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Abstract 

The economic costs of trans-boundary pollution spillovers versus local effects is a necessary input in 
evaluating centralized versus decentralized environmental policies. Directly estimating these for air 
pollution is difficult because spillovers are high-frequency and vary with distance while economic 
outcomes are usually measured with low-frequency and local pollution is endogenous. We develop an 
approach to quantify local versus spillover effects as a flexible function of distance utilizing 
commonly-available pollution and weather data. To correct for the endogeneity of pollution, it uses a 
mixed two-stage least squares method that accommodates high-frequency (daily) pollution data and 
low-frequency (annual) outcome data. This avoids using annual pollution data which generally yields 
inefficient estimates. We apply the approach to estimate spillovers of particulate matter smaller than 
10 micrograms (PM10) on manufacturing labor productivity in China. A one μg/m3 annual increase in 
PM10 locally reduces the average firm’s annual output by CNY 45,809 while the same increase in a 
city 50 kilometers away decreases it by CNY 16,248. The spillovers decline quickly to CNY 2,847 at 
600 kilometers and then slowly to zero at about 1,000 kilometers. The results suggest the need for 
supra-provincial environmental policies or Coasian prices quantified under the approach. 
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1. Introduction 

Since the seminal work of Oates (1972) on fiscal federalism, there has been a debate 
on whether centralized or decentralized policies can achieve the most efficient 
outcome. Local authorities have better information about costs and benefits and can 
better tailor local policies than central authorities whose policies tend to be overly 
uniform. However, local jurisdictions generally ignore the effects of their policies on 
other jurisdictions unless these are internalized administratively. Clear and 
enforceable assignment of property rights followed by Coasian bargaining can also 
solve these externalities even under decentralized control (Coase, 1960) but require 
knowledge and quantification of the extra-territorial damages incurred as a function 
of distance. 

Despite this, we are not aware of any studies that quantify trans-boundary spillovers 
relative to local effects for any kind of pollution. Previous papers show that trans-
boundary pollution spillovers exist and that they affect extra-territorial economic 
well-being1 but they do not quantify how spillovers compare to local effects as a 
function of distance. Our paper aims to fill this gap by providing an approach for 
estimating an air pollution spillover gradient including local effects for endogenous 
economic outcomes. 

Air pollution is a prototypical example of the fiscal federalism debate with serious 
welfare implications. High levels of air pollution in developing countries have led to 
adverse effects on health, economic output, and physical and mental comfort. 
Ninety-two percent of all air pollution-related deaths are estimated to occur in low- 
and middle-income countries and ambient air pollution is estimated to have cost 4.4% 
of global GDP in 2016 (Ostro, et al., 2018). Air pollution levels far exceed the social 
optimum because spillovers, including trans-boundary, are not internalized. 
Developed countries also recognize the need to manage cross-boundary pollution to 
address these externalities. For example, the U.S. Clean Air Act Section 126 allows a 
downwind state to petition the Environmental Protection Agency to take action 
against an upwind state that impedes its ability to comply with smog standards.2 

Regardless of the method used to correct the externality, a necessary input is the 
magnitude and geographic extent of the spillovers by distance. Centralized decision-
making to internalize spillovers requires knowledge of how far spillovers extend at 
significant levels. Alternatively, assigning property rights and allowing for 
decentralized Coasian bargaining requires a method for the parties to estimate the 
                                                           
1 These include Sigman (2002), Sigman (2005), Zheng et al. (2014), Bošković (2015), Kahn et al. (2015), 
Cai et al. (2016), Altindag et al. (2017), Jia and Ku (2017), Lipscomb and Mobarak (2017), Sheldon and 
Sankaran (2017), and Goodkind et al. (2019). We comment more on these below. 
2 Described at https://www.epa.gov/ground-level-ozone-pollution/ozone-national-ambient-air-
quality-standards-naaqs-section-126. 

https://www.epa.gov/ground-level-ozone-pollution/ozone-national-ambient-air-quality-standards-naaqs-section-126
https://www.epa.gov/ground-level-ozone-pollution/ozone-national-ambient-air-quality-standards-naaqs-section-126
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origin of spillovers and their damage. To estimate air pollution spillovers requires 
estimating not just the quantity of pollution that drifts as a function of distance but 
also the economic costs that it imposes upon arrival. Finally, a quantification of local 
effects is required to determine whether the spillovers are important in relative 
terms. 

If pollution, weather, and outcome data are available on a daily basis estimating the 
effect of spillovers on the outcome is straightforward: a reduced form estimate of 
imported pollution on local economic outcomes. However, many economic 
outcomes are measured at a lower frequency (e.g., annual) and air pollution 
spillovers occur according to daily wind patterns. Aggregating data to the annual 
level and directly relating economic outcomes to imported pollution is likely to 
involve significant efficiency losses as we show occurs in our application. In addition, 
reduced-form estimates do not quantify the local causal effects. We develop an 
approach to overcome this and demonstrate it by estimating effects of air pollution 
spillovers on annual manufacturing labor productivity in China. 

Our approach relies on the fact that there are two determinants of the trans-
boundary effect of pollution on an outcome: how much air pollution is physically 
transported across cities (the pollution spillover) and the causal effect of this 
pollution on the outcome upon its arrival in the destination city. We wish to estimate 
the pollution spillover flexibly to allow for a highly nonlinear gradient. However, 
the causal effect requires instruments for pollution and is therefore constrained to 
linear estimating equations. To accomplish this, we proceed in two steps. In the first 
step, we estimate the pollution spillover (which we call the spillover decay function) 
of nearby- on focal-city pollution flexibly as a function of distance using daily data 
conditional on wind blowing toward the focal city. In the second step, we estimate 
the causal effect of focal-city air pollution on the economic outcome. Multiplying the 
spillover decay effects from the first step by the causal effect from the second step is 
equivalent to a reduced-form approach3 and allows us to estimate spillovers on the 
outcome flexibly over a range of distances and compare them to the local effect. 

When we estimate the causal effect of pollution in the second step, we instrument for 
the endogeneity of focal-city air pollution using the air quality of the nearest nearby 
city conditional on wind blowing toward the focal city. When wind blows toward 
the focal city, imported pollution from the nearby city degrades focal-city air quality. 
Although other instruments could be used in this step, using nearby-city pollution is 
convenient because the required data (daily pollution and wind measures) are 

                                                           
3 Although the spillover decay function is estimated at the daily level, the effects can be interpreted as 
the annual effects of a sustained and uniform increase in nearby-city pollution on all days of the year 
if wind blew toward focal cities on all days. Since the wind blows toward focal cities roughly half the 
time on average, annual spillovers are roughly half the daily effect as we describe in our results. 
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commonly available and are already used to estimate the pollution decay function in 
the first step. The exogeneity of this instrument requires high-frequency data for two 
reasons. First, to capture wind direction shifts precisely enough and, second, to 
preclude confounding factors affecting both nearby-city pollution and focal-city 
economic outcomes that might occur over longer time periods (in particular inter-
regional economic shocks).4 We provide evidence that daily data are frequent 
enough but higher levels of aggregation are not. 

To combine the daily instrumenting data with the annual outcome data, we employ 
mixed two-stage least squares (M2SLS) (Dhrymes and Lleras-Muney, 2006), a 
methodology for implementing 2SLS with different levels of aggregation in the two 
stages. While the daily instrumenting data can be annualized (conditional on wind 
direction) to use Wald 2SLS, we show in our application that this results in very 
inefficient estimates relative to M2SLS. This is likely to be the case in estimating the 
effect of pollution on other annual outcomes because of the information loss that 
occurs when daily data is averaged to the annual level in the first stage. 

We demonstrate this approach by estimating the effect of trans-city drifts of 
particulate matter less than 10 micrograms in diameter (PM10) on short-run 
manufacturing labor productivity in China using a large firm-level data set from 
2001 to 2007. A one μg/m3 annual increase in PM10 in a city within 50 kilometers 
decreases the average firm’s annual labor productivity by CNY 16,248 (0.106%).5 
This effect declines quickly to CNY 2,847 (0.019%) for nearby cities at 550-600 
kilometers after which it declines slowly to zero at about 1,000 kilometers compared 
to a local effect of CNY 45,809 (0.300%). Thus, the spillover is roughly 35.5% of the 
local effect at 50 kilometers, falling to 6.2% at 550 kilometers, and zero at 1,000 
kilometers and beyond. While we demonstrate the estimation approach with PM10 
and productivity, it can be easily tailored to estimate the spillovers for other 
pollutants and other annual outcomes such as GDP, morbidity, and mortality. 

This paper contributes to three strands of literature. First, we quantify the magnitude 
of spillovers as a function of distance relative to local effects, a key input in choosing 
centralized versus decentralized environmental policies (Oates and Schwab, 1988; 
Ogawa and Wildasin, 2009; Banzhaf and Chupp, 2012; Eichner and Runkel, 2012; 
Williams, 2012; Fell and Kaffine, 2014). Extant work on trans-boundary spillovers 
either shows that trans-boundary pollution spillovers exist (Sigman, 2002; Sigman, 
2005; Kahn et al., 2015; Cai et al., 2016; Lipscomb and Mobarak, 2017) or that they 
affect extra-territorial economic well-being (Zheng et al., 2014; Bošković, 2015; 

                                                           
4 Exogeneity also requires that wind direction is random with respect to nearby-city pollution 
conditional on control variables. We provide evidence that this is the case. 
5 This estimate is for the average city given average weather. 
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Altindag et al., 2017; Sheldon and Sankaran, 2017; Jia and Ku 2019) but do not 
quantify their extensiveness or size relative to local effects. 

Second, we develop an approach based on M2SLS that allows high-frequency 
variation in wind direction to be used as an instrument for high-frequency air 
pollution in estimating its causal effect on low-frequency outcomes. There are two 
approaches to using wind direction as an instrument. One approach is to use 
dominant wind direction alone without measures of non-local pollution sources 
(Deryugina et al., 2019; Freeman et al., 2019; Herrnstadt et al., 2019; Anderson, 2020). 
This is convenient because the instrument is valid without the need to measure non-
local pollution. The downside, as Deryugina et al. (2019) points out, is that the 
monitoring stations that measure local pollution must be geographically dense 
enough to avoid measurement error and confounding effects from local pollution 
sources.6 The second approach combines wind direction with the extra identification 
from non-local pollution. The advantage of this is that it is not confounded by local 
sources of pollution and can be used in the absence of a dense network of local 
monitoring stations. The downside is that non-local pollution sources must be 
measured and must be orthogonal to local sources. Previous papers that use this 
approach (Schlenker and Walker, 2016; Rangel and Vogel, 2019)7 use discrete, 
exogenous events that shift non-local pollution. Our paper takes this approach but 
extends it to use a continuous measure of non-local pollution and allow for the 
instrument to be of higher frequency than the endogenous variable. 

Third, our paper adds to the growing literature on estimating air pollution’s effect 
on labor productivity (Graff Zivin and Neidell, 2012; Chang et al., 2016; Fu et al., 2018; 
Chang et al., 2019; He et al., 2019). These papers estimate the effect of an increase in 
local air pollution on local firms’ productivity. In contrast to previous papers, we 
distinguish the effect of local and imported pollution sources on productivity and 
show that spillovers can contribute significantly to productivity losses. 

We find that pollution exerts a substantial negative effect on productivity even at 
relatively far distances. Twenty-two percent of PM10 produced from a city within 300 
kilometers is imported into a focal city when the wind blows directly toward it. 
From a policy perspective, to internalize this would require centralized control of 

                                                           
6 As they explain, having a dense network of monitors locally averages out the effects of local 
pollution sources so that they do not bias estimates. Slightly modifying their example (page 14) 
imagine a smokestack in the middle of a city. If there is a single monitor on the east side of the city 
then the monitor will detect the pollution from the smokestack when the wind is blowing from the 
west but not when it blows from the east and the wind direction instrument is correlated with local 
pollution. However, if there is a dense network of monitors on all sides of the smokestack then a local 
pollution measure averaged across all monitors will reduce, and in the limit, eliminate this correlation. 
7 Schlenker and Walker (2016) also use wind speed which provides further variation besides wind 
direction to ensure exogeneity. 
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administrative areas that are 300 kilometers in radius or 283-thousand square 
kilometers. This is greater in size than many medium-sized provinces in China such 
as Hunan, Shaanxi, Hebei, Jilin, Hubei, and Guangdong (Ministry of Civil Affairs, 
2017). Thus, the results indicate that environmental policies need to be coordinated 
at the supra-provincial level to internalize spillovers. The other major policy 
application of our method is in calculating Coasian prices as a decentralized solution 
to air pollution externalities. Our estimates allow a quantification of the 
compensation that one city must make to another to internalize inter-city pollution 
damage given the distance between the two cities, the annual wind-direction 
distribution, and annual levels of the economic outcome of interest. We provide an 
example in our results. 

The scientific literature uses an alternative approach for the first step of our 
procedure, chemical-transport models or CTMs, to relate source emissions to 
receptor concentrations (Moussiopoulos, et al. (1996); Seigneur and Moran (2004); 
Seigneur and Dennis (2011)). CTMs that estimate this relationship over long 
distances such as we do are grid-based models that relate locations defined by three-
dimensional grids that are normally one kilometer or larger in size.8 The 
relationships are based on detailed mathematical models of atmospheric processes 
using detailed weather and emissions data. As an alternative for the first step of our 
procedure, CTMs offer advantages and disadvantages relative to our approach. 

CTMs quantify the spillovers from original emissions and is unaffected by their 
displacement unlike our approach which relies on concentrations (hence the need for 
daily wind data to identify spillovers in our estimation). On the other hand, detailed 
emissions data are often not available while concentrations are more readily 
available. Relatedly, CTMs require highly disaggregated data on weather and 
pollution which is often not available, especially in developing economies. CTMs 
realistically model the processes of concentration formation and movement; 
however this greater complexity involves longer solutions times and many more 
assumptions. In a policy context, agreeing upon these assumptions can require 
significant effort and resources.9 In contrast, our approach can be estimated quickly 
and its transparency requires agreement on fewer assumptions. 

Our results have specific implications for the role of China’s governance system in 
air pollution spillovers. China’s reforms have succeeded in part because of its 

                                                           
8 The other approach, known as source-specific models, identify specific emissions sources  that 
contribute to ambient concentrations but are applicable up to only about 150 kilometers between 
source and receptor locations. 
9 For example, the EPA devotes significant resources in choosing which models meet their standards 
via conferences, technical analyses, and regulatory reports. A recent example is detailed in Federal 
Register (2017). 
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regionally decentralized system in which the central government provides incentives 
to local governments based primarily on local GDP to the exclusion of other criteria 
(Jin et al., 2005; Li and Zhou, 2005; Xu, 2011) such as environmental quality. Our 
results indicate that these incentives exacerbate the negative implications of air 
pollution spillovers on manufacturing productivity. This complements Jia (2017) 
which provides empirical evidence that these incentives result in more pollution. 
Including local environmental quality in local government officials’ performance 
valuation is not enough; cross-boundary pollution spillovers must be considered too. 

The remainder of the paper proceeds as follows. The next section describes the data 
we use to illustrate the estimation approach and Section 3 the approach. Section 4 
provides the results, and Section 5 concludes. 

 

2. Data 

We estimate pollution spillovers on labor productivity for manufacturing firms in 
China from 2001 to 2007 in two steps. The first step (estimating the pollution decay 
function) requires daily pollution and weather data. The second step of the 
procedure (estimating the causal effect of air pollution on productivity) requires 
daily data for the instrument to address the endogeneity of pollution and 
accommodates annual data on productivity. 

2.1 Pollution data 

The highest-frequency pollution data available with significant geographic coverage 
during our sample period is the daily Air Pollution Index (API) published by the 
Ministry of Ecology and Environment. This is available at the city level and only for 
larger cities. The number of cities reporting API data increases over time in the 
sample. The sample includes 60 unique cities (Appendix A shows their location). 

The API ranges from 0 to 500 with higher values indicating higher pollution 
concentrations and more harmful health effects (Andrews, 2008). During the sample 
period, a city’s daily API reports the worst of three pollutants: particulate matter 
(PM10), nitrogen dioxide (NO2), and sulfur dioxide (SO2) whose concentrations are 
measured at multiple monitoring stations within the city. Each is rescaled as an API 
measure to make them comparable and the pollutant with the maximum API is 
reported.10 The identity of the maximal pollutant is reported if the API exceeds 50. 

                                                           
10 Each monitoring station records the concentrations of the three pollutants multiple times a day. 
Each of these intra-day measurements is rescaled to an API index. A daily mean API for each 
pollutant across all stations in a city is then calculated and the maximum of these three means is the 
city-level API for that day. 



 
 

8 
 

The API is potentially subject to manipulation by those who collect and report the 
data. Using 2001 to 2010 data, Ghanem and Zhang (2014) find a discontinuity in the 
API distribution around 100 which suggests that self-reported data is manipulated 
by local officials who are evaluated on the annual number of “Blue Sky” days (those 
below 100). Also consistent with this, Andrews (2008) finds that a significant number 
of days in 2006 and 2007 with reported API values between 96 and 100 would fall in 
the range 101 to 105 if calculated using the underlying monitoring station data. To 
avoid any possible bias in the estimates we exclude days when the API is between 95 
and 105 in either the focal or nearby city in the main estimates but show that it is 
robust to including these. 

We use PM10 in the analysis rather than the API index because we wish to use 
physical pollution levels in quantifying spillovers and PM10 is overwhelmingly the 
worst of the three pollutants (about 90% of days). We drop days in which PM10 is not 
the maximal pollutant and for the remaining days infer its value from the API based 
on the piecewise-linear relationship between PM10 and the API (Appendix B). 
Although we do not observe the worst pollutant when the API is below 50 we 
assume it is PM10 in the baseline estimates because at these low levels air quality is 
assumed to be safe regardless of pollutant. The results are robust to dropping these 
days. 

2.2 Wind and weather data 

We require daily wind data for estimating the spillover decay function and to 
instrument pollution when estimating its effect on productivity. We use station-level 
wind direction data from the World Weather Records Clearinghouse collected by the 
U.S. National Oceanic and Atmospheric Administration (NOAA).11 The data provide 
a direction from which the wind is blowing stated in degrees clockwise from true 
North in each three-hour period of each day in each city. We use a “unit-vector” 
average method defined by the NOAA to arrive at an average daily wind direction 
for each city.12 For wind direction we use data for the focal not the nearby city. 
Regardless of the wind direction in the nearby city, pollution cannot be imported if 
the wind in the focal city is not blowing from the nearby city’s direction. 

                                                           
11 Data available at: http://www.ncdc.noaa.gov/data-access. 
12 In each three-hour period, we convert the direction for each monitoring station to a unit vector with 
coordinates 〈𝑢𝑢, 𝑣𝑣〉. The 𝑢𝑢-component is the North-South wind direction and 𝑣𝑣 the East-West. We 
average the two coordinates separately across the periods of each day and all stations to yield 𝑢𝑢�  and �̅�𝑣. 
We then translate the direction into a 0 to 360 degree scale based on the signs of 𝑢𝑢�  and �̅�𝑣: 180 − 𝜃𝜃 if 
𝑢𝑢� < 0 and �̅�𝑣 > 0, 𝜃𝜃 − 180 if 𝑢𝑢� < 0 and �̅�𝑣 < 0, 360 − 𝜃𝜃 if 𝑢𝑢� > 0 and �̅�𝑣 < 0, and 𝜃𝜃 if 𝑢𝑢� < 0 and �̅�𝑣 > 0 
where 𝜃𝜃 = (180 𝜋𝜋⁄ ) ∗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑢𝑢� �̅�𝑣⁄ ). This is method 1 described at: 
http://www.ndbc.noaa.gov/wndav.shtml. 

http://www.ncdc.noaa.gov/data-access
http://www.ndbc.noaa.gov/wndav.shtml
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To control for weather conditions that affect the transport of pollution and 
productivity we use daily weather (humidity, windspeed, and temperature) data 
downloaded from the Weather Underground.13 

2.3 Firm productivity data 

Our firm-level output and characteristics data are from annual surveys of 
manufacturing firms conducted by China’s National Bureau of Statistics (NBS). The 
survey includes all state-owned enterprises (SOEs) regardless of size and all non-
SOEs whose annual sales exceed CNY 5 million (USD 0.8 million).14 The survey also 
contains detailed information on firm location, accounting measures, and firm 
characteristics. Before we match with the pollution data this captures 90.7% of 
China’s total manufacturing output during the sample period (Brandt et al., 2012). 
We follow Brandt et al. (2012) in matching firms over time to form an unbalanced 
panel and in converting nominal into real values using industry-level price indices. 
To be consistent with the previous literature, we drop observations with missing or 
unreliable data (Cai and Liu, 2009; Brandt et al., 2012; Yu, 2014) and winsorize the 
top and bottom 0.5% of data based on each of the values of output, value added, 
employment, and capital (Cai and Liu, 2009). 

We measure output as value added per worker which is common in the productivity 
(Syverson, 2011; Brandt et al., 2012) and temperature-productivity literature (Hsiang, 
2010; Dell et al., 2012). Firms report value added directly in the data and it equals 
total production (including both sales and inventory) of all goods produced in the 
year valued at their market prices less the cost of all intermediate inputs employed 
in producing them. Using aggregate measures of productivity requires that prices do 
not reflect market power in either the primary or upstream input markets. We 
cannot guarantee this; however, nearby-city pollution is independent of firm-level 
market power in the focal city allowing us to consistently estimate pollution’s effect 
on productivity via instrumented pollution. The mix of products is also not 
discernible from firm-level value added and may be correlated with local pollution 
levels. However, our instrumenting strategy also addresses this issue: nearby-city 
pollution is uncorrelated with the product-mix decisions of a firm in the focal city 
thereby removing any bias in the instrumented results. 

As explained below, we impose a maximum distance of 1,800 kilometers in 
estimating the spillover decay function and 300 kilometers in the causal estimates of 
productivity effects. After merging the productivity, API, and weather data for the 
spillover estimates, the data include 60 focal cities that represent 26% of China’s 
population. The total annual output of these cities is CNY 2.02 trillion (11.7% of 
                                                           
13 Available at www.wunderground.com. 
14 A 2007 exchange rate of 7.6 is used throughout the paper. 

http://www.wunderground.com/
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China’s annual GDP and 29% of China’s manufacturing sector).15 For the casual 
estimates, the data includes 88,716 firms in 47 focal cities with total annual output of 
CNY 1.35 trillion (7.8% of China’s annual GDP and 20% of China’s manufacturing 
sector). Although the sample of cities is not comprehensive these are major cities 
representing a significant fraction of manufacturing output and population. 

 

3. Estimation 

3.1 Overview of estimation approach 

As we show below, reduced-form estimation of spillover effects on productivity 
produces inefficient estimates. This will also not provide estimates of the local causal 
effects to compare with. To overcome these two issues, we rely on the fact that the 
reduced-form effect equals the intensity of treatment (the effect of nearby- on focal-
city pollution) multiplied by the causal effect of focal-city pollution on focal-city 
productivity. We call the effect of nearby- on focal-city pollution the “pollution 
decay function” since we allow it to vary as a function of distance. Letting 𝑃𝑃𝑛𝑛 
represent nearby-city pollution, 𝑃𝑃𝑓𝑓 focal-city pollution, and 𝑌𝑌𝑓𝑓 the focal-city outcome 
(in our case productivity): 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑎𝑎 𝑠𝑠𝑜𝑜 𝑃𝑃𝑛𝑛𝑠𝑠𝑎𝑎 𝑌𝑌𝑓𝑓 =
(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎 𝑑𝑑𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑 𝑜𝑜𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎: 𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑎𝑎𝑎𝑎 𝑠𝑠𝑜𝑜 𝑃𝑃𝑛𝑛 𝑠𝑠𝑎𝑎 𝑃𝑃𝑓𝑓)  ×  (𝑎𝑎𝑎𝑎𝑢𝑢𝑠𝑠𝑎𝑎𝑠𝑠 𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑎𝑎𝑎𝑎 𝑠𝑠𝑜𝑜 𝑃𝑃𝑓𝑓  𝑠𝑠𝑎𝑎 𝑌𝑌𝑓𝑓).     (1) 

This follows because the causal effect estimated via 2SLS using nearby-city pollution 
as an instrument is (Angrist and Pischke, 2015: 107): 

𝑎𝑎𝑎𝑎𝑢𝑢𝑠𝑠𝑎𝑎𝑠𝑠 𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑎𝑎𝑎𝑎 𝑠𝑠𝑜𝑜 𝑃𝑃𝑓𝑓  𝑠𝑠𝑎𝑎 𝑌𝑌𝑓𝑓 = �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑓𝑓 𝑃𝑃𝑛𝑛 𝑠𝑠𝑛𝑛 𝑌𝑌𝑓𝑓�
�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑛𝑛 𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑝𝑝𝑛𝑛𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑛𝑛: 𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠𝑑𝑑𝑝𝑝 𝑠𝑠𝑓𝑓 𝑃𝑃𝑛𝑛 𝑠𝑠𝑛𝑛 𝑃𝑃𝑓𝑓�

.     (2) 

We therefore proceed in two steps. In the first step we estimate the pollution decay 
function using daily data. We allow the effect to vary at different distances with 
controls for weather and seasonality. In the second step we employ the M2SLS 
method to estimate the causal effect of focal-city pollution on focal-city productivity 
using annual data, instrumenting daily focal-city pollution with daily nearby-city 
pollution conditional on wind direction. This step estimates the local average 
treatment effect of pollution on productivity. We then multiply the estimates for the 
spillover decay function obtained in the first step by the instrumental variable 
coefficient from the second step to yield the spillover effect of nearby-city pollution 
on focal-city productivity according to Equation (1). We bootstrap to compute 
standard errors that account for estimation error across both steps. The spillover 

                                                           
15 China’s average annual real GDP over the seven-year sample period is CNY 17.27 trillion. The 
manufacturing sector accounts for roughly 40% of China’s GDP. 
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decay function is estimated at the city level because pollution is measured at that 
level while the causal effects of pollution on productivity are estimated at the firm 
level because productivity is measured and occurs at the firm level. 

An additional advantage of separating these two steps is that the first step relating 
nearby- to focal-city pollution can involve very complicated relationships that 
depend on pollution, wind patterns, and weather in highly nonlinear ways while 
preserving the linear relationship necessary for instrumenting in the second step. 
The next subsection describes the first step of the approach (estimating the pollution 
decay function) and the following subsection the second step (estimating the causal 
effect). 

3.2 Step one: estimating the pollution decay function 

The pollution decay function isolates the physical transport of PM10 between nearby 
and focal cities. If wind direction is orthogonal to omitted factors that jointly affect 
both nearby- and focal-city pollution, relating the two during periods when wind 
blows toward the focal city identifies these spillovers. We offer evidence that wind 
direction is orthogonal to these omitted factors when we present the results. It is also 
necessary to isolate time periods in which the wind blows toward the focal city 
versus away. In the sample, wind direction changes by more than 90 degrees in 
absolute value (and therefore blows in the opposite direction) from day-to-day on 
more than 25% of days (Appendix C shows the full distribution of the change in 
wind direction across days). Averaging over a longer time period risks mingling 
periods in which the wind blows toward and away from the focal city. Thus, it is 
imperative to use daily data to isolate imported from local pollution.  

We follow the concentric rings approach from the urban economics literature to 
estimate the pollution decay function.16 This approach estimates the spillover 
between a location and each of several concentric rings radiating outward from that 
location. We use a piecewise linear regression to implement this, allowing the slope 
and intercept to differ for each of the concentric rings. We define rings at every 50 
kilometers indexed by 𝑏𝑏 = 1,2,3, … ,𝐵𝐵 and identify all the nearby cities within each 
ring (if at least one exists) for each focal city. That is, all nearby cities within 0 to 50, 
50 to 100, . . . , (𝐵𝐵 − 1)*50 to 𝐵𝐵*50 kilometers. We expand 𝐵𝐵 far enough to ensure the 
decay function has plateaued or hit zero (𝐵𝐵 = 36 or 1,800 kilometers). 

Having identified these focal-nearby city pairs, we then estimate the impact of 
nearby city 𝑎𝑎’s PM10 on focal city 𝑜𝑜’s PM10 level on day 𝑑𝑑 of month 𝑚𝑚 in year 𝑎𝑎 by 

                                                           
16 The urban economics literature documents the spatial decay effects of agglomeration economies 
and knowledge spillovers (Rosenthal and Strange, 2003; Fu, 2007; Henderson, 2007; Arzhagi and 
Henderson, 2008; Rosenthal and Strange, 2008). 
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estimating the following equation conditional on the wind blowing from the nearby 
to the focal city: 

𝑃𝑃𝑝𝑝𝑑𝑑
𝑓𝑓 = Ι𝑏𝑏�𝜆𝜆1𝑏𝑏 + 𝜆𝜆2𝑏𝑏𝑎𝑎𝑏𝑏𝑠𝑠�𝑎𝑎𝑠𝑠𝑠𝑠�𝜃𝜃𝑎𝑎𝑑𝑑

𝑜𝑜𝑎𝑎��𝑃𝑃𝑝𝑝𝑑𝑑𝑛𝑛 � + 𝜆𝜆3𝑊𝑊𝑝𝑝𝑑𝑑
𝑓𝑓 + 𝜔𝜔𝑓𝑓 + 𝜅𝜅𝑠𝑠𝑝𝑝𝑟𝑟 + 𝜀𝜀𝑝𝑝𝑑𝑑

𝑓𝑓𝑛𝑛,  

∀𝑜𝑜,𝑎𝑎 ∈ ℱ,𝑎𝑎 ≠ 𝑜𝑜,∀𝑏𝑏 = 1,⋯𝐵𝐵, (3) 

where ℱ is the set of all cities in the data, 𝑃𝑃𝑝𝑝𝑑𝑑
𝑓𝑓  and 𝑃𝑃𝑝𝑝𝑑𝑑𝑛𝑛  are the pollution levels of focal 

city 𝑜𝑜 and nearby city 𝑎𝑎 on day 𝑑𝑑 of year 𝑎𝑎, and 𝑊𝑊𝑝𝑝𝑑𝑑
𝑓𝑓  are daily weather controls that 

affect pollution in the focal city. The indictor variable Ι𝑏𝑏 is set to one for distance 
band 𝑏𝑏 if nearby city 𝑎𝑎 is within distance band 𝑏𝑏. 𝜆𝜆1𝑏𝑏 allows the intercept to vary for 
each distance band. 𝜆𝜆2𝑏𝑏 are the coefficients of interest and capture the average 
physical transport of nearby-city pollution to the focal city within each band. An 
observation in this regression is a focal-nearby city pair on a particular day. We form 
all possible pairings of focal and nearby city cities within 1,800 kilometers. Since each 
focal city may have more than one nearby city across or even within bands this is a 
stacked regression with potentially multiple observations per focal city. 

We follow Schlenker and Walker (2016) in weighting nearby-city pollution by the 
absolute value of the cosine of the angle.17 This angle �𝜃𝜃𝑝𝑝𝑑𝑑

𝑓𝑓𝑛𝑛� is the difference between 
the wind direction and the direction of the ray from the nearby to the focal city on 
day 𝑑𝑑 of year 𝑎𝑎. For example, in Figure 1 where the focal city lies at an angle of 21° 
from the nearby city, if the wind is blowing at −19° then 𝜃𝜃𝑝𝑝𝑑𝑑

𝑓𝑓𝑛𝑛 = −40° or if the wind is 
blowing at 43° then 𝜃𝜃𝑝𝑝𝑑𝑑

𝑓𝑓𝑛𝑛 = 22°. We include a day in estimation as long as the wind 
blows within a 90° arc on either side of the ray connecting the nearby to the focal city. 
This is illustrated in the shaded area of Figure 1 for the example in which the focal 
city lies at an angle of 21° from the nearby city. In this example a day is included as 
long as −69° < 𝜃𝜃𝑝𝑝𝑑𝑑

𝑓𝑓𝑛𝑛 < 111°. The pollution decay function is therefore identified from 
variation along two dimensions: distance between focal and nearby city and wind 
direction angle. 

[Insert Figure 1] 

𝑊𝑊𝑝𝑝𝑑𝑑
𝑓𝑓  includes daily averages of relative humidity and wind speed, daily total 

precipitation, and temperature bins as described below. We include focal-city fixed 

                                                           
17 We weight by the angle because more nearby-city pollution is imported the more directly wind 
blows toward the focal city. Using data for −90° ≤ 𝜃𝜃 ≤ 90° for the nearest nearby-city within 300 
kilometers, the correlation between 𝑎𝑎𝑠𝑠𝑠𝑠(𝜃𝜃) and residuals from regressing focal-city pollution on 
nearby-city pollution and focal-city weather is 0.046 significant at better than the 0.01% level. This 
means that if nearby-city pollution is increased by one 𝜇𝜇g/m3 while 𝜃𝜃 is moved from 90° 
(perpendicular to the focal city) to 0° (directly toward the focal city), imported pollution increases by 
0.046 𝜇𝜇g/m3 (21% of the total 0.216 𝜇𝜇g/m3 spillover at 300 kilometers shown in Appendix G). 
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effects (𝜔𝜔𝑓𝑓) to control for any time-persistent unobserved factors affecting the 
pollution drift to a focal city. Region-by-year-by-month fixed effects (𝜅𝜅𝑠𝑠𝑝𝑝𝑟𝑟) control 
for seasonal factors that affect pollution drift in a region such as wind patterns. We 
follow Zhang et al. (2018) in grouping the provinces into each of seven regions as 
described in Appendix D. The error term (𝜀𝜀𝑝𝑝𝑑𝑑

𝑓𝑓𝑛𝑛) captures any unobserved factors 
affecting drift between the focal-nearby city pair on day 𝑑𝑑 of year 𝑎𝑎. We cluster 
standard errors at the focal-city level to allow for serial correlation across time 
within a focal city. This also allows for heteroscedasticity introduced by focal cities 
having different numbers of nearby cities. 

3.3 Step two: estimating causal effect of pollution on productivity 

In the second step we estimate the causal effect of focal-city pollution on focal-city 
productivity. In the short run, high air pollution concentrations can lead to 
decreased lung function, irregular heartbeat, increased respiratory problems, 
nonfatal heart attacks, and angina.18 Long-run cumulative exposure may lead to 
cardiopulmonary diseases, respiratory infections, lung cancer (EPA, 2004), and 
asthma (Neidell, 2004) that can surface in the short run. All of these health 
conditions may decrease physical stamina and lead to missed work days. Workers 
may also be absent from work to care for the young and elderly affected by pollution 
(Chay and Greenstone, 2003; Hanna and Oliva, 2015; Deryugina et al., 2019; Aragόn 
et al., 2017). Increased mortality (Chen et al., 2013; Ebenstein et al., 2017) can lead to 
experienced workers being replaced by less experienced ones. Air pollution can also 
have psychological effects including lowering cognitive ability, altering emotions, 
and increasing anxiety (Levinson, 2012; Lavy et al., 2014; Pun et al., 2016; Chen et al., 
2018) which would affect both physical and mental performance. While the 
estimates are unable to distinguish between these various channels they capture the 
effect of all of them. 

3.3.1 Step two: identification 

We focus here on identification issues related to productivity but the identification 
arguments apply to endogeneity issues that arise from outcomes more broadly. OLS 
estimates are subject to simultaneity and omitted variable biases. Even without any 
effect of pollution on productivity, cities with more output will produce more 
pollution. If pollution does lower productivity, the lower productivity will result in 
less pollution. Firms may also respond to the lowered labor productivity by 
substituting from labor to alternative inputs. 

Omitted-variable biases due to local, time-varying conditions are also possible (firm 
fixed effects absorb any time-invariant effects). For example, high-productivity firms 
may implement advanced, lower-polluting technologies over time while low-

                                                           
18 See the EPA website: https://www.epa.gov/pm-pollution. 

https://www.epa.gov/pm-pollution
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productivity firms do not. Spatial sorting could introduce spurious correlations. 
Firms may choose to enter in or relocate to cities with less severe pollution because it 
will raise their productivity or in cities with more severe pollution because they have 
lax environmental regulations and impose fewer costs (Becker and Henderson, 2000; 
Greenstone, 2002; Brunnermeier and Levinson, 2004). Governments may force firms 
to relocate and pollution inflow from other cities may affect these decisions (for 
example, moving firms away from areas that are typically upstream of densely-
populated areas). Firm exit may be endogenous due to the reduced productivity that 
pollution brings. Workers may also systematically sort across cities. High-skilled 
workers generally have a higher willingness-to-pay for clean air which would lead 
to low-skilled workers being located disproportionately in dirtier cities (Chen et al., 
2017; Lin, 2017). The inclusion of firm fixed effects means that only migrations of 
firms or workers during the sample period will bias the results. 

We address these issues using nearby-city pollution that drifts to the focal city as an 
instrumental variable to identify the causal effect of local pollution on local 
productivity. To ensure exogeneity, we condition on the wind blowing from the 
nearby to the focal city.19 Exogeneity also requires that wind direction timing is 
random with respect to nearby-city air pollution, conditional on controls, which we 
confirm below. 

The inclusion restriction requires that the nearby city is close enough that significant 
amounts of pollution can drift from it to the focal city. To ensure this, we include 
only focal cities that have a nearby city sufficiently close. We consider maximum 
distance cutoffs ranging from 150 to 300 kilometers (our pollution decay function 
estimates confirm significant transport at these distances) and find robust results. 
There is a tradeoff in increasing the distance: it increases the available data but 
weakens the instrument’s power. To also increase the instrument’s power we 
include only the nearest nearby city for each focal city. As a result, even with a 
maximum distance of 300 kilometers the average distance between focal and nearby 
cities is only 106.5 kilometers. 

The exogeneity condition requires that unobserved determinants of focal-city 
productivity are uncorrelated with the nearby city’s pollution. This requires high-
frequency data for two reasons. First, periods in which the wind imports pollution 
from outside must be isolated from those when it does not. To ensure this, in the 
instrumenting equation we condition on the wind blowing from the nearby to the 
focal city on a particular day. We offer evidence when we present the results that 
daily data succeeds in isolating periods when wind blows toward the focal city. 

                                                           
19 When the wind blows toward the nearby city its pollution is not exogenous because greater focal-
city output increases the nearby city’s air pollution. 
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Conveniently, this high-frequency instrument is already available as it is required to 
estimate the pollution decay function. 

Second, high-frequency data is required to ensure that common shocks do not affect 
both focal- and nearby-city output. Positive regional shocks to productivity could 
raise both cities’ output thereby increasing nearby-city pollution as well. 
Alternatively, if focal- and nearby-city production are substitutes in output markets 
then output growth in a focal city will reduce nearby-city output and pollution. 
While common regional shocks are likely to induce correlated actions across cities 
over a long time period, they are unlikely to do so over a short time frame due to 
lags in shock propagation and delays in responses to those shocks. With the use of 
daily data, violating the exogeneity condition would require that shocks affect focal- 
and nearby-city productivity on a daily basis. 

This addresses each of the potential endogeneity biases. Nearby-city pollution is 
uncorrelated with focal-city output in the absence of common regional shocks that 
are propagated and responded to on a daily basis. Trends in pollution and 
productivity would need to be correlated across the focal and nearby city on a daily 
basis to bias the estimates. Substitution away from labor and toward other inputs in 
response to imported pollution would need to occur on a daily basis. Similarly, firm 
entry, exit, or relocations and worker migrations in response to imported pollution 
would need to occur on a daily basis.20 

This instrumenting strategy can be implemented using either M2SLS with daily data 
in the first stage or Wald 2SLS with annual averages in the first stage (in either case 
conditioning on wind direction). Appendix E shows formally that either approach 
produces unbiased estimates in the presence of a common shock to focal- and 
nearby-city output as long as it is of lower than daily frequency. However, there are 
two important differences between the two estimation approaches. M2SLS produces 
unbiased estimates in the first stage because intra-year common regional shocks to 
pollution (as opposed to output) can be controlled for using fixed effects while Wald 
2SLS may produce biased estimates.21 Second, M2SLS produces more efficient 
second-stage estimates as we demonstrate below. These two differences are also 
shown formally in Appendix E. 
                                                           
20 For example, suppose a factory moved from a focal city to a nearby city mid-year. For the first half-
year, the local pollution it produces would lower productivity but this would not affect our estimates 
since this pollution is uncorrelated with nearby-city pollution conditional on wind direction. In the 
second half-year, this would increase the pollution that drifts to the focal city from the nearby city. It 
would also decrease productivity in the focal city in the last half-year due to spillovers. Our estimates 
would capture this since we condition on wind direction. 
21 For M2SLS, these are controlled for by region-by-year-by-month fixed effects in the first stage. For 
Wald 2SLS the first stage is biased by these effects; however, the second stage remains unbiased 
because the predicted values from the first stage are uncorrelated with the common shocks to output 
that may be present in the second stage. 
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In the results we assess the effects of aggregating the instrument to lower and lower 
frequencies. Consistent with theoretical predictions in Appendix E, the first-stage 
coefficient becomes increasingly biased at lower frequencies due to common shocks 
to focal- and nearby-city pollution and the second-stage coefficient is less and less 
precise. 

3.3.2 Step two: implementation 

The outcome that we wish to estimate (productivity) is measured annually while the 
pollution instrument is daily. A standard way of proceeding is to estimate Wald 
2SLS using annualized values (conditional on wind direction in the first stage). We 
show below that these estimates are very inefficient. Instead, we employ M2SLS 
which provides estimates that are consistent and asymptotically normal (Dhrymes 
and Lleras-Muney, 2006) provided that the groupings are independent of the 
structural error as they are when the grouping is a primitive (in our case grouping 
daily observations into years).22 Theoretically, M2SLS can be more or less efficient 
but we show in our setting that it is much more efficient. 

The first-stage equation predicts air pollution for firm 𝑠𝑠 located in focal city 𝑜𝑜 of 
region 𝑎𝑎 on day 𝑑𝑑 in month 𝑚𝑚 of year 𝑎𝑎 conditional on the wind blowing from the 
nearby to the focal city. While the spillover equation in step one uses city data, this 
equation uses firm data to be consistent with the firm data used in the second stage: 

𝑃𝑃𝑠𝑠𝑝𝑝𝑑𝑑
𝑓𝑓 = 𝛾𝛾1𝑎𝑎𝑏𝑏𝑠𝑠 �𝑎𝑎𝑠𝑠𝑠𝑠 �𝜃𝜃𝑠𝑠𝑎𝑎𝑑𝑑

𝑜𝑜𝑁𝑁∗�� 𝑃𝑃𝑠𝑠𝑝𝑝𝑑𝑑𝑁𝑁
∗ + 𝛾𝛾2𝑊𝑊𝑠𝑠𝑝𝑝𝑑𝑑

𝑓𝑓 + 𝛼𝛼𝑠𝑠 + 𝜅𝜅𝑠𝑠𝑝𝑝𝑟𝑟 + 𝜖𝜖𝑠𝑠𝑝𝑝𝑑𝑑
𝑓𝑓 , (4) 

where 𝑃𝑃𝑠𝑠𝑝𝑝𝑑𝑑
𝑓𝑓  is the pollution in firm 𝑠𝑠’s focal city 𝑜𝑜 on day 𝑑𝑑 of year 𝑎𝑎, 𝜃𝜃𝑠𝑠𝑝𝑝𝑑𝑑

𝑓𝑓𝑁𝑁∗
 is the wind 

direction relative to the ray from the nearest nearby city to firm 𝑠𝑠’s focal city on day 
𝑑𝑑 of year 𝑎𝑎, and 𝑃𝑃𝑠𝑠𝑝𝑝𝑑𝑑𝑁𝑁

∗  is the pollution level on that same day in focal city 𝑜𝑜’s nearest 
nearby city 𝑁𝑁∗ ∈ ℱ within a maximum radius distance. If no nearby city is available 
for a focal city it is dropped from the estimation. Every nearby city is also a focal city 
although it might be paired with a different nearby city that is closer. We test the 
sensitivity of the results to maximum distance cutoffs ranging from 150 to 300 
kilometers.23 𝑊𝑊𝑠𝑠𝑝𝑝𝑑𝑑 is a vector of daily weather variables faced by firm 𝑠𝑠 on day 𝑑𝑑 of 
year 𝑎𝑎. We include linear and quadratic functions of daily relative humidity, wind 
speed, and cumulative precipitation. We allow for a flexible, nonlinear function of 
temperature following Deschênes and Greenstone (2011) and Zhang et al. (2018) 
since it has been found to affect productivity (Zhang et al., 2018). We construct 

                                                           
22 Lleras-Muney (2005) applies M2SLS to estimate the causal impact of education on health, Massa 
and Žaldokas (2014) to estimate international demand for US bonds, and Jordan (2016) to estimate 
local environmental preferences on mine closures. 
23 Distances below 150 kilometers yielded insufficient data and distances above 300 kilometers 
yielded a weak instrument as we demonstrate below. 



 
 

17 
 

indicator variables for the daily average temperature below 0°, 5° intervals from 0 to 
30°, and above 30° Celsius. 

In defining whether the wind blows toward the focal city, we impose more stringent 
criteria than in the pollution decay function estimation to ensure a sufficient quantity 
of pollution is imported from the nearby city. This is necessary for the instrument to 
be powerful.24 For the baseline estimates, we include a day if the wind passes within 
a 45° arc on either side of the ray connecting the two cities. We refer to this as the 
“middle” funnel. Figure 2 illustrates this for the example in which the focal city lies 
at an angle of 21° from the nearby city. In this case a day is included as long as 
−24° < 𝜃𝜃𝑝𝑝𝑑𝑑

𝑓𝑓𝑛𝑛 < 66° (the shaded region of the figure). We check the robustness of the 
results to arcs of ±40° (“narrow” funnel) and ±50° (“broad” funnel). As in the 
pollution decay function estimation, the nearby-city’s pollution is weighted by the 
absolute value of the cosine of the angle. 

[Insert Figure 2 here] 

Firm fixed effects (𝛼𝛼𝑠𝑠) capture time-persistent unobservables that affect firm 𝑠𝑠’s 
pollution exposure. Since no firms switch focal cities or industries over the sample 
period, these also absorb city-specific and industry-specific time-invariant factors 
that affect local pollution. Region-by-year-by-month fixed effects (𝜅𝜅𝑠𝑠𝑝𝑝𝑟𝑟) control for 
any year-month specific unobservables affecting the pollution in a region. We cluster 
standard errors at the focal-city level to allow for spatial correlation for all firms 
within each focal city and serial correlation across days within a focal city over time. 

This equation differs from the pollution decay function (Equation (3)) in two ways. 
First, in order to ensure the power of the instrument, Equation (4) restricts estimation 
to shorter distances (a maximum of 300 kilometers), it utilizes only the nearest 
nearby city, and includes only days when the wind direction is within a funnel 
rather than within a half-circle. This maximizes the potential for the nearby city’s 
pollution to drift to and affect the focal city. The objective of Equation (3) is to 
estimate spatial decay and it therefore utilizes all of the nearby cities to a focal city, 
utilizes all days of wind direction within a half-circle, and extends the measurement 
of these spillovers to a much greater distance. Second, Equation (3) also allows for a 
much more flexible functional form for estimating the spillover decay function than 
the linear restriction that 2SLS imposes on Equation (4). 

Using the results from estimating Equation (4), we compute predicted values 𝑃𝑃�𝑠𝑠𝑝𝑝𝑑𝑑
𝑓𝑓  for 

each day included in the estimation (wind blowing toward the focal city) and 

                                                           
24 Footnote 18 provides evidence that nearby-city pollution is a stronger instrument when the wind 
blows more directly in the direction of the focal city. 
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average them over days within each firm-year to obtain instrumented pollution for 
the second-stage: 𝑃𝑃��𝑠𝑠𝑝𝑝

𝑓𝑓. The second-stage equation is: 

ln�𝑌𝑌𝑠𝑠𝑝𝑝
𝑓𝑓� = 𝛽𝛽1𝑃𝑃��𝑠𝑠𝑝𝑝

𝑓𝑓 + 𝛾𝛾2𝑊𝑊�𝑠𝑠𝑝𝑝
𝑓𝑓 + 𝛼𝛼𝑠𝑠 + 𝛿𝛿𝑠𝑠𝑝𝑝 + 𝜂𝜂𝑠𝑠𝑝𝑝

𝑓𝑓 , (5) 

where 𝑌𝑌𝑠𝑠𝑝𝑝
𝑓𝑓 is value added per employee for firm 𝑠𝑠 in the focal city 𝑜𝑜 in year 𝑎𝑎 and 𝑊𝑊�𝑠𝑠𝑝𝑝

𝑓𝑓 
contains the weather controls from the first stage averaged over all days within each 
firm-year (i.e., averages of the linear and quadratic functions of non-temperature 
variables and temperature bins containing the fraction of days in which the average 
temperature is below 0°, in 5° intervals from 0 to 30°, and above 30° Celsius).25 

Firm fixed effects 𝛼𝛼𝑠𝑠 capture time-persistent firm attributes that affect labor 
productivity. Region-by-year fixed effects (𝛿𝛿𝑠𝑠𝑝𝑝) capture time-varying, regional shocks 
to firm output. The error term (𝜂𝜂𝑠𝑠𝑝𝑝) includes time-varying, firm-level shocks to 
productivity. We cluster standard errors at the focal-city level to allow for serial 
correlation within each firm over time and spatial correlation within each city. We 
adjust for the error introduced in the first-stage estimation using a block bootstrap as 
in Schlenker and Walker (2016) with 100 iterations. 

 

4. Results 

Before we show the results of our approach we establish that a straightforward 
reduced-form regression of focal-city productivity on nearby-city pollution produces 
inefficient estimates. To do so, we aggregate the nearby-city pollution to the annual 
level conditional on wind direction, weighted by the cosine of the wind-direction 
angle, and including control variables corresponding to those in the M2SLS 
procedure.26 Appendix F graphs the results converting them to their monetary 
impact. It shows the effects of a one 𝜇𝜇g/m3 annual increase in nearby-city PM10 
within a distance band (holding all others constant) on the average firm’s annual 
productivity along with the 95% confidence interval in red, dashed lines. All the 
effects except for the 0-50 kilometer distance band are close to zero and almost all are 
insignificant. Given this lack of precision, we now turn to our approach. 

                                                           
25 To ensure the exclusion restriction is met, the first-stage equation must include the non-averaged 
values of all the exogenous variables from the second stage. The weather controls in the second stage 
(𝑊𝑊�𝑠𝑠𝑝𝑝

𝑓𝑓) are yearly averages of the linear and quadratic terms of all non-temperature variables in the first 
stage. For the temperature variable, the bins in the second stage are annual averages of the daily 
indicator variables included in the first stage. The firm fixed effects remain the same as in the first 
stage. Finally, the region-by-year fixed effects included in the second stage are averages of the region-
by-year-by-month fixed effects in the first stage. 
26 An alternative reduced-form approach would be to regress annual productivity on daily nearby-
city pollution but this would involve over two billion observations in order to estimate as a nonlinear 
function of distance. 
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We report the first-step estimates (pollution decay function) followed by the second-
step estimates (causal effects of focal-city air pollution on focal-city productivity) and 
then combine the results from these two steps to calculate the spillover effects of 
nearby-city pollution on focal-city productivity. After this, we demonstrate the 
advantage of the M2SLS procedure. In particular, we show that estimating causal 
effects using Wald 2SLS with annual data produces insignificant second-stage results 
and biased first-stage results. We offer supporting evidence that this is due to 
aggregating the high-frequency data to a lower frequency. 

4.1 Pollution decay function 

To estimate the pollution decay function we include all focal cities with at least one 
nearby city within 1,800 kilometers. This distance was chosen because it was far 
enough that the spillover effects were indistinguishable from zero.27 We use all cities 
that have daily API and weather data available from 2001 to 2007. This yields 60 
unique cities in a panel which is unbalanced because API data was not reported for 
some cities in the earlier years. There are some days with missing API or wind data 
but these are limited (all cities have at least 335 days of data in each year) and we 
believe are due to random non-reporting. 

Table 1 shows the summary statistics for the pollution spillover data. There are 2,586 
focal-nearby-city pairs (about 43 nearby cities for each focal city). If city B is a focal 
city for A then A is also a focal city for B. The focal cities’ PM10 levels average 97.5 
and exhibit significant variation. Wind blows toward the focal city on 52.1% of the 
days and PM10 is the dominant pollutant on 92% of the days for the focal cities. The 
mean distance between cities (1,004 kilometers) is about one-half the maximum 
allowed distance. 

[Insert Table 1 here] 

The solid, black line in Appendix G shows the 𝜆𝜆2𝑏𝑏 coefficients from estimating 
Equation (3) along with the 95% confidence interval in red, dashed lines. These are 
the effects of a one μg/m3 increase in PM10 in nearby cities conditional on wind 
blowing directly toward the focal city �𝜃𝜃𝑝𝑝𝑑𝑑

𝑓𝑓𝑛𝑛 = 0�. The effect in each distance band is 
conditional on holding PM10 in other bands constant. Roughly 45% of pollution 
drifts from nearby cities that are within 50 kilometers and more than 18% at 400 
kilometers. 

The solid, black line in Figure 3 plots the effect of a one 𝜇𝜇g/m3 annual increase in 
nearby-city PM10 along with the 95% confidence interval in red, dashed lines (for 

                                                           
27 Re-estimating with a maximum radius of 1,200 kilometers (just above the point at which the effects 
hit zero) yields almost identical coefficients and standard errors. 
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clarity we plot only to a distance of 1,200 kilometers). This adjusts the coefficients 
using the empirical distribution of 𝜃𝜃𝑝𝑝𝑑𝑑

𝑓𝑓𝑛𝑛. That is, for the fact that the wind blows 
toward the average focal city on only 52.1% of days in a year and does not always 
blow directly towards the focal city. Again, this is the effect of increasing PM10 in the 
distance band conditional on holding pollution constant in all other bands.28 The 
spillover effect within 50 kilometers is 0.355. That is, a one 𝜇𝜇g/m3 annual increase in 
PM10 in all nearby cities within 50 kilometers, but not in any other distance band, 
increases annual focal city pollution by 0.355 𝜇𝜇g/m3. Similarly, a one 𝜇𝜇g/m3 annual 
increase in PM10 in all nearby cities within 50 to 100 kilometers, but not in any other 
band, increases annual focal city pollution by 0.185 𝜇𝜇g/m3. A similar analysis applies 
to all the further distance bands. These effects are for the average focal city in the 
sample given average weather. Spillovers drop somewhat quickly and smoothly 
from 0.355 at 50 kilometers to 0.062 at 600 kilometers after which they fall more 
slowly to zero at about 1,000 kilometers. 

[Insert Figure 3 here] 

4.2 Randomness of daily wind data 

Before estimating the causal effect of pollution on productivity, we check the 
randomness of wind direction with respect to pollution. To ensure that the 
instrument is exogenous we must exclude days in which the wind does not blow 
from the nearby to the focal city. If wind direction is not randomly distributed with 
respect to the distribution of nearby-city air quality, conditional on control variables, 
this may bias the coefficients.29 Appendix H compares cumulative distribution 
functions (cdfs) of nearby-city air pollution conditional on the control variables used 
in the first stage of the M2SLS procedure for all days versus excluded days using the 
150-, 200-, 250-, and 300-kilometer distance cutoffs in choosing nearby cities. The cdfs 
are very similar for all cutoffs.30 

                                                           
28 It would be useful to compare the local effect to spillovers from raising pollution in all nearby cities 
simultaneously. However, to do so using our estimates requires making arbitrary assumptions about 
the degree to which pollution from a nearby city affects other nearby cities that are between it and the 
focal city. Alternatively, one could estimate spillovers including interaction effects between each 
distance band and all closer distance bands to estimate these “pass-through” effects. However, the 
number of independent variables required makes this infeasible with more than a few distance bands. 
29 This highlights the importance of the control variables. For example, in northern regions of China 
air quality is worse in the winter than in other seasons. If wind directions are systematically different 
in winter than other times of the year this will introduce bias in the absence of control variables. In 
this example, the region-by-year-by-month fixed effects capture this region-specific seasonality. 
30 A two-sample Kolmogorov-Smirnov test rejects the null hypothesis of the equality of distributions 
for three of the radius cutoffs; however, the magnitude of the differences is very small. For the 200-
kilometer radius the difference is significant at the 1.8% level but the maximum difference is only 
0.016. For the 250-kilometer radius the difference is significant at the 3.0% level but the maximum 
difference is only 0.014 and for the 300-kilometer radius the difference is significant at the 3.9% level 
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4.3 Effect of local air pollution on local labor productivity 

In this subsection we estimate the causal effect of focal-city pollution on focal-city 
labor productivity using nearby-city pollution as an instrument. In choosing which 
nearby cities to include, we check robustness to maximum distances from the focal 
city of 150, 200, 250, and 300 kilometers. There is a tradeoff as this distance increases. 
There are more data available to identify the effects thereby increasing their 
precision; however, the instrument is weaker because nearby-city pollution has less 
effect on focal-city pollution. Below 150 kilometers there were insufficient data to 
identify effects and we show that beyond a distance of 300 kilometers the instrument 
is no longer powerful. Unlike the spillover estimates, we choose the nearest nearby 
city to the focal city, if one exists, within the maximum distance to maximize the 
instrument’s power. 

Table 2 shows summary statistics for the main variables for the 150- and 300-
kilometer radiuses. The top panel summarizes the first-stage data which are at the 
firm-day level. The summary statistics are fairly similar across the two distance 
cutoffs. The PM10 levels are high enough to potentially affect productivity. The 
annual mean is 112 µg/m3 compared to a World Health Organization (WHO) 
recommended guideline of 20 µg/m3 annual average and many days exceed the 
WHO guideline of 25 µg/m3 for a 24-hour average (World Health Organization, 
2006). As the cutoff increases from 150 to 300 kilometers, the number of focal cities 
increases from 30 to 47. The average distance between nearby and focal cities does 
not increase much because we use the nearest nearby city for each focal city. The 
bottom panel summarizes the second-stage data which are at the firm-year level. The 
data exhibit significant variation in value-added per employee. Appendix I shows 
summary statistics for the 200- and 250-kilometer radiuses which are similar. 

[Insert Table 2 here] 

Panel A of Table 3 shows OLS results that do not address the endogeneity of air 
pollution. The firm-year data included here correspond to those included in the 
second stage of M2SLS estimation described below. For all four distance cutoffs, the 
coefficients on PM10 are insignificantly different from zero and for all but the 150-
kilometer the point estimates themselves are close to zero. 

We now turn to M2SLS estimates. Panel B shows the results of estimating the first-
stage equation (Equation (4)) using PM10 of the focal city’s nearest nearby city as an 
instrument conditional on wind blowing toward the focal city within the middle 
                                                                                                                                                                                     
but the maximum difference is only 0.013. For a 150-kilometer radius the difference is not quite 
significant (10.8%) but the maximum difference is only 0.014. This is an example of Simpson’s 
Paradox in which a large amount of data (for the 200-kilometer radius there are 55,088 observations) 
results in statistical significance for even small differences. 
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funnel. This estimation is at the firm-day level and the wind is within the middle 
funnel on about one-fourth of the days. The results reveal a strong instrument. A one 
µg/m3 increase in a nearby city’s PM10 increases the focal city’s PM10 by between 
0.70 and 0.72 with a high level of significance.31 This is not too far from the 
theoretical upper bound of 1.0 because it uses only the nearest nearby city and 
pertains to days when the wind is blowing directly toward the focal city�𝜃𝜃𝑝𝑝𝑑𝑑

𝑓𝑓𝑁𝑁∗ = 0�. 
The physical transport of pollution is lower when the wind is not blowing directly 
toward the focal city or from nearby cities that are further away. The Kleibergen-
Paap Wald rk (KP) F-statistic (Kleibergen and Paap, 2006) for weak identification 
significantly exceeds the Stock-Yogo critical value of 16.38 for all four cutoffs.32 

Panel C shows the second-stage estimates of Equation (5) at the firm-year level using 
the average values of the predicted pollution from the first stage as an instrument 
and controlling for weather and region-by-year fixed effects. The estimated 
coefficients of PM10 are negative and significant for all but the 150-kilomoter cutoff. 
The estimates become more significant as the cutoff increases consistent with more 
data used in estimation. The coefficients are fairly consistent across the four cutoffs 
and imply that a one µg/m3 annual increase in PM10 decreases productivity by 0.26 
to 0.34%. Evaluated at the mean focal-city PM10 in each subsample, these estimates 
imply elasticities of labor productivity with respect to air pollution of -0.29 to -0.35.33 

These results are consistent with the instrument attenuating an upward endogeneity 
bias. The results also imply that improving air quality generates substantial 
productivity benefits. Using the 300-kilometer cutoff data and estimates, a 1% 
reduction in PM10 increases per-firm productivity for the average firm by CNY 
47,700 (USD 6,276) annually. Throughout the remainder of the paper we use the 300-
kilometer estimate as our preferred since it is the most significant and is close to the 
midpoint of the estimates from the three significant cutoffs. 

[Insert Table 3 here] 

Column 2 of Appendix J reports results of a counterfactual test of the instrument. It 
uses M2SLS with the middle funnel and a 300-kilometer radius but conditions on 
wind blowing away from the focal city in instrumenting for focal-city PM10. The first 
stage results (shown in Panel A) are nearly identical to those using the baseline 
model (reproduced in Column 1). This is not surprising: focal-city pollution should 

                                                           
31 These coefficients exceed the estimates even at 50 kilometers in the spillover decay function (0.45 
from Appendix G) because here we estimate using a funnel that is twice as narrow. 
32 Stock and Yogo (2005) critical values apply when model errors are independent and identically 
distributed. No critical values are available for the case when the model allows for standard errors 
that are robust to heteroskedasticity and clustering. 
33 Mean annual PM10 (unconditional on wind direction) in the second-stage data is 104.1 for 150-, 
111.3 for 200-, 103.1 for 250-, and 104.1 for 300-kilometer radius. 
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have the same effect on nearby-city pollution when wind is blowing toward the 
nearby city as vice-versa. The second-stage results (shown in Panel B) are very 
different than the baseline results. The coefficient is much lower in magnitude and 
insignificant consistent with the instrument not addressing endogeneity bias. In fact, 
the estimates are similar to the OLS results in Panel A of Table 3. 

Appendix J contains other robustness checks of the estimates using the 300-kilometer 
cutoff. Column 3 uses a narrow funnel (an 80° arc). The point estimate is slightly 
smaller and is significant only at the 16% level due to the loss of data in the first 
stage. Employing a broad funnel (a 100° arc) with more data in Column 4 produces a 
somewhat more significant and larger effect than the baseline estimate. Dropping 
days with API below 50, for which the major pollutant is unknown, lowers the 
coefficient somewhat (Column 5). This is presumably due to years with a relatively 
high number of low-pollution days corresponding to years with a relatively high 
proportion of high-productivity days. Column 6 shows the importance of including 
weather controls. Without them, the coefficient is lower and no longer significant 
either because of their effect on the instrumented values or as a control for factors 
affecting productivity. Including the potentially manipulated range of API (Column 
7) produces almost identical results to the baseline. Including year-by-month rather 
than region-by-year-by-month fixed effects in the first stage (Column 8) yields 
similar results to the baseline but even more significant while including region-by-
year fixed effects in the first stage results in somewhat different estimates with less 
significance (Column 9).34 Therefore, the estimates are sensitive to controlling for 
overall seasonality more so than region-specific effects. 

Appendix K provides supporting evidence for the choice of 300 kilometers as the 
maximum distance for the nearest nearby city to include as an instrument. Column 1 
reproduces the baseline estimates. Column 2 estimates M2SLS using as an 
instrument pollution in the nearest nearby city for each focal city that is further than 
300 but less than 350 kilometers away and using the middle funnel in defining 
whether wind blows toward the focal city. Columns 3 through 5 expand the data by 
increasing the range of distances for the nearest nearby cities. The average distance 
between the focal and nearby cities increases from 106.5 kilometers in the baseline 
estimates compared to more than 323.9 kilometers in the counterfactual estimates. 
The first-stage results in Panel A reflect the reduced power of the instrument 
compared to the baseline. The coefficient is about half that in the baseline estimates 
and the KP F-statistic is much lower. The second-stage coefficients (Panel B) are all 
insignificant consistent with a weak instrument. 

                                                           
34 We experimented with using province-by-year-by-month fixed effects but the model was too 
saturated. There is an average of only 1.5 cities per province in the data. 
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4.4 Spillover effect of nearby-city pollution on focal-city labor productivity 

As shown in Section 2.1, multiplying the first-step spillover decay function by the 
second-step causal effects yields the spillover effects of nearby-city pollution on 
focal-city productivity. To obtain appropriate standard errors clustered at the city 
level for these spillover effects we employ a block bootstrap with 100 iterations.35 We 
estimate this using a 300-kilometer cutoff and middle funnel for the instrument in 
the M2SLS estimation. 

Figure 4 summarizes the results converting them to the monetary impact for the 
average firm’s annual productivity on an average weather day. The solid, black line 
shows the effect of a one μg/m3 annual increase in nearby-city PM10 in that distance 
band (holding pollution in all other bands constant) on focal-city productivity with 
95% confidence intervals shown in dashed, red lines. Since these are annual 
productivity effects this assumes a one μg/m3 increase in nearby-city PM10 for the 
entire year and adjusts for the empirical distribution of wind direction during the 
year. The costs are CNY 16,248 (USD 2,138) for nearby cities within 50 kilometers 
and decline fairly quickly and smoothly to CNY 2,847 (USD 375) for nearby cities at 
550 to 600 kilometers. Beyond this, the spillovers decline slowly to approach zero at 
about 1,150 kilometers (for clarity we plot only to 1,200 kilometers). In comparison 
the effect of local sources of PM10 on productivity is CNY 45,809 (USD 6,028). 

[Insert Figure 4 here] 

While the spillover decay function estimates alone tell us the relative tradeoff 
between local and extra-territorial effects, they do not tell us the absolute amounts at 
stake. This requires both steps of the procedure. For example, if PM10 increases by 
one μg/m3 annually in both a focal city and a nearby city located at 90 kilometers, 
productivity falls by CNY 45,809 annually for the average firm due to local sources 
of pollution and another CNY 8,494 due to imported pollution. The latter is smaller 
because pollution dissipates as it drifts and the wind blows directly toward the focal 
city only part of the time. These absolute costs can be used to determine the 
geographic scope of environmental regulation necessary to internalize externalities 
that are above a given cost. 

These results can also be used to calculate Coasian prices. Consider Tianjin which is 
located 107 kilometers from Beijing and let 𝜃𝜃𝑝𝑝𝑑𝑑𝐵𝐵𝐵𝐵 be the angle of the wind relative to 
the ray from Tianjin to Beijing. If each city were assigned rights to keep its city free 
of other cities’ air pollution, Tianjin would have to compensate Beijing CNY 

                                                           
35 Specifically, for each iteration we draw (with replacement) a block bootstrap by city. In the first step 
(spillover decay function) we use all days in all years for these cities. In the second step (causal effects) 
we use all firms and all days in all years for the sampled cities. 
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35*𝑎𝑎𝑏𝑏𝑠𝑠[𝑎𝑎𝑠𝑠𝑠𝑠(𝜃𝜃𝑝𝑝𝑑𝑑𝐵𝐵𝐵𝐵)] times the number of firms in Beijing on each day when −90° ≤
𝜃𝜃𝑝𝑝𝑑𝑑𝐵𝐵𝐵𝐵 ≤ 90°, where 35 is the 𝜆𝜆2𝑏𝑏 coefficient from Equation (3) multiplied by the annual 
causal effect converted to a daily cost.36 Similarly, on days when the wind blows 
toward Tianjin, Beijing would have to compensate Tianjin 35*𝑎𝑎𝑏𝑏𝑠𝑠[𝑎𝑎𝑠𝑠𝑠𝑠(𝜃𝜃𝑝𝑝𝑑𝑑𝐵𝐵𝐵𝐵)] times 
the number of firms in Tianjin for each μg/m3 of PM10 that Beijing produces on a day 
when the wind blows between −90° ≤ 𝜃𝜃𝑝𝑝𝑑𝑑𝐵𝐵𝐵𝐵 ≤ 90°where 𝜃𝜃𝑝𝑝𝑑𝑑𝐵𝐵𝐵𝐵 is the angle of the wind 
relative to the ray from Beijing to Tianjin. Some of the pollution blowing from Beijing 
to Tianjin may have originated in other cities before being passed on to Tianjin. 
These other cities would compensate Beijing using the same approach so that 
Beijing’s net payment would correspond only to the pollution that it originated. 

4.5 Wald 2SLS estimates 

An alternative to the M2SLS procedure is to combine the first-step estimates of the 
pollution decay function using daily data with causal estimates based on Wald 2SLS. 
Estimating Wald 2SLS requires aggregating the first-stage data to match the annual 
data used in the second stage. We aggregate the first-stage data by taking firm-year 
averages conditional on wind blowing toward the focal city (i.e., computing mean 
values of focal-city pollution and cosine-weighted nearby-city pollution using only 
days when the wind blows toward the focal city). We also include weather controls, 
firm and region-by-year fixed effects, and cluster standard errors by focal city to be 
consistent with the M2SLS estimates. Table 4 shows the results at the different 
distance cutoffs using the middle funnel. 

The coefficients for the first-stage results (Panel A) are all significant but are opposite 
of the expected sign. This is because when there is variation within groups, grouped 
estimation identifies parameters that differ from those in ungrouped estimation 
(Angrist and Pischke, 2011: 314). Appendix L shows scatter plots that relate focal-city 
PM10 conditional on first-stage control variables and nearby-city PM10 for daily 
values versus annual average values along with fitted regression lines. In both cases 
we condition on wind blowing toward the focal city. The daily plot shows a clear 
positive relationship between the city pairs’ pollution values. The primary effect of 
aggregating to the annual level is a loss of precision in the relationship but the 
relationship also becomes negative. This results from common shocks to focal- and 
nearby-city pollution that are negatively correlated and occur at lower frequencies 
than daily. As a result, the first-stage coefficient is biased downward (see Equation 

                                                           
36 The 𝜆𝜆2𝑏𝑏 coefficient is 0.279 for nearby cities between 100 and 150 kilometers away. The annual 
causal effect is CNY 45,809 or CNY 125 daily. Multiplying these two numbers yields CNY 35. 
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(A10) of Appendix E for a formal exposition). The results also suggest weak 
instruments with all of the KP F-statistics below the critical value of 16.38.37 

As Appendix E shows, Wald 2SLS still produces unbiased second-stage estimates 
even with a biased first-stage coefficient. The first-stage fitted values from either 
Wald 2SLS or M2SLS reflect the component of focal-city pollution that is due to 
variation in nearby-city pollution. However, Wald 2SLS may be less efficient. M2SLS 
is more efficient because it uses disaggregated data in the first stage thereby utilizing 
more information; however, the grouping of the first-stage predicted values changes 
the nature of the first stage errors and their relationship to the second-stage errors 
which could decrease efficiency (Dhrymes and Lleras-Muney, 2006). Appendix E 
provides the formal statistical test of whether M2SLS is more efficient in our setting 
based on Dhrymes and Lleras-Muney (2006). The test statistic is 1,735.1 compared to 
a cutoff value of 1.64 for a 5% level of significance indicating M2SLS estimates are 
much more inefficient than Wald 2SLS. 

 [Insert Table 4 here] 

M2SLS is much more efficient in our setting because vastly more information is used 
in the first stage of M2SLS than in Wald 2SLS. This overwhelms any loss of efficiency 
due to correlations between the annualized first-stage and second-stage residuals. 
The same gain in efficiency is likely to be achieved when applying M2SLS to other 
outcomes because of the much greater information in daily data (using the middle 
funnel one-fourth of days are used implying 91 times as many observations with 
daily than annual data). Consistent with the lower efficiency of Wald 2SLS, the 
second-stage coefficients in Panel B of Table 4 are insignificant for all four cutoffs. 
We now investigate this loss of efficiency further. 

Table 5 shows how the level of aggregation in the first-stage affects the estimates of 
the causal effects of pollution on productivity (second-stage estimates are all at the 
firm-year level). These estimates use the 300-kilometer cutoff in choosing the 
nearest-nearby city, apply the middle funnel in choosing which days to include in 
the first-stage, and include the same controls as the baseline estimates except that 
region-year fixed effects are used rather than region-by-year-by-month.38 Column 1 
of the table uses firm-day data in the first stage conditional on wind blowing toward 
the focal city. This specification is the same as the baseline except that region-year 
fixed effects are used. As showed earlier, the causal effects are somewhat lower and 
                                                           
37 Consistent with a single instrument that is very significant, a standard Cragg-Donald (1993) test 
overwhelmingly rejects the null hypothesis of weak instruments (e.g., a test statistic of 64,400 for the 
estimates using a 300-kilometer radius). However, the KP tests which adjusts for correlation in the 
errors results in a much lower test statistic. 
38 Region-by-year-by-month fixed effects are not used since they cannot be included once data is 
aggregated for periods longer than one month. 
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less significant using region-by-year fixed effects than in the baseline estimates using 
region-by-year-by-month fixed effects. This highlights another advantage of using 
daily data: finer controls in the first stage can lead to more efficient estimates. 

Column 2 aggregates the first-stage data to the weekly level conditional on wind 
direction (i.e., averages all days when wind is blowing toward the focal city across 
each week). The first-stage coefficient remains similar and the second-stage 
coefficient is similar in magnitude but is significant only at the 11.0% level. Columns 
3 through 6 aggregate in a similar way to the monthly, quarterly, semiannual, and 
annual levels (the last is the Wald estimates discussed above). Fairly clear patterns 
emerge as the level of aggregation is increased. The first-stage coefficient declines in 
magnitude (and turns negative with annual aggregation) while the second-stage 
coefficients become less and less significant. These results suggest that daily data is 
necessary to generate sufficient variation for precise estimates. 

[Insert Table 5 here] 

 

5. Conclusion 

We provide a methodology for estimating the causal effect of air pollution spillovers 
on outcomes that are measured with lower frequency than pollution and weather 
data. Measuring air pollution spillovers requires high-frequency (such as daily) data 
to ensure that shifts in wind direction are properly captured, but outcome variables 
are often available on only an annual basis. 

We proceed by estimating the pollution decay function at high frequency separately 
from the causal effects and estimating the causal effects using a mixed two-stage 
least squares (M2SLS) procedure using high-frequency changes in imported 
pollution from nearby cities as an instrument. The M2SLS procedure allows high-
frequency data for the instrumenting in the first stage but low-frequency outcome 
data in the second stage. This estimation is a natural by-product of estimating the 
spillover decay function since this also requires high-frequency wind and pollution 
data. We show that typical Wald 2SLS fails in estimating causal effects due to the 
aggregation of pollution data over a long period and the resulting loss of efficiency. 

Use of high-frequency data also allows spillovers to be examined at relatively short 
distances while minimizing the chance of spurious correlation from regional and 
seasonal shocks to the outcome variable. This allows an examination of spillovers 
between cities that are geographically close but administratively distinct and 
therefore potentially suffer from a free-rider problem in pollution production. 
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While we apply our procedure to quantify spillover effects of PM10 on productivity, 
our procedure can easily be adapted to estimate the spillover effects for other 
pollutants and on any outcome for which data is of a lower frequency than the 
pollution and weather data. For example, if only annual health measures are 
available the instrumenting technique works as long as daily pollution and weather 
data are available. It is also potentially applicable to estimating outcomes over 
periods longer than one year. 

While previous papers document the presence of spillovers, our paper specifically 
quantifies how their intensity varies with distance— a necessary input for 
determining the scope of administrative control necessary to internalize externalities. 
PM10 spillovers in China are large and extend quite far suggesting the need to 
coordinate environmental policies at the supra-provincial level. 
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Figure 1: Example of wind directions between nearby and focal city included in pollution 
decay function estimation 

 

 

Figure 2: Example of wind directions included in estimating the causal effects of pollution 
on productivity (middle funnel) 
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Figure 3: Pollution decay function: effect of one μg/m3 annual increase in nearby-city PM10 within a distance band on annual focal-city PM10 as 
a function of distance 

   
Solid, black line shows effect of a one μg/m3 annual increase in nearby-city PM10 within a distance band (holding pollution in all other distance bands constant) on annual 
focal-city PM10 as a function of distance controlling for weather variables, focal-city fixed effects, and region-by-year-by-month fixed effects. Estimation allows for piecewise 
linear effects in increments of 50 kilometers. Effects are adjusted for the empirical distribution of wind directions during the year. Dashed, red lines show 95% confidence 
intervals estimated using 100 iterations of a block bootstrap by focal city. 
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Figure 4: Air pollution spillover effects from a one μg/m3 annual increase in nearby-city PM10 within a distance band on average annual labor 
productivity of focal-city firms as a function of distance 

   
Solid, black line shows effect of a one μg/m3 annual increase in nearby-city PM10 within a distance band (holding pollution in all other distance bands constant) on average 
annual productivity of focal-city firms as a function of distance estimated by the two-step procedure described in the text. Estimation allows for piecewise linear effects in 
increments of 50 kilometers. Effects are adjusted for the empirical distribution of wind directions during the year. Dashed, red lines show 95% confidence intervals estimated 
using 100 iterations of a block bootstrap by focal city. 
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Table 1: Summary statistics for pollution decay function estimation 2001 to 2007 (N = 988,320) 

 

 

 

(1) (2) (3) (4)
Mean Std. dev. Min Max

Focal city PM10 (μg/m3) 97.5           59.5           8.0              600.0         
Distance between focal/nearby city (km) 1,003.9      444.0         44.0           1,799.2      
Nearby cities per focal city 43.1           11.8           2.0              56.0           
Fraction of days wind toward focal city
Fraction of days API = PM10

# of focal/nearby cities
# of focal-nearby city-year pairs 2,586

60

52.1%
91.9%



 
 

Table 2: Summary statistics for M2SLS estimation 2001 to 2007 (150- and 300-kilometer maximum distances) 

    

(1) (2) (3) (4) (5) (6) (7) (8)
Mean Std. dev. Min Max Mean Std. dev. Min Max

First-stage sample (firm-day)

Focal city PM10 (μg/m3) 111.6         69.0           10.0           600.0         110.5         67.8           10.0           600.0         

Nearby city PM10 (μg/m3) 97.5           65.2           11.0           600.0         97.2           63.2           11.0           600.0         
Distance between focal/nearby city (km) 89.2           28.5           44.0           143.8         106.5         50.8           44.0           291.8         
# of city-years
# of focal cities

Second-stage sample (firm-year)

Value added (CNY1,000) 15,181.5   27,121.6   105.7         357,934.3 15,269.8   27,296.6   101.3         366,425.6 
Total workers 166.9         244.7         10.0           3,012.0      171.6         252.9         10.0           3,012.0      
Value added per worker (CNY1,000) 119.7         216.2         0.5              16,247.6   118.9         219.9         0.1              16,247.6   
# of firms

Summary statistics for data used in M2SLS estimation of causal effect of local air pollution on local firms' labor productivity. First-stage data is 
conditional on wind blowing toward the focal city.

150 kilometers proximity 300 kilometers proximity

166
47

(N = 291,339)

88,716

(N = 19,339,917)

75,390

(N = 243,368)

30
103

(N = 16,271,706)



 
 

Table 3: Causal effect of local PM10 on local labor productivity – OLS and M2SLS estimates 
using nearest-nearby city pollution within middle funnel and different maximum 
distances as an instrument 

   

(1) (2) (3) (4)

150 km 200 km 250 km 300 km
Panel A: OLS (firm-year sample)
Dependent variable:
Mean annual focal city PM10 -0.0015 -0.0003 -0.0005 -0.0005

(0.0014) (0.0014) (0.0013) (0.0013)

R2 0.0738 0.0777 0.0740 0.0839
Sample size 243,368 264,746 276,528 291,339
Panel B: M2SLS first stage (firm-day sample)
Dependent variable:
Daily nearby city PM10 0.7172*** 0.7025*** 0.7004*** 0.6959***

(0.0756) (0.0708) (0.0687) (0.0669)

Fraction of days wind toward focal city 0.246 0.248 0.250 0.246
KP F -statistic 90.0 98.4 104.0 108.1
# cities 30 40 44 47
Sample size 16,271,706 17,858,505 18,758,702 19,339,917
Panel C: M2SLS second stage (firm-year sample)
Dependent variable:
Mean annual predicted focal city PM10 -0.0019 -0.0026* -0.0034** -0.0030**

(0.0015) (0.0014) (0.0015) (0.0014)

Implied elasticity -0.198 -0.289 -0.351 -0.312
# firms 75,390 82,714 86,941 88,716
Sample size 243,368 264,746 276,528 291,339
Data included in Panel A corresponds to firm-year data included in Panel C. First stage 
models include firm and region-by-year-by-month fixed effects; linear and quadratic terms 
of daily humidity and wind speed; and categorial variables for temperature bins as 
described in the text. The OLS and second-stage models include firm and region-by-year 
fixed effects; annual averages of linear and quadratic terms of daily humidity and 
windspeed; and annual counts of the daily categorial variables for temperature (i.e., 
number of days in each temperature bin). OLS R2 is the "within" R2 from the fixed effects 
regression. Standard errors are clustered at the focal-city level in all models and reported 
in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Standard errors in Panel C are also adjusted 
for two-stage estimation using 100 block-bootstrap iterations.

ln(value added/worker)

Daily focal city PM10

ln(value added/worker)

Maximum distance cutoff



 
 

Table 4: Wald (2SLS) estimates of causal effect of local PM10 on local labor productivity using 
pollution of nearest-nearby city within middle funnel and different maximum distances 
as an instrument 

 

 

 

(1) (2) (3) (4)

150 km 200 km 250 km 300 km
Panel A: 2SLS first stage (firm-year sample)
Dependent variable:
Mean annual nearby city PM10 (conditional -0.2339** -0.2680*** -0.2435*** -0.2562***
     on wind blowing toward focal city) (0.1005) (0.0787) (0.0786) (0.0637)

KP F -statistic 5.4 11.6 9.6 16.2
# cities 30 40 44 47
Sample size 243,368 264,746 276,528 291,339

Dependent variable:
Mean annual predicted focal city PM10 0.0026 0.0052 0.0080 0.0065

(0.0038) (0.0032) (0.0055) (0.0040)

# firms 75,390 82,714 86,941 88,716
Sample size 243,368 264,746 276,528 291,339

All models include include firm and region-by-year fixed effects; annual averages of linear and 
quadratic terms of daily humidity and windspeed; and annual counts of the daily categorial 
variables for temperature (i.e., number of days in each temperature bin). Standard errors are 
clustered at the focal-city level in all models and reported in parentheses. *** p<0.01, ** p<0.05, 
* p<0.1. Standard errors in Panel B are also adjusted for two-stage estimation.

Panel B: 2SLS second stage (firm-year sample)

Maximum distance cutoffs

Mean annual focal city PM10

Focal city ln(value added/worker)



 
 

Table 5: M2SLS estimates of causal effect of local PM10 on local labor productivity at different levels of aggregation in the first stage 

    

(1) (2) (3) (4) (5) (6)

Panel A: First stage: Firm-Day Firm-Week
Firm-

Month
Firm-

Quarter
Firm-Semi-

Annual Firm-Year
M2SLS M2SLS M2SLS M2SLS M2SLS 2SLS

Dependent variable:
Nearby city PM10 0.7572*** 0.7262*** 0.7255*** 0.5954*** 0.5160*** -0.2562***

(0.0827) (0.0846) (0.1133) (0.0722) (0.0633) (0.0637)

Fraction of days wind toward focal city 0.246 0.246 0.246 0.246 0.246 0.246
KP F -statistic 83.9 73.6 41.0 68.0 66.5 16.2
# cities 47 47 47 47 47 47
Sample size 19,339,917 9,190,704 3,182,582 1,162,124 582,678 291,339
Panel B: second stage (firm-year sample)
Dependent variable:
Mean annual predicted focal city PM10 -0.0021* -0.0024 -0.0017 -0.0020 -0.0024 0.0065

(0.0012) (0.0015) (0.0015) (0.0017) (0.0019) (0.0040)

# firms 88,716 88,716 88,716 88,716 88,716 88,716
Sample size 291,339 291,339 291,339 291,339 291,339 291,339

Focal city PM10

ln(value added/worker)

All columns use the middle funnel in choosing days when wind blows toward focal city and 300-kilometer radius and exclude 
days when API is between 95 and 105. Columns 1 through 5 use M2SLS to estimate at different levels of aggregation in the first 
stage: daily in Column 1, weekly in Column 2, monthly in Column 3, quarterly in Column 4, and semi-annually in Column 5 - 
and data at the annual level in the second stage. Column 6 estimates using Wald 2SLS with data at the annual level in both 
stages. First-stage models include firm and region-by-year fixed effects; linear and quadratic terms of daily humidity and wind 
speed; and categorial variables for temperature bins as described in the text aggregated to the corresponding level. Second-
stage models include firm and region-by-year fixed effects; annual averages of linear and quadratic terms of daily humidity and 
windspeed; and annual counts of the daily categorial variables for temperature (i.e., number of days in each temperature bin). 
Standard errors are clustered at the focal-city level in all models and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
Second-stage standard errors are also adjusted for two-stage estimation. In Columns 1 through 5 this is done using 100 block-
bootstrap iterations.

Middle funnel, 300-kilometer maximum distance cutoff
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Online Appendix A: Map of cities included in analysis 

 
Map shows all cities used in spillover decay function estimation. 

 

Online Appendix B: Conversion from API to PM10 

 

 

 

API PM10 Conversion formula
0 – 50 0 – 50 API = PM10

50 – 200 50 – 350 API = (1/2)*PM10 + 25
200 – 300 350 – 420 API = (10/7)*PM10 – 300
300 – 400 420 – 500 API = (5/4)*PM10 – 225
400 – 500 500 – 600 API = PM10 – 100

Based on Andrews (2008).
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Online Appendix C: Distribution of day-to-day wind direction changes for all cities included 
in estimating the spillover decay function 2001 – 2007 (60 focal cities, N = 52,940) 

 

 

 

Difference in wind 
direction day-to-day 

(degrees)
Percentage of 

days
Cumulative 
percentage

10 18.0% 18.0%
20 13.6% 31.6%
30 10.6% 42.1%
40 8.6% 50.7%
50 6.6% 57.4%
60 5.5% 62.9%
70 4.7% 67.6%
80 4.1% 71.7%
90 3.6% 75.3%

100 3.3% 78.5%
110 3.2% 81.7%
120 2.9% 84.6%
130 2.7% 87.3%
140 2.6% 89.9%
150 2.5% 92.5%
160 2.5% 94.9%
170 2.6% 97.5%
180 2.5% 100.0%

Percentage of days that wind direction changes day-
to-day in ten-degree brackets. Includes all cities and 
days used in estimating the spillover decay function. 
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Online Appendix D: Definition of regions 

 

 

Online Appendix E: Unbiasedness of M2SLS and Wald 2SLS using daily nearby-city 
pollution as an instrument 

This appendix demonstrates that a common monthly shock to pollution and an outcome of 
interest results in biased estimates of pollution’s effect on that outcome if ordinary least 
squares (OLS) is used. However, using daily nearby-city pollution conditional on wind 
direction as an instrument eliminates the endogeneity bias using either Wald 2SLS or M2SLS. 
Although the model assumes a common monthly shock, the results extend to any common 
shock of duration longer than a day. 

The model also demonstrates that the instrumenting strategy is immune to common 
monthly shocks to focal- and nearby-city pollution using either Wald 2SLS or M2SLS. 
However, Wald 2SLS produces biased first-stage estimates while M2SLS does not. 

Relative to the model in the paper, we generalize by allowing for any annual outcome. We 
also simplify in a number of ways for transparency. The model uses a single focal-/nearby-
city pair and abstracts from firms to focus on the identification issues which occur at the city 
level. We do not include the weather control variables but they can be added without 
altering the results and we do not weight wind direction by the cosine of the angle. 

Model 

Daily outcome in focal-city 𝑓𝑓 on day 𝑑𝑑 in month 𝑚𝑚 of year 𝑡𝑡 is given by: 

𝑌𝑌𝑡𝑡𝑡𝑡
𝑓𝑓 = 𝜔𝜔𝑓𝑓 + 𝜇𝜇𝑡𝑡𝑡𝑡

𝑓𝑓 + 𝜉𝜉𝑡𝑡𝑡𝑡𝑌𝑌 + 𝜃𝜃𝑃𝑃𝑡𝑡𝑡𝑡
𝑓𝑓 , (A1) 

where 𝜔𝜔𝑓𝑓 is the annual baseline level of the outcome in the city in the absence of pollution, 
𝜇𝜇𝑡𝑡𝑡𝑡
𝑓𝑓  is the daily baseline level of the outcome in the city in the absence of pollution, 𝜉𝜉𝑡𝑡𝑡𝑡𝑌𝑌  is a 

year-by-month shock to the city’s outcome which is correlated with a shock to focal-city 
pollution (𝜉𝜉𝑡𝑡𝑡𝑡𝑃𝑃 ) within city-years but not across city-years. We assume that 𝜉𝜉𝑡𝑡𝑡𝑡𝑌𝑌  and 𝜉𝜉𝑡𝑡𝑡𝑡𝑃𝑃  are 
both normalized to be mean zero averaged across all years. 𝜃𝜃 is the effect of daily pollution 
�𝑃𝑃𝑡𝑡𝑡𝑡

𝑓𝑓 � on the outcome. We assume that 𝜔𝜔𝑓𝑓, 𝜇𝜇𝑡𝑡𝑡𝑡
𝑓𝑓 , and 𝜉𝜉𝑡𝑡𝑡𝑡𝑌𝑌  are uncorrelated with each other and 

that 𝜇𝜇𝑡𝑡𝑡𝑡
𝑓𝑓  is independent and identically distributed with mean zero within each city-year and 

across city-years. 

Geographic regions Provinces
North Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia
Northeast Liaoning, Jilin, Heilongjiang
East Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong
Central Henan, Hubei, Hunan
South Guangdong, Guangxi, Hainan
Southwest Chongqing, Sichuan, Guizhou, Yunan, Tibet
Northwest Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang

Based on Zhang et al . (2018).
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Daily focal- and nearby-city pollution levels are given by: 

𝑃𝑃𝑡𝑡𝑡𝑡
𝑓𝑓 = 𝜅𝜅𝑓𝑓 + 𝜐𝜐𝑡𝑡𝑡𝑡

𝑓𝑓 + 𝑐𝑐𝑡𝑡𝑡𝑡
𝑓𝑓 + 𝜉𝜉𝑡𝑡𝑡𝑡𝑃𝑃 + ρΙ𝑡𝑡𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡𝑛𝑛  (A2a) 

𝑃𝑃𝑡𝑡𝑡𝑡𝑛𝑛 = 𝜅𝜅𝑛𝑛 + 𝜐𝜐𝑡𝑡𝑡𝑡𝑛𝑛 + 𝑐𝑐𝑡𝑡𝑡𝑡𝑛𝑛 + ρ(1 − Ι𝑡𝑡𝑡𝑡)𝑃𝑃𝑡𝑡𝑡𝑡
𝑓𝑓 , (A2b) 

where 𝜅𝜅𝑓𝑓 and 𝜅𝜅𝑛𝑛 are annual baseline levels of pollution in the absence of inter-city transport, 
𝜐𝜐𝑡𝑡𝑡𝑡
𝑓𝑓  and 𝜐𝜐𝑡𝑡𝑡𝑡𝑛𝑛  are daily baseline levels of pollution in the absence of inter-city transport, and Ι𝑡𝑡𝑡𝑡 

is an indicator variable set equal to one if the wind is blowing toward the focal city and zero 
when it is blowing away from the focal city on day 𝑑𝑑 of year 𝑡𝑡. ρ > 0 captures the inter-city 
transport between the cities which we assume to be symmetric. 𝜐𝜐𝑡𝑡𝑡𝑡

𝑓𝑓  and 𝜐𝜐𝑡𝑡𝑡𝑡𝑛𝑛  are independent 
and identically distributed with mean zero within each city-year and across city-years. 𝑐𝑐𝑡𝑡𝑡𝑡

𝑓𝑓  
and 𝑐𝑐𝑡𝑡𝑡𝑡𝑛𝑛  are region-by-year-by-month shocks to the pollution levels in each city which are 
assumed to be correlated for the focal-/nearby-city pair within years but not across years. 
We assume that 𝑐𝑐𝑡𝑡𝑡𝑡

𝑓𝑓  and 𝑐𝑐𝑡𝑡𝑡𝑡𝑛𝑛  are both normalized to be mean zero across all years. 

We assume that  𝜅𝜅𝑓𝑓, 𝜅𝜅𝑛𝑛, 𝜉𝜉𝑡𝑡𝑡𝑡𝑃𝑃 , 𝜐𝜐𝑡𝑡𝑡𝑡
𝑓𝑓 , and 𝜐𝜐𝑡𝑡𝑡𝑡𝑛𝑛  are uncorrelated with each other and with the 

regional pollution shocks (𝑐𝑐𝑡𝑡𝑡𝑡
𝑓𝑓  and 𝑐𝑐𝑡𝑡𝑡𝑡𝑛𝑛 ). The common shocks (𝜉𝜉𝑡𝑡𝑡𝑡𝑌𝑌  and 𝜉𝜉𝑡𝑡𝑡𝑡𝑃𝑃 ) to focal-city 

outcome and focal-city pollution introduce endogeneity in the estimation of pollution’s 
effect on the outcome. Depending on the setting this could arise from simultaneity or 
omitted variable biases or both. 

Assumption 1: Daily wind direction (Ι𝑡𝑡𝑡𝑡) is uncorrelated with the common shocks to 
outcome and pollution (𝜉𝜉𝑡𝑡𝑡𝑡𝑌𝑌  and 𝜉𝜉𝑡𝑡𝑡𝑡𝑃𝑃 ), the regional shocks to pollution (𝑐𝑐𝑡𝑡𝑡𝑡

𝑓𝑓  and 𝑐𝑐𝑡𝑡𝑡𝑡𝑛𝑛 ), baseline 
levels of pollution (𝜅𝜅𝑓𝑓, 𝜅𝜅𝑛𝑛, 𝜐𝜐𝑡𝑡𝑡𝑡

𝑓𝑓 , and 𝜐𝜐𝑡𝑡𝑡𝑡𝑛𝑛 ), and baseline levels of the outcome variable (𝜔𝜔𝑡𝑡
𝑓𝑓 and 

𝜇𝜇𝑡𝑡𝑡𝑡
𝑓𝑓 ). This also implies it is uncorrelated with the outcome �𝑌𝑌𝑡𝑡𝑡𝑡

𝑓𝑓 � and the pollution levels (𝑃𝑃𝑡𝑡𝑡𝑡
𝑓𝑓  

and 𝑃𝑃𝑡𝑡𝑡𝑡𝑛𝑛 ). 

Solving (A2a) and (A2b) we get: 

𝑃𝑃𝑡𝑡𝑡𝑡
𝑓𝑓 = 𝜅𝜅𝑓𝑓 + 𝜐𝜐𝑡𝑡𝑡𝑡

𝑓𝑓 + 𝑐𝑐𝑡𝑡𝑡𝑡
𝑓𝑓 + 𝜉𝜉𝑡𝑡𝑡𝑡𝑃𝑃 + ρΙ𝑡𝑡𝑡𝑡(𝜅𝜅𝑛𝑛 + 𝜐𝜐𝑡𝑡𝑡𝑡𝑛𝑛 + 𝑐𝑐𝑡𝑡𝑡𝑡𝑛𝑛 ) (A3a) 

𝑃𝑃𝑡𝑡𝑡𝑡𝑛𝑛 = 𝜅𝜅𝑛𝑛 + 𝜐𝜐𝑡𝑡𝑡𝑡𝑛𝑛 + 𝑐𝑐𝑡𝑡𝑡𝑡𝑛𝑛 + ρ(1 − Ι𝑡𝑡𝑡𝑡)�𝜅𝜅𝑓𝑓 + 𝜐𝜐𝑡𝑡𝑡𝑡
𝑓𝑓 + 𝑐𝑐𝑡𝑡𝑡𝑡

𝑓𝑓 + 𝜉𝜉𝑡𝑡𝑡𝑡𝑃𝑃 �. (A3b) 

OLS Estimator 

OLS estimates yield biased estimates of pollution’s effect on the outcome because of the 
common outcome-pollution shock. 

An OLS regression with city and region-by-year fixed effects yields the following demeaned 
regression (net of city and region-by-year fixed effects) based on annualized values in 
Equation (A1): 

𝒴𝒴𝑡𝑡
𝑓𝑓 = 𝜉𝜉𝑡𝑡𝑌𝑌 + 𝜃𝜃𝑂𝑂𝑂𝑂𝑂𝑂𝒫𝒫𝑡𝑡

𝑓𝑓 + 𝜖𝜖𝑡𝑡
𝑓𝑓, (A4) 

where  𝒴𝒴𝑡𝑡
𝑓𝑓 = 𝑌𝑌𝑡𝑡

𝑓𝑓 − 1
𝑇𝑇
∑ 𝑌𝑌𝑡𝑡

𝑓𝑓
𝑡𝑡 , 𝑌𝑌𝑡𝑡

𝑓𝑓 = 1
𝐷𝐷
∑ 𝑌𝑌𝑡𝑡𝑡𝑡

𝑓𝑓
𝑡𝑡 , 𝒫𝒫𝑡𝑡

𝑓𝑓 = 𝑃𝑃𝑡𝑡
𝑓𝑓 − 1

𝑇𝑇
∑ 𝑃𝑃𝑡𝑡

𝑓𝑓
𝑡𝑡 , 𝑃𝑃𝑡𝑡

𝑓𝑓 = 1
𝐷𝐷
∑ 𝑃𝑃𝑡𝑡𝑡𝑡

𝑓𝑓
𝑡𝑡 , 𝜉𝜉𝑡𝑡𝑌𝑌 = 1

𝑀𝑀
∑ 𝜉𝜉𝑡𝑡𝑡𝑡𝑌𝑌𝑡𝑡  are 

demeaned annual values and 𝐷𝐷 is the number of days in a year, 𝑀𝑀 is the number of months 
in a year, and 𝑇𝑇 is the number of years. 𝜖𝜖𝑡𝑡

𝑓𝑓 reflects measurement error in the outcome 
variable assumed to be independent from all other variables and identically distributed over 
time and across cities. 
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Average annual focal-city pollution (based on Equation (A3a)) is also observed by the 
econometrician with error. The demeaned values (net of city and region-by-year fixed effects) 
are: 

𝒫𝒫𝑡𝑡
𝑓𝑓 = 𝑐𝑐𝑡𝑡

𝑓𝑓 + 𝜉𝜉𝑡𝑡𝑃𝑃 + ρΙ𝑡𝑡𝑐𝑐𝑡𝑡𝑛𝑛 + 𝜂𝜂𝑡𝑡
𝑓𝑓, (A5) 

where 𝑐𝑐𝑡𝑡
𝑓𝑓 = 1

𝑀𝑀
∑ 𝑐𝑐𝑡𝑡𝑡𝑡

𝑓𝑓
𝑡𝑡 , 𝜉𝜉𝑡𝑡𝑃𝑃 = 1

𝑀𝑀
∑ 𝜉𝜉𝑡𝑡𝑡𝑡𝑃𝑃𝑡𝑡 , 𝑐𝑐𝑡𝑡𝑛𝑛 = 1

𝑀𝑀
∑ 𝑐𝑐𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡  are the demeaned annual values and 

I𝑡𝑡 = 1
𝐷𝐷
∑ Ι𝑡𝑡𝑡𝑡𝑡𝑡  is the fraction of days wind blows toward the focal city in a year. This makes 

use of the fact that Ι𝑡𝑡𝑡𝑡 is uncorrelated with 𝜅𝜅𝑓𝑓, 𝜅𝜅𝑛𝑛, 𝜐𝜐𝑡𝑡𝑡𝑡
𝑓𝑓 , 𝜐𝜐𝑡𝑡𝑡𝑡𝑛𝑛 , 𝑐𝑐𝑡𝑡

𝑓𝑓, 𝑐𝑐𝑡𝑡𝑛𝑛, and 𝜉𝜉𝑡𝑡𝑡𝑡𝑃𝑃  by Assumption 1. 

Using Equations (A4) and (A5), the coefficient is: 

𝜃𝜃�𝑂𝑂𝑂𝑂𝑂𝑂 =
𝐶𝐶𝐶𝐶𝐶𝐶�𝒴𝒴𝑡𝑡

𝑓𝑓,𝒫𝒫𝑡𝑡
𝑓𝑓�

𝑉𝑉𝑉𝑉𝑉𝑉�𝒫𝒫𝑡𝑡
𝑓𝑓�

=
𝜃𝜃𝑂𝑂𝑂𝑂𝑂𝑂𝑉𝑉𝑉𝑉𝑉𝑉�𝒫𝒫𝑡𝑡

𝑓𝑓�+𝐶𝐶𝐶𝐶𝐶𝐶�𝜉𝜉𝑡𝑡𝑌𝑌,𝒫𝒫𝑡𝑡
𝑓𝑓�

𝑉𝑉𝑉𝑉𝑉𝑉�𝒫𝒫𝑡𝑡
𝑓𝑓�

= 𝜃𝜃𝑂𝑂𝑂𝑂𝑂𝑂 + 𝐶𝐶𝐶𝐶𝐶𝐶�𝜉𝜉𝑡𝑡𝑌𝑌,𝜉𝜉𝑡𝑡𝑃𝑃�

𝑉𝑉𝑉𝑉𝑉𝑉�𝒫𝒫𝑡𝑡
𝑓𝑓�

, (A6) 

which is biased unless 𝐶𝐶𝐶𝐶𝐶𝐶(𝜉𝜉𝑡𝑡𝑌𝑌, 𝜉𝜉𝑡𝑡𝑃𝑃) = 0. That is, unless the shocks to pollution and the 
outcome are uncorrelated. 

Wald 2SLS Estimator 

We now show that Wald 2SLS using nearby-city pollution (conditional on wind direction) as 
an instrument yields an unbiased estimate of pollution on the outcome although the first-
stage coefficient is biased. 

The first-stage of Wald 2SLS regresses annual focal- on annual nearby-city pollution where 
averages are computed conditional on wind blowing toward the focal city (Ι𝑡𝑡𝑡𝑡 = 1). Using 
the fact that Ι𝑡𝑡𝑡𝑡 is uncorrelated with 𝑃𝑃𝑡𝑡𝑡𝑡

𝑓𝑓  and 𝑃𝑃𝑡𝑡𝑡𝑡𝑛𝑛  the demeaned regression (net of city and 
region-by-year fixed effects) based on Equation (A2a) is: 

I𝑡𝑡𝒫𝒫𝑡𝑡
𝑓𝑓 = 𝑐𝑐𝑡𝑡

𝑓𝑓 + 𝜉𝜉𝑡𝑡𝑃𝑃 + 𝜌𝜌2𝑂𝑂𝑂𝑂𝑂𝑂I𝑡𝑡𝒫𝒫𝑡𝑡𝑛𝑛 + 𝜛𝜛𝑡𝑡
𝑓𝑓, (A7) 

where 𝒫𝒫𝑡𝑡𝑛𝑛 = 𝑃𝑃𝑡𝑡𝑛𝑛 −
1
𝑇𝑇
∑ 𝑃𝑃𝑡𝑡𝑛𝑛𝑡𝑡  and 𝑃𝑃𝑡𝑡𝑛𝑛 = 1

𝐷𝐷
∑ 𝑃𝑃𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡  and we have used the fact that Ι𝑡𝑡𝑡𝑡 is 

uncorrelated with 𝑐𝑐𝑡𝑡𝑡𝑡
𝑓𝑓  and 𝜉𝜉𝑡𝑡𝑡𝑡𝑃𝑃 . 𝜛𝜛𝑡𝑡

𝑓𝑓 reflects measurement error in annual focal-city pollution 
assumed to be independent from all other variables and identically distributed over time 
and across cities. 

The coefficient is: 

𝜌𝜌�2𝑂𝑂𝑂𝑂𝑂𝑂 =
𝐶𝐶𝐶𝐶𝐶𝐶�I𝑡𝑡𝒫𝒫𝑡𝑡

𝑓𝑓,I𝑡𝑡𝒫𝒫𝑡𝑡
𝑛𝑛�

𝑉𝑉𝑉𝑉𝑉𝑉�I𝑡𝑡𝒫𝒫𝑡𝑡
𝑛𝑛�

 . (A8) 

Annual nearby-city pollution (based on Equation (A2b)) is also observed by the 
econometrician with error. Since city and region-by-year fixed effects are included, the 
demeaned values conditional on Ι𝑡𝑡𝑡𝑡 = 1 are: 

Ι𝑡𝑡𝒫𝒫𝑡𝑡𝑛𝑛 = 𝑐𝑐𝑡𝑡𝑛𝑛 + 𝜄𝜄𝑡𝑡
𝑓𝑓, (A9) 

where 𝜄𝜄𝑡𝑡
𝑓𝑓 reflects measurement error in annual nearby-city pollution assumed to be 

independent from all other variables and identically distributed over time and across cities. 
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Therefore: 

𝜌𝜌�2𝑂𝑂𝑂𝑂𝑂𝑂 =
𝐶𝐶𝐶𝐶𝐶𝐶�𝑐𝑐𝑡𝑡

𝑓𝑓+𝜉𝜉𝑡𝑡𝑃𝑃+𝜌𝜌2𝑂𝑂𝑂𝑂𝑂𝑂I𝑡𝑡𝒫𝒫𝑡𝑡
𝑛𝑛+𝜛𝜛𝑡𝑡

𝑓𝑓,I𝑡𝑡𝒫𝒫𝑡𝑡
𝑛𝑛�

𝑉𝑉𝑉𝑉𝑉𝑉�I𝑡𝑡𝒫𝒫𝑡𝑡
𝑛𝑛�

= 𝜌𝜌2𝑂𝑂𝑂𝑂𝑂𝑂 +
𝐶𝐶𝐶𝐶𝐶𝐶�𝑐𝑐𝑡𝑡

𝑓𝑓,𝑐𝑐𝑡𝑡
𝑛𝑛�

𝑉𝑉𝑉𝑉𝑉𝑉�I𝑡𝑡𝒫𝒫𝑡𝑡
𝑛𝑛�

 . (A10) 

This is biased unless 𝐶𝐶𝐶𝐶𝐶𝐶�𝑐𝑐𝑡𝑡𝑛𝑛, 𝑐𝑐𝑡𝑡
𝑓𝑓� = 0. That is, unless there are no common region-by-year 

shocks to the two cities’ pollution levels. In general, this regression does not recover the first-
stage coefficient because it does not fully control for the region-by-year-by-month shocks to 
pollution. However, it does control for the common outcome-pollution shock which is 
crucial for unbiasedness of the second stage as we now see. 

The fitted values from this regression �I𝑡𝑡𝒫𝒫𝑡𝑡
𝑓𝑓�� are used in the second-stage regression to 

predict the annual focal-city outcome. Including city and region-by-year fixed effects yields 
the following demeaned regression based on Equation (A1): 

𝒴𝒴𝑡𝑡
𝑓𝑓 = 𝜉𝜉𝑡𝑡𝑌𝑌 + 𝜃𝜃2𝑂𝑂𝑂𝑂𝑂𝑂I𝑡𝑡𝒫𝒫𝑡𝑡

𝑓𝑓� + 𝜁𝜁𝑡𝑡
𝑓𝑓, (A11) 

where 𝜁𝜁𝑡𝑡
𝑓𝑓 reflects measurement error in the annual outcome variable assumed to be 

independent from all other variables and identically distributed over time and across cities. 

The coefficient is: 

𝜃𝜃�2𝑂𝑂𝑂𝑂𝑂𝑂 =
𝐶𝐶𝐶𝐶𝐶𝐶�𝒴𝒴𝑡𝑡

𝑓𝑓,I𝑡𝑡𝒫𝒫𝑡𝑡
𝑓𝑓��

𝑉𝑉𝑉𝑉𝑉𝑉�I𝑡𝑡𝒫𝒫𝑡𝑡
𝑓𝑓��

=
𝐶𝐶𝐶𝐶𝐶𝐶�𝜉𝜉𝑡𝑡𝑌𝑌+𝜃𝜃2𝑂𝑂𝑂𝑂𝑂𝑂I𝑡𝑡𝒫𝒫𝑡𝑡

𝑓𝑓�+𝜁𝜁𝑡𝑡
𝑓𝑓,I𝑡𝑡𝒫𝒫𝑡𝑡

𝑓𝑓��

𝑉𝑉𝑉𝑉𝑉𝑉�I𝑡𝑡𝒫𝒫𝑡𝑡
𝑓𝑓��

= 𝜃𝜃2𝑂𝑂𝑂𝑂𝑂𝑂. (A12) 

The last equality follows from the fact that I𝑡𝑡𝒫𝒫𝑡𝑡
𝑓𝑓�  has been purged of the common shock to 

outcome-pollution. Although the first stage is biased, instrumented pollution is uncorrelated 
with 𝜉𝜉𝑡𝑡𝑌𝑌 and therefore the second-stage error so that the second-stage coefficient is unbiased. 

M2SLS Estimator 

We now show that M2SLS using nearby-city pollution (conditional on wind direction) as an 
instrument yields an unbiased estimate of pollution on the outcome. It also yields an 
unbiased coefficient in the first-stage. 

The first-stage of M2SLS regresses daily focal- on daily nearby-city pollution conditional on 
wind blowing toward the focal city (Ι𝑡𝑡𝑡𝑡 = 1). Because daily data is used, city and region-by-
year-by-month fixed effects can be included. Using the fact that Ι𝑡𝑡𝑡𝑡 is uncorrelated with 𝑃𝑃𝑡𝑡𝑡𝑡

𝑓𝑓  
and 𝑃𝑃𝑡𝑡𝑡𝑡𝑛𝑛  the demeaned regression (net of city and region-by-year-by-month fixed effects) 
based on Equation (A2a) is: 

Ι𝑡𝑡𝑡𝑡𝓅𝓅𝑡𝑡𝑡𝑡
𝑓𝑓 = 𝜌𝜌𝑀𝑀2𝑂𝑂𝑂𝑂𝑂𝑂I𝑡𝑡𝑡𝑡𝓅𝓅𝑡𝑡𝑡𝑡𝑛𝑛 + 𝜀𝜀𝑡𝑡𝑡𝑡

𝑓𝑓 , (A13) 

where 𝓅𝓅𝑡𝑡𝑡𝑡
𝑓𝑓 = 𝑃𝑃𝑡𝑡𝑡𝑡

𝑓𝑓 − 1
𝑇𝑇
∑ 𝑃𝑃𝑡𝑡

𝑓𝑓
𝑡𝑡  and 𝓅𝓅𝑡𝑡𝑡𝑡𝑛𝑛 = 𝑃𝑃𝑡𝑡𝑡𝑡𝑛𝑛 − 1

𝑇𝑇
∑ 𝑃𝑃𝑡𝑡𝑛𝑛𝑡𝑡  are the demeaned daily values. 𝜀𝜀𝑡𝑡𝑡𝑡

𝑓𝑓  reflects 
measurement error in the daily focal-city pollution assumed to be independent from all 
other variables and identically distributed over time and across cities. The outcome common 
shock (𝜉𝜉𝑡𝑡𝑡𝑡𝑌𝑌 ) and pollution common shock �𝑐𝑐𝑡𝑡𝑡𝑡

𝑓𝑓 � are absorbed by the region-by-year-by-
month fixed effects. This is the key difference from the first stage of the Wald 2SLS: daily 
pollution values are uncorrelated with the monthly shocks unlike the annual averages of 
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pollution values used in Wald 2SLS. As a result, this regression provides an unbiased 
estimate of the first-stage coefficient: 

𝜌𝜌�𝑀𝑀2𝑂𝑂𝑂𝑂𝑂𝑂 =
𝐶𝐶𝐶𝐶𝐶𝐶�Ι𝑡𝑡𝑡𝑡𝓅𝓅𝑡𝑡𝑡𝑡

𝑓𝑓 ,I𝑡𝑡𝑡𝑡𝓅𝓅𝑡𝑡𝑡𝑡
𝑛𝑛 �

𝑉𝑉𝑉𝑉𝑉𝑉�I𝑡𝑡𝑡𝑡𝓅𝓅𝑡𝑡𝑡𝑡
𝑛𝑛 �

=
𝐶𝐶𝐶𝐶𝐶𝐶�𝜌𝜌2𝑂𝑂𝑂𝑂𝑂𝑂I𝑡𝑡𝓅𝓅𝑡𝑡𝑡𝑡

𝑓𝑓 +𝜀𝜀𝑡𝑡𝑡𝑡
𝑓𝑓 ,I𝑡𝑡𝑡𝑡𝓅𝓅𝑡𝑡𝑡𝑡

𝑓𝑓 �

𝑉𝑉𝑉𝑉𝑉𝑉�I𝑡𝑡𝑡𝑡𝓅𝓅𝑡𝑡𝑡𝑡
𝑛𝑛 �

= 𝜌𝜌𝑀𝑀2𝑂𝑂𝑂𝑂𝑂𝑂. (A14) 

The fitted values from this regression averaged over the year for each city �Ι𝑡𝑡𝑡𝑡𝓅𝓅𝑡𝑡𝑡𝑡
𝑓𝑓���������� are used 

in the second-stage regression to predict the annual focal-city outcome. Including city and 
region-by-year fixed effects yields the following demeaned regression based on Equation 
(A1): 

𝒴𝒴𝑡𝑡
𝑓𝑓 = 𝜉𝜉𝑡𝑡𝑌𝑌 + 𝜃𝜃𝑀𝑀2𝑂𝑂𝑂𝑂𝑂𝑂Ι𝑡𝑡𝑡𝑡𝓅𝓅𝑡𝑡𝑡𝑡

𝑓𝑓��������� + 𝜐𝜐𝑡𝑡
𝑓𝑓, (A15) 

where 𝜐𝜐𝑡𝑡
𝑓𝑓 reflects measurement error in the annual outcome variable assumed to be 

independent from all other variables and identically distributed over time and across cities. 

The coefficient is: 

𝜃𝜃�𝑀𝑀2𝑂𝑂𝑂𝑂𝑂𝑂 =
𝐶𝐶𝐶𝐶𝐶𝐶�𝒴𝒴𝑡𝑡

𝑓𝑓,Ι𝑡𝑡𝑡𝑡𝓅𝓅𝑡𝑡𝑡𝑡
𝑓𝑓�����������

𝑉𝑉𝑉𝑉𝑉𝑉�Ι𝑡𝑡𝑡𝑡𝓅𝓅𝑡𝑡𝑡𝑡
𝑓𝑓�����������

, (A16) 

which simplifies to: 

𝜃𝜃�𝑀𝑀2𝑂𝑂𝑂𝑂𝑂𝑂 =
𝐶𝐶𝐶𝐶𝐶𝐶�𝜉𝜉𝑡𝑡𝑌𝑌+𝜃𝜃𝑀𝑀2𝑂𝑂𝑂𝑂𝑂𝑂Ι𝑡𝑡𝑡𝑡𝓅𝓅𝑡𝑡𝑡𝑡

𝑓𝑓����������+𝜐𝜐𝑡𝑡
𝑓𝑓,Ι𝑡𝑡𝑡𝑡𝓅𝓅𝑡𝑡𝑡𝑡

𝑓𝑓�����������

𝑉𝑉𝑉𝑉𝑉𝑉�Ι𝑡𝑡𝑡𝑡𝓅𝓅𝑡𝑡𝑡𝑡
𝑓𝑓�����������

=
𝜃𝜃𝑀𝑀2𝑂𝑂𝑂𝑂𝑂𝑂𝑉𝑉𝑉𝑉𝑉𝑉�Ι𝑡𝑡𝑡𝑡𝓅𝓅𝑡𝑡𝑡𝑡

𝑓𝑓�����������

𝑉𝑉𝑉𝑉𝑉𝑉�Ι𝑡𝑡𝑡𝑡𝓅𝓅𝑡𝑡𝑡𝑡
𝑓𝑓�����������

= 𝜃𝜃𝑀𝑀2𝑂𝑂𝑂𝑂𝑂𝑂. (A17) 

The second equality follows from the fact that Ι𝑡𝑡𝑡𝑡𝓅𝓅𝑡𝑡𝑡𝑡
𝑓𝑓��������� is uncorrelated with 𝜉𝜉𝑡𝑡𝑌𝑌 because, as 

with Wald 2SLS, it has been purged of the common pollution-outcome shock. 

Efficiency of M2SLS versus Wald 2SLS Estimators 

Dhrymes and Lleras-Muney (2006) develop a test statistic for whether M2SLS is more 
efficient than Wald 2SLS. Their Theorem 4 defines a test statistic and critical values: 

�̂�𝑡𝑛𝑛 = 𝜏𝜏�
𝜎𝜎�𝜏𝜏

, (A18) 
 
where all unknown parameters have been replaced by their consistent estimators in: 
 

𝜏𝜏 = 𝑑𝑑1√𝑛𝑛𝜃𝜃𝑀𝑀2𝑂𝑂𝑂𝑂𝑂𝑂 + 𝑑𝑑2√𝑛𝑛𝜎𝜎𝜀𝜀2 + 𝑑𝑑3√𝐺𝐺𝜎𝜎𝜀𝜀�𝐶𝐶 − 𝜃𝜃𝑀𝑀2𝑂𝑂𝑂𝑂𝑂𝑂2 𝜎𝜎𝜀𝜀2, (A19a) 

𝜎𝜎𝜏𝜏 = �𝑑𝑑12𝜎𝜎𝜃𝜃𝑀𝑀2𝑂𝑂𝑂𝑂𝑂𝑂
2 + 𝑑𝑑22𝜙𝜙22 + 𝑑𝑑32𝜙𝜙12. (A19b) 

And: 

𝑑𝑑1 = 2 (𝜎𝜎𝜀𝜀�𝐶𝐶 + 𝜃𝜃𝑀𝑀2𝑂𝑂𝑂𝑂𝑂𝑂𝜎𝜎𝜀𝜀2),𝑑𝑑2 = 𝜃𝜃𝑀𝑀2𝑂𝑂𝑂𝑂𝑂𝑂2 ,𝑑𝑑3 = 2𝜃𝜃𝑀𝑀2𝑂𝑂𝑂𝑂𝑂𝑂, (A20a) 
𝜙𝜙22 = 𝜇𝜇4 − (𝜎𝜎𝜀𝜀2)2,𝜙𝜙12 = (𝜎𝜎𝜀𝜀�𝐶𝐶)2 + 𝜎𝜎𝜀𝜀2𝜎𝜎𝐶𝐶2. (A20b) 

𝜎𝜎𝜀𝜀2 is the variance of 𝜀𝜀𝑡𝑡𝑡𝑡
𝑓𝑓 , 𝜎𝜎𝐶𝐶2 is the variance of 𝜐𝜐𝑡𝑡

𝑓𝑓, 𝜎𝜎𝜀𝜀�𝐶𝐶 is the covariance of 𝜐𝜐𝑡𝑡
𝑓𝑓 and the annual 

averaged values of 𝜀𝜀𝑡𝑡𝑡𝑡
𝑓𝑓 , 𝜎𝜎𝜃𝜃𝑀𝑀2𝑂𝑂𝑂𝑂𝑂𝑂

2  is the variance of the estimate of 𝜃𝜃𝑀𝑀2𝑂𝑂𝑂𝑂𝑂𝑂, 𝜇𝜇4 is the fourth 
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moment of 𝜀𝜀𝑡𝑡𝑡𝑡
𝑓𝑓 , 𝑛𝑛 is the number of observations in the first stage of M2SLS, and 𝐺𝐺 is the 

number of observations (groups) in the second stage of M2SLS. 

M2SLS is more efficient than Wald 2SLS when �̂�𝑡𝑛𝑛 ≥ 1.64 with a 5% level of significance and 
�̂�𝑡𝑛𝑛 ≥ 1.28 with a 10% level of significance. 

Using the middle funnel and a 300-kilometer radius 𝑛𝑛 = 19,339,917, 𝐺𝐺 = 291,339 and 
estimates of the unknown parameters are: 𝜃𝜃𝑀𝑀2𝑂𝑂𝑂𝑂𝑂𝑂 = −0.0030, 𝜎𝜎𝜃𝜃𝑀𝑀2𝑂𝑂𝑂𝑂𝑂𝑂

2 = 0.0000019, 𝜎𝜎𝜀𝜀2 =
1720.6, 𝜎𝜎𝐶𝐶2 = 0.2236, 𝜎𝜎𝜀𝜀�𝐶𝐶 = 0.0109, and 𝜇𝜇4 = 5.041. 
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Online Appendix F: Reduced-form estimates of air pollution spillover effects from a one μg/m3 annual increase in nearby-city PM10 
within a distance band on average annual labor productivity of focal-city firms as a function of distance (𝑁𝑁 = 11,559,133) 

 
Solid, black line shows effect of a one μg/m3 annual increase in nearby-city PM10 within a distance band (holding pollution in all other distance bands constant) on 
average annual productivity of focal-city firms as a function of distance estimated using a reduced-form regression with annual data (conditioning pollution data 
on wind direction) and controlling for weather variables, firm fixed effects, and region-by-year fixed effects. Estimation allows for piecewise linear effects in 
increments of 50 kilometers. Dashed, red lines show 95% confidence intervals based on standard errors clustered at the focal-city level. 
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Online Appendix G: Coefficients and confidence intervals for estimate of spillover decay function (effect of one μg/m3 increase in 
nearby-city PM10 within a distance band on focal-city PM10 when wind blows directly toward the focal city) as a function of 
distance (𝑁𝑁 = 988,230) 

 
Solid, black line shows effect of a one μg/m3 increase in nearby-city PM10 within a distance band (holding pollution in all other distance bands constant) on focal-
city PM10 when the wind is blowing directly toward the focal city as a function of distance controlling for weather variables, focal-city fixed effects, and region-by-
year-by-month fixed effects. Estimation allows for piecewise linear effects in increments of 50 kilometers. Dashed, red lines show 95% confidence intervals 
estimated using 100 iterations of a block bootstrap by focal city. 
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Online Appendix H: Cumulative distribution functions of all days versus included days of 
nearby-city air pollution conditional on control variables at different maximum distance 
cutoffs 

150-kilometer radius 

 
Cumulative distribution functions of residuals from regressing nearby-city PM10 on the control variables used in the 
first stage of the M2SLS procedure (daily weather controls, city fixed effects, and region-by-year-by-month fixed 
effects) separately for all days and included days using a 150-kilometer cutoff in choosing nearby cities. 

200-kilometer radius 

 
Cumulative distribution functions of residuals from regressing nearby-city PM10 on the control variables used in the 
first stage of the M2SLS procedure (daily weather controls, city fixed effects, and region-by-year-by-month fixed 
effects) separately for all days and included days using a 200-kilometer cutoff in choosing nearby cities. 
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250-kilometer radius 

 
Cumulative distribution functions of residuals from regressing nearby-city PM10 on the control variables used in the 
first stage of the M2SLS procedure (daily weather controls, city fixed effects, and region-by-year-by-month fixed 
effects) separately for all days and included days using a 250-kilometer cutoff in choosing nearby cities. 

 

300-kilometer radius 

 
Cumulative distribution functions of residuals from regressing nearby-city PM10 on the control variables used in the 
first stage of the M2SLS procedure (daily weather controls, city fixed effects, and region-by-year-by-month fixed 
effects) separately for all days and included days using a 300-kilometer cutoff in choosing nearby cities. 

 



 
 

13 
 

Online Appendix I: Summary statistics for M2SLS estimation 2001 to 2007 (200- and 250-kilometer distances) 

 

 

(1) (2) (3) (4) (5) (6) (7) (8)
Mean Std. dev. Min Max Mean Std. dev. Min Max

First-stage sample (firm-day)

Focal city PM10 (μg/m3) 111.1         68.5           10.0           600.0         110.2         67.9           10.0           600.0         

Nearby city PM10 (μg/m3) 97.4           64.2           11.0           600.0         96.9           63.3           11.0           600.0         
Distance between focal/nearby city (km) 96.0           35.3           44.0           193.0         102.0         43.5           44.0           234.7         
# of city-years
# of focal cities

Second-stage sample (firm-year)

Value added (CNY1,000) 15,317.6   27,318.0   105.7         366,425.6 15,349.9   27,353.5   105.7         366,425.6 
Total workers 168.7         247.9         10.0           3,012.0      169.2         248.8         10.0           3,012.0      
Value added per worker (CNY1,000) 120.3         221.4         0.5              16,247.6   120.6         222.5         0.5              16,247.6   
# of firms

200 kilometers proximity 250 kilometers proximity

Summary statistics for data used in M2SLS estimation of causal effect of local air pollution on local firms' labor productivity.  First-stage data is 
conditional on wind blowing toward the focal city.

82,714

(N = 264,746)

(N = 17,858,505)

40
135 149

44

(N = 276,528)

86,941

(N = 18,758,702)
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Online Appendix J: Robustness checks – M2SLS estimates of causal effect of local PM10 on local labor productivity using as an instrument 
pollution of nearest-nearby city within 300 kilometers 

  

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Baseline
Counter-
factual

"Narrow" 
Funnel

"Broad" 
Funnel

Drop API 
Below 50 
"Middle" 

Funnel

No 
Weather 
Controls

Include      
95 < API    

< 105

Year-by-
Month 
Fixed 

Effects

Region-by-
Year Fixed 

Effects
Panel A: M2SLS first stage (firm-day sample)
Dependent variable:
Daily nearby city PM10 0.6959*** 0.7097*** 0.6946*** 0.6921*** 0.6684*** 0.7361*** 0.6533*** 0.7058*** 0.7572***

(0.0669) (0.0660) (0.0684) (0.0629) (0.0679) (0.0709) (0.0741) (0.0794) (0.0827)

Fraction of days wind toward focal city 0.246 0.246 0.216 0.273 0.249 0.246 0.247 0.246 0.246
KP F -statistic 108.1 115.47 103.0 120.9 97.0 107.8 77.7 79.0 83.9
# cities 47 47 47 47 47 47 47 47 47
Sample size 19,339,917 20,366,530 16,998,909 21,464,701 15,015,417 19,339,917 22,337,870 19,339,917 19,339,917
Panel B: M2SLS second stage (firm-year sample)
Dependent variable:
Mean annual predicted focal city PM10 -0.0030** -0.0008 -0.0025 -0.0038** -0.0023* -0.0018 -0.0030** -0.0034*** -0.0021*

(0.0014) (0.0016) (0.0018) (0.0018) (0.0012) (0.0015) (0.0015) (0.0008) (0.0012)

Implied elasticity -0.312 -0.260 -0.396 -0.239 -0.187 -0.326 -0.354 -0.219
# firms 88,716 88,716 88,716 88,716 88,716 88,716 88,716 88,716 88,716
Sample size 291,339 291,339 291,339 291,339 291,339 291,339 291,339 291,339 291,339

ln(value added/worker)

All columns use a 300-kilometer maximum radius when choosing nearest nearby city. Columns 1, 2 and 5 through 9 apply the middle funnel in choosing 
days when wind blows toward focal city; Column 3 uses the narrow funnel; and Column 4 the broad funnel. All columns include firm fixed effects and 
linear and quadratic terms of daily humidity and wind speed; and categorial variables for temperature bins as described in the text in the first stage. 
Columns 1 through 7 also include region-by-year-by-month fixed effects; Column 8 also includes year-by-month fixed effects; and Column 9 also includes 
region-by-year fixed effects. Second stage models include firm and region-by-year fixed effects in Columns 1 through 7 and 9 and firm and year fixed effects 
in Column 8. First-stage model in Column 2 conditions on wind blowing away from the focal city while all other columns condition on wind blowing toward 
the focal city. All second-stage models include annual averages of linear and quadratic terms of daily humidity and windspeed; and annual counts of the 
daily categorial variables for temperature (i.e., number of days in each temperature bin). Standard errors are clustered at the focal-city level in all models and 
reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Standard errors in Panel B are also adjusted for two-stage estimation using 100 block-bootstrap 
iterations.

"Middle Funnel"

Daily focal city PM10

Region-by-Year-by-Month Fixed Effects
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Online Appendix K: Counterfactual estimates – M2SLS estimates of causal effect of local PM10 on local labor productivity using as an 
instrument pollution of nearest nearby city at distances beyond 300 kilometers 

     

(1) (2) (3) (4) (5)

Baseline 300 - 300 - 300 - 300 -
< 300 km 350 km 400 km 450 km 500 km

Panel A: M2SLS first stage (firm-day sample)
Dependent variable:
Daily nearby city PM10 0.6959*** 0.4067*** 0.3665*** 0.3952*** 0.3935***

(0.0669) (0.0805) (0.0703) (0.0571) (0.0541)

Average distance focal to nearby cities 106.5 323.9 338.6 353.9 357.8
Fraction of days wind toward focal city 0.246 0.210 0.228 0.200 0.201
KP F -statistic 108.1 22.9 27.2 47.9 52.9
# cities 47 31 40 45 49
Sample size 19,339,917 7,494,962 11,184,946 14,358,319 14,862,542
Panel B: M2SLS second stage (firm-year sample)
Dependent variable:
Mean annual predicted focal city PM10 -0.0030** -0.0001 0.0001 0.0032 0.0034

(0.0014) (0.0035) (0.0021) (0.0024) (0.0022)

# firms 88,716 47,564 60,945 81,302 83,921
Sample size 291,339 142,774 192,403 272,753 281,037

Column 1 uses as an instrument the nearest nearby city within 300 kilometers and the middle funnel. Column 2 uses 
as an instrument the nearest nearby city beyond 300 kilometers but below 350 kilometers and the middle funnel. 
Columns 3 through 5 increase the maximum distances to 400, 450, and 500 kilometers respectively. First-stage models 
include firm and region-by-year-by-month fixed effects; linear and quadratic terms of daily humidity and wind speed; 
and categorial variables for temperature bins as described in the text. The second-stage models include firm and region-
by-year fixed effects; annual averages of linear and quadratic terms of daily humidity and windspeed; and annual 
counts of the daily categorial variables for temperature (i.e., number of days in each temperature bin). Standard errors 
are clustered at the focal-city level in all models and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Standard 
errors in Panel B are also adjusted for two-stage estimating using 100 block-bootstrap iterations.

Distance cutoffs

Daily focal city PM10

ln(value added/worker)
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Online Appendix L: Relationship between focal-city pollution (conditional on first-stage 
control variables) and nearby city pollution using the middle funnel and 300-
kilometer radius – daily versus annual averages 

Daily data 

 

Scatter plot of daily values of focal-city pollution (conditioning on weather variables and region-by-
year-by month fixed effects) versus nearby-city pollution using the middle funnel and a 300-kilometer 
radius. Data includes all cities, years, and days used in the first-stage of M2SLS estimation conditional 
on wind blowing toward the focal city on that day. The line of best fit shown is 𝑃𝑃𝑡𝑡

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
−30.2
(0.79) + 0.34

(0.0076)𝑃𝑃𝑡𝑡
𝑁𝑁∗, 𝑁𝑁 = 12,534. 

Annual averages 

 

Scatter plot of annual averages of daily values of focal-city pollution (conditioning on weather 
variables and region-by-year fixed effects) versus nearby-city pollution using the middle funnel and a 
300-kilometer radius. Data includes all cities, years, and days used in the first-stage of Wald 2SLS 
estimation and conditional on wind blowing toward the focal city before taking annual averages. The 

line of best fit shown is  𝑃𝑃𝑡𝑡
𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 2.49

(1.78) −
0.025

(0.017)𝑃𝑃𝑡𝑡
𝑁𝑁∗, 𝑁𝑁 = 166. 


	* We thank Michael Anderson, Richard Arnott, Tom Chang, Tatyana Deryugina, Andrew Foster, Qing Han, Ying Liu, Dick Morgenstern, Adriana Lleras-Muney, Ruixue Jia, Alberto Salvo, Nathan Schiff, Katja Seim, and seminar and conference participants at UC R...

