emax(v − 2t+ β(w00 − w01),−t− β(w01 − w10)). (A103)

Therefore, t+ w′
01 − w′

10 also increases in t.

A.6 Proof of Proposition 9

Proof. The proof is a simplified version of Propositions 7 and 8. Define q = p1, s = 1− t, and (u0, u1) as the
limit of the following contraction mapping:

u′0 = Emax(v − (p+ t) + βu0, v − (q + s) + βu1, βu0) (A104)

u′1 = Emax(v − (p+ t) + βu1, v − s+ βu0, βu1). (A105)

A.6.1 u0 ≤ u1 and β(u1 − u0) ≤ q
2

In the limit:

u0 = Emax(v − (p+ t) + βu0, v − (q + s) + βu1, βu0) (A106)

u1 = Emax(v − (p+ t) + βu1, v − s+ βu0, βu1). (A107)

Therefore:

(1− β)u0 = Emax(v − (p+ t), v − (q + s) + β∆u, 0) (A108)

(1− β)u1 = Emax(v − (p+ t), v − s− β∆u, 0), (A109)

where ∆u = u1 − u0.

(a) Suppose u1 < u0, then ∆u < 0 and (1− β)u0 ≤ (1− β)u1, which is a contradiction.

(b) Suppose β∆u > q
2 , then u0 ≥ u1. However, since β∆u > q

2 > 0, u1 > u0. This is a contradiction.

A.6.2 ASR
0 ≤ ASR

1

For simplicity, we suppress the superscript and write A0 and A1 as:

A0 = I(−(q + s) + βu1 ≥ −(p+ t) + βu0) = I(q − β∆u ≤ p+ t− s) (A110)

A1 = I(−s+ βu0 ≥ −(p+ t) + βu1) = I(β∆u ≤ p+ t− s). (A111)

Since β∆u ≤ q
2 ,β∆u ≤ q − β∆u, so A1 ≥ A0.

A.6.3 A0 increases in t

It suffices to show:
ψ(t) = 2t+ β(u1 − u0), (A112)

increases in t following the same argument as below Equation A83.

(a) A0 = A1 = 0. In this case, u0 = u1, and ψ(t) increases in t.
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(b) A0 = A1 = 1. In this case, the value function is equivalent to the case in Proposition 8 with A10 =
A00 = A01 = 1.

(c) A0 = 0, and A1 = 1. So

u′0 = Emax(v − p− t+ βu0, βu0) (A113)

u′1 = Emax(v − 1 + t+ βu0, βu1). (A114)

Suppose t+∆u increases in t, then:

t+∆u′ = t+ Emax(v − 1 + t+ βu0, βu1)− Emax(v − p− t+ βu0, βu0) (A115)

= Emax(v − 1 + 2t, t+ β∆u)− Emax(v − p− t, 0) (A116)

which also increases in t.

A.7 Proof of Proposition 10

A.7.1 Preliminaries

We first prove a property of a value function when customers are restricted to choose between firm 0 and no
purchase. This property helps in the proof of the proposition, as it turns out to be the value function for
customers at cutoff-type t̄.

Lemma 2. If the value function is determined by

w00 = Emax(v − (p+ t) + βw10, βw00) (A117)

w10 = Emax(v − t̄+ βw00, βw10), (A118)

then
β(w10 − w00) ≤

p

2
. (A119)

Proof. The proof is largely similar to that of Proposition 5. The two equations can be represented as

(1− β) · w00 = Emax(v − (p+ t) + β∆w0, 0) (A120)

(1− β) · w10 = Emax(v − t̄− β∆w0, 0), (A121)

where ∆w0 = w10 − w00. The following statements are proven by contradiction:

1. ∆w0 ≥ 0. If not, the right-hand-side of the first equation is larger than that of the second one, implying
(1− β)w00 > (1− β)w10, which is a contradiction.

2. ∆w0 ≤ p
2 . If not, the right-hand side of the first equation is larger than that of the second, which is a

contradiction.

A.7.2 Proposition proof

Proof. We first show that CRR
00 (p, t) ≤ CSR

0 (p2 , t). As customers’ choice of firm 1 under either market
structure (A00(·) and A0(·) given by Equations (A79) and (A110) respectively), are both increasing in t, it
suffices to show that the threshold type (t̄) defined in (58) (the type that is indifferent between the two firms
if firm 0 offers a reward program with price p) purchases from firm 0 if firm 0 charges a static price of p

2 .
That is, A0(

p
2 , t̄) = 0.
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Rewrite the definition of t̄ (w) when firm 0 offers a reward program at price p:

−(p+ t̄) + βw10 = −(p1 + 1− t̄) + βw01. (A122)

Therefore:

w00 = Emax(v − (p1 + 1− t̄) + βw01, βw00) (A123)

w01 = Emax(v − (1− t̄) + βw00, βw01). (A124)

Suppose this customer chooses firm 1 under market structure SR
(
ASR

0 (p2 , t̄) = 1
)
:

−(p1 + 1− t̄) + βu1 > −(
p

2
+ t) + βu0, (A125)

where:

u0 = Emax(v − (p1 + 1− t̄) + βu1, βu0) (A126)

u1 = Emax(v − (1− t̄) + βu0, βu1). (A127)

Comparing the two sets of value functions, we have:

w00 = u0 (A128)

w01 = u1. (A129)

Substituting into Equation (A125):

−(p1 + 1− t̄) + βw01 > −(
p

2
+ t̄) + βw00. (A130)

On the other hand, as type t̄ customer is indifferent in choosing firm 0 and firm 1 at state (00), A10 = 0,
and:

w00 = Emax(v − (p+ t̄) + βw10, βw00) (A131)

w10 = Emax(v − t̄+ βw00, βw10). (A132)

These can be transformed to:

(1− β)w00 = Emax(v − (p+ t̄) + β∆w, 0) (A133)

(1− β)w10 = Emax(v − t̄− β∆w, 0), (A134)

where ∆w = w10−w00. Suppose β∆w > p
2 . Then v− (p+ t̄)+β∆w > v− t̄−β∆w. This implies w00 > w10,

which is a contradiction.
Combining this with Equation A130:

−(p1 + 1− t̄) + βw01 > −(
p

2
+ t̄) + βw00 ≥ −(p+ t̄) + βw10, (A135)

This contradicts Equation (A122). Therefore, we have:

CRR
00 (p, t) ≤ CSR

0 (
p

2
, t). (A136)

That DRR(p, t) ≤ 1
2DSR(

p
2 , t) follows directly from Proposition 1 of the monopoly case since q1(t)q0(t)

q1(t)+q0(t)
,

defined in Equation (59), is less than 1
2G(

p
2 + t), defined in Equation (63).
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A.8 Proof of Proposition 11

Proof. We first show some mathematical preliminaries relating to the exponential distribution before deriving
the optimal static pricing p∗S . We then show that the firm can earn higher profits under the reward program
than under static pricing

(
πF
R(2p

∗
S) > π∗

S

)
by charging 2p∗S .

A.8.1 Preliminaries

If v ∼ Exp(λ), then:

Emax (v − b, 0) =
1

λ
e−λb. (A137)

If x ∼ Exp(λ) then:

∫ ∞

b

x · λ exp (−λx) dx =

∫ ∞

0

(y + b) · λ · exp (−λ (y + b)) dy (A138)

= e−λb ·
(∫ ∞

0

y · λ exp (−λy) dy +
∫ ∞

0

b · λ exp (−λy) dy
)

(A139)

= e−λb ·
(
1

λ
+ b

)
, (A140)

so:

Emax (x, b) =

∫ b

0

b · λ exp (−λx) dx+

∫ ∞

b

x · λ exp (−λx) dx (A141)

= b ·
(
1− e−λb

)
+ e−λb

(
1

λ
+ b

)
= b+

1

λ
e−λb, (A142)

and:

Emax (x− b, 0) = Emax (x, b)− b =
1

λ
exp (−λb) . (A143)

A.8.2 Optimal static pricing

For a firm using static pricing:
max

p
p ·G (p) = max [p · exp (−λp)] . (A144)

The first-order condition implies:

p∗S =
1

λ
, (A145)

and profits are:

π∗
S =

1

λe
. (A146)

A.8.3 Value function under the reward program

The value function under the reward program is determined by:

w0 = Emax (v − p+ βw1, βw0) = Emax (v − p+ β∆w, 0) + βw0 (A147)

w1 = E (v) + βw0 =
1

λ
+ βw0. (A148)
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Taking the difference between the two:

∆w =
1

λ
− Emax (v − p+ β∆w, 0) =

1

λ
− 1

λ
exp (−λ (p− β∆w)) , (A149)

which gives:
1− λ∆w = exp (−λ (p− β∆w)) . (A150)

Finally, we show that ∆w, the solution to the above equation, decreases in β. Suppose not, there exists
β1 < β2 such that ∆w1 < ∆w2, where:

1− λ∆w1 = exp (−λ(p− β1∆w1)) (A151)

1− λ∆w2 = exp (−λ(p− β2∆w2)) . (A152)

So far we have ∆w1 < ∆w2. From the left-hand sides of Equations (A151) and (A152), exp (−λ(p− β1∆w1)) >
exp (−λ(p− β2∆w2)). This means β1∆w1 > β2∆w2, which is a contradiction.

A.8.4 Profit under reward program

From Equation (81) in the main text, profit under the reward program is:

πF
R (p) = p · G (p− β∆w)

1 +G (p− β∆w)
. (A153)

Since G (p− β∆w) = exp (−λ(p− β∆w)) and substituting from Equation (A150), we have:

πF
R (p,∆w(p, β)) = p · 1− λ∆w

2− λ∆w
, (A154)

which decreases in ∆w, and thus increases in β.

A.8.5 Comparing two profits

To prove the proposition, it suffices to show that for one price p0 = 2
λ (which is 2 · p∗S):

πF
R(p0,∆w(p0, 1)) >

1

λe
= π∗

S . (A155)

Equivalently, for u = λ ·∆w(p0, 1), we need to show

2 · (1− u)

2− u
>

1

e
. (A156)

In this case, u = 0.722 can be calculated numerically by plugging p0 = 2
λ and β = 1 into (A150) and solve

the non-linear equation:
1− u = exp(−2 + u). (A157)

Both sides of (A156) can then be calculated, with the left-hand-side equaling 0.435 and the right-hand-side
equaling 0.368.
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B Distributions Fulfilling Assumption 1 (Reciprocal of Survival
Function is Convex)

This appendix catalogs common distributions that meet Assumption 1 (reciprocal of the survival function
is convex). This is a weak form of log-concavity of a distribution and is met by most commonly-used
distributions.

B.1 Definitions

Probability density function:

f (x) (B.1)

Cumulative density function:

F (x) (B.2)

Survival function:

G (x) = 1− F (x) (B.3)

B.2 Conditions

Assumption 1 in the main text (reciprocal of the survival function is convex) is the weakest of three types of
log-concavity for distributions. We examine all three types since if one of the stricter types of log-concavity
is met, then the weaker forms are also met and these are sometimes more straightforward to show. The
three types of log-concavity in decreasing order of strictness are:

Condition 1: Concavity of survival function: G (x) is concave (F (x) is convex) in x, which requires:

f ′ (x) > 0. (B.4)

Condition 2: Log-concavity of survival function: log (G (x)) is concave, which implies F (x) has a hazard
rate:

h (x) =
f (x)

1− F (x)
, (B.5)

that is increasing in x:

h′ (x) > 0. (B.6)

Condition 3 (corresponding to Assumption 1 in the main text): Reciprocal of the survival function is

convex. w (x) = G (x)
−1

= 1
1−F (x) is convex:

w′′ (x) =
f ′ (x)

(1− F (x))
2 +

f (x)
2

(1− F (x))
3 > 0, (B.7)

or:

f ′ (x) (1− F (x)) + f (x)
2
> 0. (B.8)

B.3 Distributions

We verify Assumption 1 is met for the following distributions:
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1. Uniform

2. Exponential

3. Normal

4. Beta

5. Pareto

6. Generalized Extreme value (Weibull distribution)

7. Chi-squared

B.4 Checking Conditions

B.4.1 Uniform Distribution

The pdf is:

f (x;u, l) =

{
1

u−l for x ∈ [l, u]

0 otherwise.
(B.9)

The cdf is:

F (x;u, l) =


0 for x < l
x−l
u−l for x ∈ [l, u]

1 for x > u.

(B.10)

The hazard function is defined on [l, u] as:

h (x;u, l) =
1

u− x
. (B.11)

Condition 1 is not met:
f ′ (x;u, l) = 0. (B.12)

But Condition 2 is met:

h′ (x;u, l) =
1

(u− x)
2 > 0. (B.13)

B.4.2 Exponential Distribution

The pdf is:
f (x;λ) = λexp (−λx) , (B.14)

where λ > 0. The cdf is:
F (x;λ) = 1− exp (−λx) . (B.15)

The hazard function is:
h (x;λ) = λ. (B.16)

The reciprocal of the survival function is:

w (x;λ)
−1

= exp (λx) . (B.17)

Condition 1 is not met:
f ′ (x;λ) = −λ2exp (−λx) < 0. (B.18)

Condition 2 is also not met:
h′ (x;λ) = 0. (B.19)
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But Condition 3 is met:
w′′ (x;λ) = λ2exp (λx) > 0. (B.20)

B.4.3 Normal Distribution

The pdf is:

f(x;µ, σ) =
1

σ
√
2π
e−

1
2 (

x−µ
σ )2 . (B.21)

An alternative way to verify Condition 1 is to check if the log of the pdf function is concave (Bagnoli and
Bergstrom (2005)). This confirms Condition 1:

log [f(x;µ, σ)]
′′
= − 1

σ
< 0. (B.22)

B.4.4 Beta Distribution

The pdf is:

f(x;α, β) =
1

B(α, β)
xα−1(1− x)β−1, (B.23)

where 0 < x < 1, B = Γ(α)Γ(β)
Γ(α+β) , and Γ is the Gamma function.

Condition 1 is met if α > 1 and β > 1 since:

f ′(x;α, β) =
1

B(α, β)
(α− 1)xα−2(1− x)β−1 + (β − 1)xα−1(1− x)β−2 > 0. (B.24)

B.4.5 Pareto Distribution

The pdf is:

fX(x;α, xm) =

{
αxm

α

xα+1 if x ≥ xm

0 if x < xm,
(B.25)

where α > 0 and xm > 0. The cdf is:

F (x;α, xm) =

{
1− (xm

x )α if x ≥ xm

0 if x < xm.
(B.26)

The survival function is:
G(x;α, xm) = (

xm
x

)α. (B.27)

The hazard function is:
h(x;α, xm) =

α

x
, (B.28)

where x > xm. Condition 1 is not met since:

f ′(x;α, xm) = −α(α+ 1)xαmx
−α−2 < 0. (B.29)

Condition 2 is not met since:
h′(x;α, xm) = −αx−2 < 0. (B.30)

However, Condition 3 is met since:

w′′(x;α, xm) = α(α+ 1)xmx
−α−2 > 0. (B.31)
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B.4.6 Generalized extreme value distribution (Weibull)

The pdf is:
f(x; c) = cxc−1e−xc

, (B.32)

where x > 0 and c ≥ 1. The cdf is:
F (x; c) = 1− e−xc

. (B.33)

The survival function is:
G(x; c) = e−xc

. (B.34)

and the hazard rate is:
h(x; c) = cxc−1. (B.35)

Condition 1 is met only when x < c− 1:

f ′(x; c) = c(c− 1)xc−2e−xc

− cx2c−2e−xc

> 0. (B.36)

However, Condition 2 is met for all values of x:

h′(x; c) = c(c− 1)xc−2 > 0. (B.37)

B.4.7 Chi-squared Distribution

The pdf is:

f(x; k) =
1

2
k
2

Γ(
k

2
)x

k
2−1e−

x
2 , (B.38)

where Γ denotes the Gamma function and k ≥ 2.
We can verify the log of the pdf function is concave to confirm Condition 1 (Bagnoli and Bergstrom

(2005)):

log [f(x; k)]
′′
= −

(
k

2
− 1

)
1

x2
< 0. (B.39)
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