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Abstract

This paper examines to what extent stock market anomalies are driven by firm

fundamentals in an investment-based asset pricing framework. Using Bayesian Markov

Chain Monte Carlo (MCMC), we estimate a two-capital q-model to match firm-level

stock returns, instead of matching portfolio-level return moments. Our methodology

addresses Campbell (2017)’s critique on prior studies that model parameters are chosen

to fit a specific set of anomalies and different values are needed to fit each anomaly.

The estimated model generates large and significant size, momentum, profitability,

investment, and intangibles premiums. However, it falls short in explaining the value

and accruals anomalies.
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1 Introduction

The investment-based asset pricing literature studies returns from the supply side of the

economy and formulates returns based on firm fundamentals, under the assumptions that a

firm operates to optimize its market equity.1 Hayashi (1982) shows that with homogeneous

degree one production technology, a firm’s return on investment, which is a function of

its fundamentals, equals its weighted average cost of capital (WACC). Liu, Whited and

Zhang (2009) show that such a simple q-model fits value, earnings surprises, and investment

anomalies well, when the parameters of the model are estimated based on this identity

using the average returns of decile portfolios sorted by these anomaly variables as the target

moments. Additional asset pricing anomalies can be explained in this framework as shown

in subsequent studies, such as Belo, Xue and Zhang (2013) among others.

In this line of research, model parameters are estimated via the Generalized Method of

Moments (GMM) with the average returns of testing portfolios as target moments. However,

applying the Hayashi (1982) identity at the portfolio level is likely to miss information

orthogonal to the sorting variables underlying these portfolios, and the resulting parameter

estimates are generally portfolio-dependent. As Campbell (2017) (page 213) puts it: “This

problem, that different parameters are needed to fit each anomaly, is a pervasive one in the

q-theoretic asset pricing literature”.

To address this critique, we estimate a two-capital q-model (Gonçalves, Xue and Zhang,

2020) to match the entire sample of firm-level stock returns using the Bayesian Markov Chain

Monte Carlo (MCMC) method. Prior studies have used this method to match the dynamics

of macroeconomic variables (Smets and Wouters, 2007; Li et al., 2019, among others) and

the time series of returns on the market index (Li, Wells and Yu, 2008, among others). The

resulting parameter values in our estimation are portfolio-independent and fully reflect the

information in the data. As such, we can examine the capability of the estimated q-model to

explain stock return anomalies in general. Using simulation studies, we show that Bayesian

MCMC is able to discover the true parameter values in the context of our model framework.

Based on the estimated model parameters and observed firm fundamentals such as sales-

1Examples include Cochrane (1991), Berk, Green and Naik (1999), Gomes, Kogan and Zhang (2003),
Carlson, Fisher and Giammarino (2004), Zhang (2005), Li, Livdan and Zhang (2009), Papanikolaou (2011),
Kogan and Papanikolaou (2014), and Bazdresch et al. (2014), among others.
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to-physical capital and investment-to-physical capital ratios, we compute firm-level funda-

mental stock returns for the sample from 1967 to 2017. The distribution of the fundamental

returns closely resembles that of the realized ones in terms of the mean (15.65% versus

14.45% per annum), skewness (1.68 versus 2.15), and kurtosis (11.20 versus 11.05). The

fundamental returns exhibit close to 60% of the variability of the realized ones, with a stan-

dard deviation of 34.17% compared to 60.78% in the data.2 The time series average of the

cross-sectional correlation between fundamental and realized firm-level stock returns is 0.20.

After averaging out firm-level noises, the fundamental returns on the value-weighted market

index closely co-move with the realized ones, with a correlation of 0.77. Overall, the model

does a good job in matching the distribution and dynamics of firm-level stock returns.

To examine the capability of the q-theory in explaining stock market anomalies, we con-

sider 12 well-documented anomalies covering six major categories:3 size anomaly sorted on

market capitalization (Size); value anomaly sorted on book-to-market equity ratio (BM);

momentum anomaly sorted on the prior 11-month returns skipping the most recent month

(R11); four investment anomalies sorted on asset growth (I/A), net stock issues (NSI),

investment-to-assets ratio (∆PI/A), and accruals (Accruals); three profitability anomalies

sorted on return-on-equity (ROE), return-on-assets (ROA), and gross profitability (GP/A);

and two intangibles anomalies sorted on R&D expense-to-market ratio (RD/M) and adver-

tising expense-to-market ratio (Ad/M). For each of these anomalies, we compute returns on

the corresponding decile portfolios using realized and fundamental stock returns separately.

The most important result of the paper is that the fundamental returns exhibit large and

significant size, momentum, investment (except the accruals), profitability, and intangibles

premiums. Specifically, the posterior means for each premium and its t-statistic are as

follows: the fundamental size premium is −5.99% per annum (t=−5.63), the momentum

premium is 11.82% (t=12.51), the I/A premium is −3.08% (t=−2.25), the NSI premium is

−3.05% (t=−3.36), the ∆PI/A premium is −5.79 (t=−4.81), the ROE premium is 4.62%

(t=5.72), the ROA premium is 3.80% (t=3.99), the GP/A premium is 7.26% (t=5.84),

the RD/M premium is 5.24% (t=2.12), and the Ad/M premium is 7.46% (t=2.82). In

addition, the difference between the realized and fundamental premiums, defined as alpha,

is statistically insignificant at the 5% level for seven out of these ten anomalies, with the

2The statistics of fundamental stock returns reported here are the means of the posterior distributions.
3We follow the classification in Hou, Xue and Zhang (2020).
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exception of the I/A, NSI, and GP/A premiums.

Despite the aforementioned success, the model falls short in two ways. First, the model

explains the value premium only in the first half of the sample but fails in the second half:

the alpha of the value premium is 3.52% (t=1.66) in the June 1967-June 1991 period but is

8.87% (t=3.06) in the July 1991-December 2017 period. Second, the model cannot generate

the accruals anomaly, which is negative in the data, −5.58% (t=−3.14), but positive in

the model, 4.74% (t =4.45). An explicit modeling of intangible capitals and the distinction

between cash and accrual basis accountings might be needed to explain these two anomalies.

In our baseline estimation, we allow the structural parameters to vary across the Fama-

French 10 industries and change over time. For robustness, we conduct three alternative

estimations: parameters with industry variations only, with time variations only, and with

constant values, respectively. The results show that industry and time variations significantly

improve the ability of the model to match firm-level stock returns. However, these variations

do not necessarily improve the overall ability of the model to explain anomalies and in some

cases they even hurt the performance. The reason is that anomaly premiums are not the

target of the estimations. The specification that matches the firm-level returns best does

not necessarily explain anomalies better.

More importantly, the ability of the model to explain anomalies does not come from the

look-ahead advantage of the in-sample estimation. We construct one-period-ahead funda-

mental returns using recursive estimation with expanding window. And the ability of the

model to explain anomalies does not change qualitatively.

Finally, we show that the simple q-model combined with the Bayesian MCMC has reliable

out-of-sample predictive power. The average realized return spread between firms with high

and low predicted returns is large and significant (0.45% per month with t=2.45). Moreover,

this return spread cannot be explained by the Capital Asset Pricing Model (CAPM), Fama-

French factor models, nor by the Hou-Xue-Zhang q-factor model. Given that these linear

risk-factor models have poor out-of-sample performance (Fama and French, 1997; Gonçalves,

Xue and Zhang, 2020), our results highlight the importance of the model’s simple yet powerful

economic structure to its out-of-sample performance.

Our work is built directly on Liu, Whited and Zhang (2009), Liu and Zhang (2014), and

Gonçalves, Xue and Zhang (2020). These papers conduct GMM estimations of various q-

models using average anomaly portfolio returns as target moments. Liu, Whited and Zhang
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(2009) show that a one-capital q-model can match the average returns of portfolios sorted

on earnings surprises, book-to-market equity, and capital investment. Liu and Zhang (2014)

use the same model and estimation procedure to explain the momentum premium. However,

the parameter values vary with testing portfolios substantially. Gonçalves, Xue and Zhang

(2020) estimate a two-capital q-model to match the average returns of 40 decile portfolios

sorted on book-to-market equity, asset growth, return-on-equity, and momentum. They

show that when fundamental returns are computed at firm level rather than at portfolio

level, parameter estimates are more stable due to better aggregation. Different from these

previous studies, our estimation method does not involve aggregation and portfolios.

In a similar vein, Belo, Xue and Zhang (2013) estimate a q-model by matching average q

at the portfolio level, in addition to matching return moments. Belo et al. (2021) estimate a

q-model with both tangible and intangible capitals by matching the time series of portfolio-

level cross-sectional mean valuation ratios for a given set of testing portfolios. The estimation

method in Belo et al. (2021) allows the dynamics of valuation ratios to be better captured.

Our method can be easily applied to explain firm-level valuation ratios, which is a promising

future direction.

Finally, our paper belongs to the growing literature in finance that combines structural

models with data using various estimation methods (e.g., Eisfeldt and Muir, 2016; Bazdresch,

Kahn and Whited, 2018; Taylor, 2013) to make causal and quantitative inferences about the

underlying economic mechanisms. Bayesian MCMC used in this paper is a useful addition

to the toolbox of structural estimation.

The rest of the paper is organized as follows. Section 2 outlines the model. Section

3 explains the data used in the estimation and the construction of anomalies. Section 4

describes the estimation procedure and verify the accuracy of Bayesian MCMC estimates

under our model framework using simulation studies. Section 5 presents the estimation re-

sults and model-implied fundamental anomaly premiums. Section 6 explores the economic

mechanisms behind the capability of the estimated model in explaining anomalies and the

limitations of the model. Section 7 discusses the dynamic features of the fundamental fac-

tor premiums, estimation with expanding window, and out-of-sample forecasts. Section 8

concludes.
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2 The Model

We adopt the two-capital model in Gonçalves, Xue and Zhang (2020), in which firms use

three inputs in production: long-term physical capital (K), short-term working capital (W ),

and costlessly adjustable input (S) such as energy and purchased service, the prices of

which are taken as given by firms. Operating profit of firm i in industry j at time t is Πit =

Π(Kit,Wit, Sit), which exhibits constant-return-to-scale. Under the assumption of a perfectly

competitive and frictionless market for input S, Sit is chosen to maximize contemporaneous

operating profits. With Cobb-Douglas production technology, marginal products of physical

and working capital are given by ∂Πit/∂Ki,t = γKjtYit/Kit and ∂Πit/∂Wi,t = γWjt Yit/Wit,

respectively, in which γKjt , γ
W
jt > 0 are the corresponding shares of capital in sales Yit with

γjt ≡ γKjt + γWjt < 1.4 We allow structural parameters to be industry specific and time

varying.

Firms choose investments in physical and working capital to maximize the market equity.

Physical capital evolves as Kit+1 = (1− δit)Kit+ Iit in which Iit is the investment in physical

capital, and δit is the depreciation rate. Investment in physical capital incurs quadratic

adjustment costs:

Φit ≡ Φ(Iit, Kit) =
ajt
2

(
Iit
Kit

)2

Kit , (1)

where ajt is the physical adjustment costs parameter. Working capital evolves as Wit+1 =

Wit+∆Wit, in which ∆Wit is the investment in working capital. In addition, working capital

does not depreciate and is not accompanied with adjustment costs.

In addition to equity financing, firm i in industry j issues debt Bit+1 with interest rate

rBit+1 at the beginning of time t, which is repaid at the beginning of t+1. At tax rate τt, firm

i’s net payout is given by Dit ≡ (1− τt) (Πit − Φit)− Iit −∆Wit +Bit+1 − rBait Bit + τtδitKit,

in which rBait ≡ rBit − τt(rBit − 1) is the after-tax interest rate. Taking the stochastic pricing

kernel, Mt+1, as given, firm i chooses Iit, Kit+1, ∆Wit, Wit+1, and Bit+1 to maximize its cum-

dividend market equity, Vit ≡ Et[
∑∞

s=0Mt+sDt+s]. The first-order condition for physical

investment implies that Et[Mt+1r
K
it+1] = 1, in which rKit+1 is the return on physical capital

4Section A in the Internet Appendix provides the proof.
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investment:

rKit+1 =

(1− τt+1)

[
γKjt+1

(
Yit+1

Kit+1

)
+

ajt+1

2

(
Iit+1

Kit+1

)2]
+ τt+1δit+1 + (1− δit+1)

[
1 + (1− τt+1)ajt+1

(
Iit+1

Kit+1

)]
1 + (1− τt)ajt

(
Iit
Kit

) .

(2)

Similarly, the first-order condition for working capital investment implies that Et[Mt+1r
W
it+1] =

1, in which rWit+1 is the return on working capital investment:

rWit+1 = 1 + (1− τt+1)γ
W
jt+1

Yit+1

Wit+1

. (3)

Section A in the Internet Appendix shows that the weighted average of the two investment

returns equals the weighted average cost of equity and the after-tax cost of debt:

wKit r
K
it+1 + (1− wKit )rWit+1 = wBit r

Ba
it+1 + (1− wBit )rSit+1 , (4)

in which wBit ≡ Bit+1/(Vit−Dit+Bit+1) is the firm’s market leverage, rSit+1 ≡ Vit+1/(Vit−Dit)

is the stock return, wKit ≡ qKitKit+1/(qitKit+1 + Wit+1) is the weight of firm’s market value

attributed to physical capital and qKit ≡ 1 + ajt(1 − τt)Iit/Kit is the marginal q of capital.

The marginal q of working capital is one. The Tobin’s q of firm i at time t is the weighted

average of marginal q’s of physical and working capitals, given by

qit =
Pit +Bit+1

Kt+1 +Wit+1

=

[
1 + ajt(1− τt)

Iit
Kit

]
Kit+1

Kit+1 +Wit+1

+
Wit+1

Kit+1 +Wit+1

. (5)

Solving for the stock return from equation (4) leads to the model-implied fundamental stock
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return of firm i from t to t+ 1:

rFit+1 ≡ f (Xit, Xit+1|θt, θt+1)

=

{
(1− τt+1)

[
γjt+1

(
Yit+1

Kit+1

)
+
ajt+1

2

(
Iit+1

Kit+1

)2
]

+ τt+1δit+1

+(1− δit+1)

[
1 + (1− τt+1)ajt+1

(
Iit+1

Kit+1

)]
+
Wit+1

Kit+1

}/{(
1− wBit

) [
1 + (1− τt)ajt

(
Iit
Kit

)
+
Wit+1

Kit+1

]}
−
wBit r

Ba
it+1

1− wBit
, (6)

where Xit is the set of accounting variables used in equation (6) that represent firm i’s

fundamentals, and θt ≡ {(γjt, ajt); j = 1, . . . , 10} is the set of model parameters at time t for

Fama-French 10 industries. The equality between the realized stock return and the model-

implied fundamental return, rSit+1 = rFit+1, holds for any firm i and for any period from t to

t+1 under this framework. Next, we estimate the two structural parameters, γ and a, based

on this equality. Notice that γK and γW cannot be separately identified because rF depends

on their summation only.

3 Data

Our sample includes all common stocks traded on NYSE, Amex, and NASDAQ with available

accounting and return data. We exclude firms with primary standard industrial classifica-

tions between 6000 and 6999 (financial firms), firms with negative book equity, and firms

with nonpositive total assets, net property, plant, and equipment, or sales at the portfolio

formation. These data items are needed to calculate firm-level fundamental returns. We

obtain monthly stock return data from the Center for Research in Security Prices (CRSP).

Firm-level accounting data are obtained from the annual and quarterly Standard and Poor’s

Compustat industrial files. Our data sample covers the period from January 1967 to June

2017.
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3.1 Anomalies

We explore 12 anomalies in six categories: size anomaly sorted on market capitalization

(Size); value anomaly sorted on book-to-market equity ratio (BM); momentum anomaly

sorted on the prior 11-month returns skipping the most recent month (R11); four investment

anomalies sorted on asset growth (I/A), net stock issues (NSI), investment-to-assets ratio

(∆PI/A), and accruals (Accruals); three profitability anomalies sorted on return-on-equity

(ROE), return-on-assets (ROA), and gross profitability (GP/A); and two intangibles anoma-

lies sorted on R&D expense-to-market ratio (RD/M) and advertising expense-to-market ratio

(Ad/M). Following Hou, Xue and Zhang (2020), we select these anomalies based on the cri-

teria that the average value-weighted returns of their high-minus-low deciles with NYSE

breakpoints are significant at the 5% level, with the exception of the size anomaly. Size

anomaly is included since it is one of the most studied anomalies in the literature. Section

C in the Internet Appendix provides the definitions of these variables and the construction

of the corresponding decile portfolios.

Table 1 presents the monthly average excess returns of the 10 decile portfolios sorted

on each of the 12 anomaly variables. The t-statistics adjusted for heteroscedasticity and

autocorrelations are reported in parentheses. “L” denotes the lowest decile, “H” the highest

decile, and “H-L” the high-minus-low decile. As in Hou, Xue and Zhang (2020), decile

portfolios are formed with NYSE breakpoints and value-weighted returns to control for

microcaps. The sample period is from January 1967 to June 2017 for all anomaly variables

except ROA, RD/M, and Ad/M, the samples for which start from July 1972, July 1976,

and July 1973, respectively, due to data availability. All 12 anomalies except size have

statistically and economically significant premiums in our sample period.

3.2 Measures and timing alignment

Model-implied fundamental returns are constructed in annual frequency because the needed

fundamental variables such as investments are only available at annual frequency for the

long sample starting from 1967. In the model, time-t stock variables are at the beginning of

year t, and time-t flow variables are over the course of year t. Thus, time-t stock variables

are obtained from the balance sheet of fiscal year t− 1 and flow variables from the balance

sheet of fiscal year t.
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We adopt the same measures used by Gonçalves, Xue and Zhang (2020) for the variables

needed to construct the fundamental returns. Specifically, output, Yit, is measured as sales

(Compustat annual item SALE). Physical capital, Kit, is net property, plant, and equipment

(item PPENT). Short-term working capital, Wit, is current assets (item ACT). Total debt,

Bit+1, is long-term debt (item DLTT, zero if missing) plus short-term debt (item DLC, zero if

missing) from fiscal year t balance sheet. Tax rate τ is the statutory corporate income tax rate

from the commerce clearing house’s annual publications. The depreciation rate of physical

capital, δit, is the amount of depreciation and amortization (item DP) minus the amortization

of intangibles (item AM, zero if missing) divided by physical capital (item PPENT). Physical

investment, Iit, is measured as Kit+1− (1− δit)Kit. The market leverage, wBit , is the ratio of

total debt to the sum of total debt and market equity. The pre-tax cost of debt, rBit , is the

ratio of total interest and related expenses (item XINT) scaled by total debt, Bit. Following

Gonçalves, Xue and Zhang (2020), we winsorize unbounded variables, including Iit/Kit,

Iit+1/Kit+1, ∆Wit/Wit, ∆Wit+1/Wit+1, at the 2.5% - 97.5% level. For variables bounded

below by zero, including Yit+1/Kit+1, Yit+1/Wit+1, Yit+1/(Kit+1 +Wit+1), Wit+1/Kit+1, δit+1,

and rBit+1, we winsorize them at the 0% - 95% level. We do not winsorize variables bounded

between zero and one, such as Kit+1/(Kit+1 +Wit+1) or the market leverage, wBit . Summary

statistics and correlation matrix of the aforementioned variables are reported in Table 2 and

closely match those in Gonçalves, Xue and Zhang (2020).

In the model, the fundamental stock return of firm i from year t to t + 1, rFit+1, is

constructed with both stock and flow variables at annual frequency. In the estimation, we

match rFit+1 with the observed annual return of firm i from the middle of fiscal year t to the

middle of fiscal year t + 1, following Gonçalves, Xue and Zhang (2020). Specifically, if firm

i’s fiscal end of year t is month l, rSit+1, the counterpart of rFit+1, is the realized 12-month

return between month l − 5 and l + 6.

To study anomalies, we construct fundamental portfolio returns based on fundamental

firm-level returns. Even though firm-level fundamental returns change annually (in fiscal

year), fundamental portfolio returns change monthly because fiscal year-endings vary across

firms. However, the fundamental portfolio returns of a given month are based on annual

accounting variables both prior to and after the month. To better align the timing and make

a fair comparison, we follow Gonçalves, Xue and Zhang (2020) and compound the realized

portfolio stock returns within a 12-month rolling window with the month in question in the
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middle of the window. Specifically, we multiply gross returns from month t−5 to month t+6

to match the fundamental returns constructed in month t. Applying this rolling procedure to

the monthly portfolio returns (January 1967 to June 2017) yields the monthly observations

of annualized portfolio returns from June 1967 to December 2016.

We validate our data construction and portfolio formation by successfully reproducing

the realized and predicted returns (by the baseline model) of the book-to-market (BM),

momentum (R11), asset growth (I/A), and return-on-equity (ROE) deciles in Gonçalves,

Xue and Zhang (2020) using their estimated model parameters. The results are plotted in

Figure A.1, which replicates Panel B of Figure 3 in Gonçalves, Xue and Zhang (2020).

4 Estimation methodology

Prior studies (Liu, Whited and Zhang, 2009; Gonçalves, Xue and Zhang, 2020, among oth-

ers) use the General Method of Moments (GMM) to match the unconditional moments

derived from equation (6): ET [rSpt+1 − rFpt+1] = 0 for testing portfolio p, where ET [·] refers

to the operation of taking time series average. We instead target the entire panel of firm-

level stock returns using the full-information Bayesian Markov Chain Monte Carlo (MCMC)

method. We consider four specifications in the estimation: parameters with industry and

time variations, parameters with industry variations only, parameters with time variations

only, and constant parameters. Next, we explain our methodology in details in terms of the

specification that allows both industry and time variations in parameter values.

4.1 Bayesian MCMC

Denote the technology parameter in the production function for industry j at time t as γjt

and the physical adjustment costs parameter as ajt. The time series of parameter values are

referred to as “latent variables” in Bayesian MCMC estimation and are assumed to evolve

as random walk processes: [
γjt+1

ajt+1

]
=

[
γjt

ajt

]
+

[
σγ

σa

][
eγjt+1

eajt+1

]
, (7)
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where eγjt+1 and eajt+1 follow standard normal distributions independently, and σγ and σa

are the conditional standard deviations of latent variables γjt+1 and ajt+1 conditioning on

previous time t. Imposing a random walk process on the deep parameters not only encourages

persistence, but also enables us to borrow information across time in estimation, leading to

more efficient estimates.5

Realized stock return of firm i (in industry j) at time t+1 is modeled as the corresponding

fundamental return plus an estimation error:

rSit+1 = rFit+1 +$
−1/2
it σre

r
it+1, (8)

where erit+1 follows the standard normal distribution, σr is a parameter to be estimated, and

the weight $
−1/2
it in the estimation error is specified as:

$it ≡
Vit∑Njt

i=1 Vit
, (9)

in which Njt is the number of firms at time t in industry j to which firm i belongs. By

this specification, we introduce heteroskedasticity into the estimation errors of realized stock

returns. The variance of a firm’s estimation errors decreases with its market equity Vit in

order to accommodate the fact that stock returns of large firms are less noisy and more

reflective of their fundamentals than the returns of small firms.6 More importantly, such

specification makes the estimated model economically relevant in the sense that it captures

the regularity of the majority of the economy. The same rationale motivates the use of NYSE

breakpoints in constructing portfolios and regressions with weighted least squares in asset

pricing studies (e.g., Hou, Xue and Zhang, 2015).7

For the MCMC method, prior distributions of the model parameters need to be specified.

We use inverse gamma distributions for the priors of variances: σ2
γ ∼ IG(κγ1 , κ

γ
2), σ2

a ∼

5We also estimate an autoregressive process with order one. The estimated persistence parameters are
very close to one for both processes of γjt and ajt. Thus, we use random walk processes in our baseline
model for simplicity.

6Large firms have more analysts following than small firms, thus their value is under much closer scrutiny
(Bhushan, 1989). Moreover, stocks of large firms are generally more liquid and their market values are less
likely to be manipulated or affected by a small group of investors (Amihud, 2002).

7Effort (not reported here) has been made to investigate other kinds of functional forms relating the
variability in estimation errors of a firm’s stock returns to its market equity. The relationship specified in
equation (9) best fits the data in terms of mean absolute error (m.a.e.) of firm-level stock returns.
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IG(κa1, κ
a
2), and σ2

r ∼ IG(κr1, κ
r
2), where κ1 and κ2 are hyper-parameters of the inverse gamma

distribution (shape-scale parameterizations). The values of κr1, κ
γ
1 , and κa1 are specified to

be 0.01, 1, and 1, respectively; the values of κr2, κ
γ
2 , and κa2 are chosen to be 0.02, 5, and

5, respectively. The values of κ1’s are chosen relatively small so that the information from

data is more likely to dominate (see Section B in the Internet Appendix). The values of κ2’s

are set relatively large so that the variances of the priors are large and thus less informative.

Although the choices of these values are seemingly arbitrary, as MCMC runs and information

from the data gets entered into the posterior draws, these hyper-parameters weigh less and

less. The information from data dominates the posterior draws when MCMC converges.

Finally, the time series of latent variables θ ≡ {θt; t = 1, · · · , T}, where θt = {(γjt, ajt); j =

1, . . . , 10} and variance parameters σ ≡ {σ2
γ, σ

2
a, σ

2
r} are drawn in an iterative manner from

each complete conditional posterior distribution, resulting in posterior samples from the joint

posterior distribution. Based on the model specifications in equation (7) and (8), the joint

posterior distribution of θ and σ can be written (in a proportional form) as:

P(θ,σ|X, rS, rBa) ∝
T−1∏
t=0

Nt+1∏
i=1

N
(
rSit+1; r

F
it+1, σ

2
r

)
×

T−1∏
t=0

Nd∏
j=1

N
(
γjt+1; γjt, σ

2
γ

)
×

T−1∏
t=0

Nd∏
j=1

N
(
ajt+1; ajt, σ

2
a

)
×IG

(
σ2
r ;κ

r
1, κ

r
2

)
× IG

(
σ2
γ;κ

γ
1 , κ

γ
2

)
× IG

(
σ2
a;κ

a
1, κ

a
2

)
,

(10)

where Nt+1 is the number of firms at time t + 1, Nd is the number of industries, and rFit+1

is defined in (6). In equation (10), X ≡ {Xit; i = 1, · · · , Nt, t = 1, · · · , T} is the panel of

fundamental observables, rS and rBa are the panels of realized stock and bond returns, and

N (· ;µ, σ2) and IG(· ;κ·1, κ·2) refer to the probability density functions of normal distribution

with mean µ and variance σ2 and inverse gamma distribution with shape-scale parameters

κ1 and κ2, respectively. We run 20,000 MCMC iterations and use the last 5,000 iterations to

obtain posterior draws. We confirm the convergence of the posterior distributions. Section

B in the Internet Appendix details the sampling algorithm and posterior derivations.
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4.2 Simulation studies

In this section, we use simulation studies to examine whether Bayesian MCMC can discover

the true parameter values under our model framework, which is highly nonlinear. W combine

the accounting information of a subsample of firms and a pre-determined set of parameter

values to generate a simulated panel of firm-level stock returns based on equations (6) and

(8). For simplicity, we require the subsample used in the simulation to be a balanced panel of

1,052 firms for 15 years, which covers seven out of the ten Fama-French industries. We make

sure that the simulated returns have a similar distribution as that of the realized returns.

Based on the simulated data, we estimate the posterior distributions of the model parameters

using Bayesian MCMC to check whether these estimates can discover the true parameter

values, i.e., the pre-determined parameter values used to generate the simulated data. The

details of the simulation studies are described in Section D of the Internet Appendix. It

is worth noting that using firms’ true accounting information to construct the simulated

data increases the difficulty of the estimation due to the non-normal distributions of these

accounting variables as shown in Gonçalves, Xue and Zhang (2020). Simulation studies are

done for all four specifications: parameters with industry and time variations, with industry

variations only, with time variations only, and with constant values.

Figure 1 plots the true values (in red solid lines), the nonlinear least square (NLS)

estimates used as initial guesses (in green lines with triangle markers), and the Bayesian

posterior means (in blue dashed lines) and the associated 95% credible intervals (in shaded

areas) of the model parameters θ estimated from the simulated data under the specification

with industry specific and time varying parameters. Credible interval is frequently used in

Bayesian framework. It refers to the interval wherein a random variable (here a parameter)

falls with the specified probability. It is an interval in the domain of a posterior distribution of

a parameter. Because we assume parameters to be random variables in Bayesian framework,

we can calculate the probability that a parameter locates in a given interval based on its

posterior distribution. Notationally, let Ip be the posterior credible interval of θ that satisfies

P (θ ∈ Ip|X, rS, rBa) = p, where p is the probability.8

Figure 1 shows that the true values of the model parameters are almost always confined in

8For illustration purpose, Figure 1 only includes the results of three industries: Consumer Nondurables,
Manufacturing, and Business Equipment. The results of the other industries used in the simulation studies
are plotted in Figure A.2 in the Internet Appendix.
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the narrow credible intervals of the Bayesian MCMC posterior distributions, even when the

initial guesses are far away from the true values. The posterior means imply small relative

mean absolute errors (m.a.e.) of 3.59% and 3.37% on average across industries for γ and for

a, respectively. Similar results are found for the other three specifications.9

Our MCMC estimation approach is fundamentally different from the estimation method

in Liu, Whited and Zhang (2009) and Gonçalves, Xue and Zhang (2020), among others,

and it offers several advantages. First, our estimates of parameter values are independent of

any specific testing portfolios. We utilize the entire distribution of firm-level stock returns

to estimate model parameters, while GMM matches the time-series averages of returns on

testing portfolios. This feature is critical for addressing the critique of Campbell (2017) that

the parameter values of the model are chosen to fit a specific set of anomalies and different

values are required for different anomalies.

Second, our MCMC algorithm generates random draws of model parameters from their

joint posterior distribution given the observations on firms’ stock and bond returns and fun-

damentals, while GMM outputs point estimates of model parameters, which are deterministic

given the same set of observations. One advantage of our Bayesian approach is that probabilistic

inferences for the estimated parameters and fundamental stock returns can be easily made

using posterior draws from the MCMC iterations.

Lastly, the posterior of an industry-time specific parameter, θjt, utilizes the information

of the entire data sample, rather than using the information of industry j at time t only

as in the frequentist method NLS. For this reason, Bayesian MCMC can accurately identify

the true values of model parameters even for the specification where these parameters vary

across industries and over time. In contrast, NLS often fails to discover the true parameter

values that are time varying.10 This feature can be extremely important when the modeled

economy is highly heterogeneous and changing over time.

In sum, the simulation studies suggest that Bayesian MCMC performs very well for our

highly nonlinear model and is able to discover the true parameter values under all four

9The results for the specification with time variation in parameter values only are plotted in Figure A.3.
The results for the specification with industry variation in parameter values only and for the specification
with constant parameter values are reported in Table A.1 in the Internet Appendix.

10Detailed discussion on the reasons why the posterior of an industry-time specific parameter, θjt, utilizes
the information of the entire data sample, the differences between Bayesian and NLS, and the comparison of
their estimation accuracy under our model framework are provided in Section E of the Internet Appendix.
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specifications. This method shows great potential in estimating nonlinear models, especially

when the structural parameters are time varying.

5 Estimation results

In our baseline estimation, we allow model parameters to be industry specific and time

varying. For comparison, we also estimate three alternative specifications under which the

time, industry, or both variations are shut down, respectively. In this section, we discuss the

main findings of these estimations.

5.1 Parameter estimates

In this section, we apply our MCMC method to the real data. In the baseline estimation, we

allow the technology parameter in the production function, γjt, and the physical adjustment

costs parameter, ajt, to be industry specific and time varying.

Within the model framework, γjt reflects industry j’s profit margin as the model implies

Πit = γjtYit for any firm i in industry j at time t, where Πit and Yit are the profits and sales,

respectively. Therefore, variations in γjt can be driven by both technology changes and

changes in market demand, the latter of which can be caused by fluctuations in consumer

taste, economic conditions, market competitiveness, etc.

Equation (5) implies that Tobin’s q of firm i in industry j at time t follows qit = 1 +

ajt(1− τt)Iit/Kit ×Kit+1/(Kit+1 +Wit+1). Therefore, the magnitude of ajt reflects both the

marginal costs and marginal benefits of investing one dollar in physical capital and has a

positive relation with Tobin’s q. Consequently, variations in ajt can be driven by changes

in production technology, price of capital goods, which is cyclical (Eisfeldt and Rampini,

2006), and opportunity costs in terms of lost output, which vary with procyclical capacity

utilization. Lastly, entry and exit in an industry can also lead to changes in the estimated

parameter values of this industry at a given fiscal year t. It thus makes economic sense to

allow γjt and ajt to be industry specific and time varying.

Our estimation generates the posterior distributions of the marginal product parameter

γ and the physical investment adjustment costs parameter a for each of the Fama-French

10 industries and for each year between 1967 and 2016. For illustration, we plot the time
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series of the posterior means and 95% credible intervals of γ and a, averaged across Fama-

French 10 industries in Figure 2 for the baseline estimation.11 The first thing to notice is

that the credible intervals around the posterior means in Figure 2 are extremely narrow. The

simple model structure (only two structural parameters) and the large amount of information

(136,598 firm-level observations) enable the Bayesian MCMC estimation to identify these

parameter values with high precision, provided that the model is correctly specified. In

addition, there are no noticeable time trends in both parameter values, although we do see

fluctuations.

Table 3 presents the time-series averages of the posterior means and 95% credible intervals

(CI) of γ and a for each industry. The results show that parameter estimates differ greatly

across industries. The magnitude of these estimates is largely consistent with our economic

intuitions. For example, γ is estimated to be 0.08 on average with a CI of [0.08, 0.09] for

the wholesale & retail sector, compared to 0.28 for the telecom sector, consistent with the

fact that capital is less important for the wholesale & retail sector than for the telecom

sector. As explained in Erickson and Whited (2000), it can be misleading to interpret the

value of a in terms of adjustment costs or speeds. We thus gauge the economic magnitude

of this parameter in terms of Tobin’s q. For each industry j, we compute the value-weighted

cross-sectional average of Tobin’s q for year t and then take the time series average,

qj =
1

T

T∑
t=1

Njt∑
i=1

$it−1qit ,

where Njt is the number of firms in industry j at time t, the weight $it−1 is defined in

equation (9), and qit is the Tobin’s q of firm i at time t, given by equation (5). Table 3

shows that the business equipment sector has the highest Tobin’s q of 1.81 while the utilities

sector has the lowest Tobin’s q of 1.16. These estimates are consistent with our intuition that

the business equipment sector, which includes the high-tech firms, has the highest growth

potential while the regulated utilities sector has the lowest potential for growth.12

Lastly, the estimates in alternative specifications under which the time, industry, or both

11Figure A.4 in the Internet Appendix plots the means (in solid lines) and 95% credible intervals (in
dotted lines) of the posterior distributions of γ and a, respectively, for each industry and for each year.

12Section F in the Internet Appendix provides further discussion on whether these estimated parameter
values in the baseline make economic sense.
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variations are shut down are close to the baseline estimates. The average (over time or across

industry) production technology parameter γ is 0.18 or 0.15 when time or industry variation

is shut down, while the average adjustment costs parameter a is 0.19 or 0.28.13 When both

industry and time variations are shut down, the posterior means of γ and a are 0.15 (std

= 0.0003) and 0.14 (std = 0.0027), respectively. These estimates are different from the

estimates in Gonçalves, Xue and Zhang (2020), where γ is 0.18 (std = 0.019) and a is 2.84

(std = 0.47). Noticeably, their estimate of a is 20 times larger than our estimate. This result

implies that parameter values chosen to match a set of portfolio returns can still be very

different from the values chosen to match firm-level returns even when the portfolio returns

are aggregated from firm-level fundamental returns as in Gonçalves, Xue and Zhang (2020).

Moreover, our estimates have much smaller standard deviations than those in Gonçalves,

Xue and Zhang (2020). The reason is that Bayesian MCMC utilizes the information of the

entire time series of firm-level stock returns, while the GMM estimation in Gonçalves, Xue

and Zhang (2020) utilizes the average returns on the 40 testing portfolios only.

5.2 Overall fit of the estimation

Different from GMM, which gives point estimates of the parameters, Bayesian MCMC offers

a probabilistic view of the parameters and thus the fundamental returns. Given firm-level

accounting variables, each posterior draw of θ = {θt; t = 1, · · · , T} leads to a panel of

firm-level fundamental returns. Therefore, our estimation generates posterior distributions

of the fundamental returns and any statistical moments of these returns. Table 4 presents

the posterior means and 95% credible intervals of the mean, standard deviation, skewness,

kurtosis, and mean absolute error (m.a.e.) of the fundamental firm-level stock returns and

the time-series average of the cross-sectional correlations between fundamental and realized

stock returns for the baseline and the three alternative estimation specifications. And the

same moments of the realized stock returns are presented for comparison. The definition of

m.a.e. is given by m.a.e. ≡ 1

T

∑T−1
t=0

1

Nt+1

∑Nt+1

i=1 |rSit−rFit |, where Nt+1 is the number of firms

in period t+ 1, and rS and rF are the realized and fundamental stock returns, respectively.

Several observations emerge from Table 4. First, by construction, the baseline with

industry-specific and time varying parameter values has the smallest m.a.e. (40.10%), fol-

13The estimates under the three alternative specifications are available upon request.
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lowed in turn by the specifications with only time variation (40.85%), with only industry

variation (41.85%), and with no variation (42.45%) in parameter values. Although the mag-

nitude of these m.a.e.’s might seem large, it is only two-thirds of the volatility of firm-level

returns. The majority of the m.a.e. comes from the difference in volatility between the real-

ized and fundamental returns discussed below. Second, the mean, skewness and kurtosis of

the fundamental returns match well with those of the realized returns across all four spec-

ifications. The mean of fundamental stock returns ranges from 14.97% to 15.65% across

specifications, compared to 14.45% in the data. The skewness ranges from 1.66 to 2.12,

compared to 2.15 in the data, and kurtosis ranges from 10.66 to 13.33 compared to 11.05

in the data. Third, standard deviations of the fundamental returns are much smaller than

that of the realized one. The baseline generates the highest standard deviation, 34.17%

compared to 60.78% in the data, while the specification with no time variation in parameter

values generates the lowest standard deviation, 18.49%. Lastly, the time-series averages of

the cross-sectional correlations between realized and fundamental firm-level stock returns are

0.20, 0.12, 0.12, and 0.09 for the baseline specification, the ones with industry variation only,

time variation only, and without variations in parameter values, respectively. For compari-

son, we report the same statistics of the NLS estimation for the four specifications in Table

A.2 in the Internet Appendix. Bayesian MCMC results in smaller m.a.e. in every specifica-

tion, echoing the superior performance of Bayesian approach compared to NLS documented

in Section 4.2.

Panel A of Figure 3 plots the histograms of realized (in blue) and fundamental (in or-

ange) firm-level returns based on the posterior means of the parameter estimates. Consistent

with what Table 4 shows, realized returns have a much wider distribution than fundamental

returns at both left and right tails and thus have a larger standard deviation. Both dis-

tributions have longer right tails, resulting in positive skewness and kurtosis higher than

3.

Panel B of Figure 3 plots the time series of the value-weighted realized (in blue) and

fundamental (in orange) market returns, the latter of which is constructed with the pos-

terior means of the parameter estimates. These two time series are highly correlated with

a correlation coefficient of 0.77. In particular, the fundamental market returns successfully

capture the significant fluctuations of the stock markets during the sample period, such as

the Internet bubble around 2000 and the financial crisis around 2008.
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Overall, the baseline estimation does a good job of capturing the entire distribution of

the realized firm-level stock returns in terms of the mean, skewness, and kurtosis, and in

terms of the correlation between realized and fundamental returns. However, the standard

deviation of the fundamental returns is only half of the magnitude in the data. The reason is

that the realized firm-level returns contain large amount of noises unrelated to fundamentals

and are much more volatile than the accounting variables used to construct the fundamental

returns.

5.3 Posterior distributions of the fundamental factor premiums

To examine the capability of the q-theory in explaining stock market anomalies, we construct

12 anomalies, each with 10 decile portfolios and one high-minus-low decile portfolio, as

explained in Section 3. Based on the posterior distributions of the fundamental firm-level

returns, we construct the poster distributions of these factor premiums.

Figure 4 plots the posterior distributions of the 12 fundamental factor premiums under

the baseline estimation and labels the 2.5, 50, and 97.5 percentiles of each distribution.

For example, the posterior distribution in Panel “BM” indicates that, given the observed

accounting variables and provided that the model is correctly specified, the fundamental

value premium per annum falls in the range between 0.31% and 0.60% with 95% probability

and the posterior median is 0.46% per annum. The red line in each panel presents the

density function of a normal distribution with mean and standard deviation taken from the

corresponding posterior distribution. Notice that the posterior distributions are very much

close to normal distribution, indicating that our Bayesian MCMC algorithm converges well.

In cases where the Bayesian MCMC algorithm does not converge, the posterior distributions

typically would have multiple peaks or/and long and fat tails. Moreover, the credible intervals

of the fundamental factor premiums are extremely narrow. As we argue before, these tight

posterior distributions indicate that the simplicity of the model and the richness of firm-level

information confine the parameter estimates and the fundamental factor premiums to a small

set of possible values.

Table 5 presents the realized and fundamental (value-weighted) factor premiums under

the baseline estimation, their t-values, and the t-values of the difference between realized
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and fundamental factor premiums, denoted as alpha, α ≡ rS−rF .14 For each statistic of the

fundamental factor premiums, we report its posterior mean and the 95% credible interval.

Note that the credible intervals and t-values of the factor premiums measure different types

of variability. For example, t-value of the fundamental value premium, t
(
rF
)
, measures

the time-series variability of the fundamental returns on the high-minus-low book-to-market

portfolio generated by a given posterior draw of parameter values. In contrast, the credi-

ble interval of the fundamental value premium gives a range into which 95% of the value

premiums in the posterior draws fall.

Several observations emerge from Figure 4 and Table 5. First, the model generates

positive momentum, profitability (ROE, ROA, and GP/A), and intangibles (R&D and ad-

vertising) premiums and generates negative size and investment (I/A, NSI, and ∆PI/A)

premiums, all of which are statistically significant at the 5% level. The t-values of these

factor premiums, including the posterior means and the 95% credible intervals, are all larger

than 1.96 in absolute values. For example, in terms of the posterior means, the fundamen-

tal momentum premium is 11.82% per annum with a t-stat of 12.51, while the momentum

premium is 13.75% (t = 4.15) in the data. In general, the t-values of the fundamental factor

premiums are larger than their counterparts in the data due to the low variability of the

fundamental returns. Among the aforementioned 10 factor premiums, the majority of their

alphas are insignificantly different from zero except the alphas of the I/A, NSI, and GP/A

premiums, which are significant at the 5% level.

Second, the model generates positive but statistically insignificant value premium. The

posterior means of the fundamental value premium and its t-value are 0.46% per annum

and 0.26, both of which have very narrow credible intervals (CIs being [0.31%, 0.60%] and

[0.18, 0.35]). It turns out that the model is able to explain the value premium for the pre-

July 1991 period, but not the period after. We suspect that the failure to explain the value

premium in the post-July 1991 period is due to the growing importance of intangibles in

firms’ market value. Detailed discussion is provided in Section 6.2.

Lastly, the model predicts significantly positive accruals premium, which is however neg-

ative in the data. The fundamental accruals premium is 4.74% (t = 4.45) in contrast to

−5.58% (t = −3.14) in the data. This result is not surprising in that the concept of accruals

14Since rS is deterministic, the posterior distributions of the alphas have the same shape as the distribu-
tions of the corresponding fundamental factor premiums rF .
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is absent in our model, where cash and accruals basis accountings are treated the same. High

accruals mean high profitability in the model, which however is not necessarily true in the

data. Detailed analysis on why the model fails to generate negative fundamental accruals

premium is provided in Section 6.

Figure 5 presents a comparison between the realized and fundamental factor premiums

graphically. The height of a bar in Panel A represents the magnitude of the corresponding

premium. The 95% credible intervals of the fundamental factor premiums are also marked

as the error bars. Panel B plots the average fundamental returns against the realized returns

across the 120 decile portfolios, in which the scatter points are largely aligned with the 45-

degree line. Overall, the above results show that the estimated model is able to generate

sizable factor premiums that are consistent with what we observe in the data except the

value and accruals premiums.

5.4 Importance of industry and time variations in parameter val-

ues

In our baseline estimation, we allow model parameters to be industry specific and time

varying. In this section, we examine the importance of these variations in terms of explaining

firm-level returns and anomaly premiums by comparing the performance of the baseline

estimations with three alternative specifications under which the time, industry, or both

variations are shut down, respectively.

To compare the performance of an alternative specification with the baseline, we construct

the following statistic:

da =
1

T

T−1∑
t=0

1

Nt+1

Nt+1∑
i=1

(∣∣∣rSit+1 − r
F (a)
it+1

∣∣∣− ∣∣∣rSit+1 − r
F (b)
it+1

∣∣∣) , (11)

where rF (a) and rF (b) are the fundamental returns under the alternative specification, a, and

the baseline, respectively. Note that although our statistic is similar in form to Diebold-

Mariano (1995), they differ in nature by statistical properties. However, taking advantage

of MCMC, we can still make a valid inference from this statistic. Intuitively, when the

estimation errors from the alternative specification are larger in magnitude, we expect da

to be above 0 with statistical significance. Following equation (11), we record da(m) for the
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m-th posterior draws of parameter values. These 5, 000 posterior draws jointly provide us

with the empirical distribution of the statistic da. A significantly positive da indicates that

the baseline performs significantly better than the alternative specification a in explaining

firm-level stock returns.

Figure 6 plots the distribution of da for each of the three alternative settings all in one

panel in Panel (a) and separately in Panels (b) to (d). The 2.5, 50, and 97.5 percentiles

of the posterior distributions are also marked in the last three panels. We can see that

the posterior distributions of these three settings all lie in the positive region. Neither of

the three 95% credible intervals ([0.57, 0.67] for industry-invariant, [1.22, 1.32] for time-

invariant, and [1.80, 1.90] for constant parameter settings) includes zero, indicating that the

baseline performs significantly better in explaining the firm-level stock returns than these

alternative settings. Moreover, the location of these distributions in Panel (a) indicates that

the performance of the model with industry-invariant parameters is closest to the baseline,

followed by the settings with time-invariant parameters and with constant parameters. That

is, time variation is more important than industry variation in explaining firm-level stock

returns.

Table 6 compares the performance of these four specifications in terms of generating factor

premiums. First, for the model to match anomaly premiums, time and industry variations

are not necessarily helpful. In fact, shutting down time variation decreases the magnitude

of alphas for the size, GP/A, and Ad/M anomalies, while shutting down industry variation

decreases the magnitude of alphas for the ROE, ROA, and NSI anomalies. Second, industry

variation is critical for generating intangibles premiums while time variation is not. Without

the industry variation, the RD/M and Ad/M alphas become statistically significant at the

5% level. Third, the success in generating the momentum premium crucially depends on both

industry and time variations in parameter estimates. Without either of them, the momentum

alpha becomes larger and statistically significant. Lastly, none of these specifications can

generate negative accruals premium and significantly positive value premium. The alphas

of these two anomaly premiums become even larger in absolute value once industry and/or

time variations in parameter estimates are shut down.

In summary, both industry and time variations in parameter values significantly improve

the ability of the model to match firm-level stock returns. However, these variations are not

critical to explaining the majority of these anomaly premiums and in some cases they even
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hurt the performance. The specification that best matches firm-level stock returns does not

necessarily explain anomalies better because these anomaly premiums are not the targets of

our estimation.

6 Inspecting the economic mechanism

In this section, we conduct comparative statics to quantify the relation of next period fun-

damental returns rFit+1 with four firm characteristics: current invest-to-physical capital ratio

Iit/Kit, next period invest-to-physical capital ratio Iit+1/Kit+1, next period sales-to-physical

capital ratio Yit+1/Kit+1, and next period working-to-physical capital ratio Wit+1/Kit+1.

Based on the comparative statics, we explore the economic driving forces behind these fun-

damental anomaly premiums and try to understand why the model fails to generate the

value and accruals anomalies.

6.1 Comparative statics

The fundamental stock return in equation (6) gives important implications on the relation

between firm characteristics and stock returns in equilibrium. Given equation (6), it is

straightforward to derive the following partial derivatives and their signs:

∂rFit+1

∂(Iit/Kit)
=

−(1− τt)rFwaccit+1 ajt

(1− wBit )
[
1 + (1− τt)ajt

(
Iit
Kit

)
+ Wit+1

Kit+1

] < 0 (12)

∂rFit+1

∂(Iit+1/Kit+1)
=

(1− τt+1)
(

1 + Iit+1

Kit+1
− δit+1

)
ajt+1

(1− wBit )
[
1 + (1− τt)ajt

(
Iit
Kit

)
+ Wit+1

Kit+1

] > 0 (13)

∂rFit+1

∂(Yit+1/Kit+1)
=

(1− τt+1)γjt+1

(1− wBit )
[
1 + (1− τt)ajt

(
Iit
Kit

)
+ Wit+1

Kit+1

] > 0 (14)

∂rFit+1

∂(Wit+1/Kit+1)
=

1− rFwaccit+1

(1− wBit )
[
1 + (1− τt)ajt

(
Iit
Kit

)
+ Wit+1

Kit+1

] , (15)

where rFwaccit+1 is firm i’s fundamental weighted average cost of capital, defined as rFwaccit+1 ≡
(1− wBit )rFit+1 + wBit r

Ba
it+1.
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These partial derivatives imply that, all else equal, lower current investment-to-capital

ratio, Iit/Kit, higher next period investment-to-capital ratio, Iit+1/Kit+1, and higher prof-

itability Yit+1/Kit+1 are associated with higher next period fundamental stock return rFit+1,

respectively. The relation between fundamental return and the next period working-to-

physical capital ratio Wit+1/Kit+1 is more complicated. On one hand, higher Wit+1/Kit+1

indicates higher return on working capital investment implied by equation (3). On the other

hand, higher Wit+1/Kit+1 means that a larger fraction of return on assets comes from re-

turn on working capital investment, which could lead to lower stock return if return on

physical capital investment is higher than the return on working capital investment. Equa-

tion (15) implies that the relation between rFit+1 and Wit+1/Kit+1 is mostly negative since a

firm’s weighted average cost of capital is in general larger than one. Moreover, rFit+1 is more

sensitive to variations in Iit/Kit and Iit+1/Kit+1 when the adjustment costs parameter a is

larger and rFit+1 is more sensitive to variations in Yit+1/Kit+1 when the marginal productivity

parameter γ is larger on average.15

To conduct comparative statics on Iit/Kit, we set Iit/Kit to be its cross-sectional median

at period t across all firms and use the parameter estimates from the baseline estimation to

reconstruct the fundamental returns. We then recalculate the fundamental factor premiums

for the 12 anomalies and the corresponding alphas. If the resulting alphas are large relative

to those from the baseline estimation, we can infer that the Iit/Kit spread is quantitatively

important to explain the average return spreads. The comparative statics with respective

to Iit+1/Kit+1, Yit+1/Kit+1, and Wit+1/Kit+1 are designed analogously and the results are

reported in Table 7. We summarize the findings below.

First, for all the anomalies except the ∆PI/A, Yit+1/Kit+1 is the most important driver

of these anomaly spreads. For example, our model with the baseline estimation explains

the momentum premium very well, with an alpha of 1.87% (t = 0.57). The alpha increases

to 14.88% (t = 3.69) when variations in Yit+1/Kit+1 across firms are shut down, compared

to alphas of −0.63% (t = −0.19), 8.29% (t = 2.24), and 1.19% (t = 0.32) when varia-

tions in Iit/Kit, Iit+1/Kit+1, and Wit+1/Kit+1 are shut down, respectively. Our finding is in

sharp contrast with those of Gonçalves, Xue and Zhang (2020), who find that Iit/Kit and

Iit+1/Kit+1 are the most important drivers. As discussed in Section 5.1, our estimates of

the adjustment costs parameter a are much smaller than the value estimated by Gonçalves,

15Section 6 in the Internet Appendix provides the proof.
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Xue and Zhang (2020), which weakens the impacts of investment-to-physical capital ratio

on fundamental returns.

Second, the comparative statics are largely consistent with the aforementioned partial

derivative analysis. For example, Table 7 shows that fixing Iit/Kit across firms leads to higher

momentum premium, which is consistent with the fact that winners have higher Iit/Kit

compared to losers and, as the partial derivative analysis shows, higher Iit/Kit leads to lower

rFit+1.
16 Similarly, fixing Iit+1/Kit+1, Yit+1/Kit+1, and Wit+1/Kit+1 across firms leads to lower,

lower, and higher momentum premiums, respectively, given that winners have higher values

in these three characteristics compared to losers. Next, we try to understand why the model

fails to generate the value and accruals anomalies based on the above comparative statics

analysis.

6.2 The value premium

Prior studies with similar models (Liu, Whited and Zhang, 2009; Gonçalves, Xue and Zhang,

2020) find that the differences in physical investment-to-capital ratio between value and

growth firms contribute the most to the value premium. In our case, the sales-to-physical

capital ratio is the most important driver of the return spread between value and growth

firms, as shown in Table 7. Table A.4 in the Internet Appendix shows that value firms on

average have lower Iit/Kit, Iit+1/Kit+1, Yit+1/Kit+1, and Wit+1/Kit+1, which in turn lead to

higher, lower, lower, and higher fundamental returns according to equations (12) to (15),

respectively. Moreover, the difference in Iit/Kit between value and growth firms is the largest

among the differences in these four characteristics. Because our estimated adjustment costs

parameter, a, is much smaller than those in prior studies17, the effect of Iit/Kit is not large

enough to dominate the countervailing effect of Yit+1/Kit+1, resulting in an insignificant

fundamental value premium.

Data shows that the poor performance of the model mainly comes from the second

half of the sample. The model generates sizable value premium 2.94% (t=1.09), and more

importantly, insignificant alpha, α = 3.52% (t=1.66), for the June 1967 to June 1991 period.

16Table A.4 in the Internet Appendix reports the average Iit/Kit, Iit+1/Kit+1, Yit+1/Kit+1, and
Wit+1/Kit+1 for firms in each decile portfolio.

17The values of a range from 0.25 to 1.78 on average across the Fama-French 10 industries in our baseline
estimation, compared to 2.84 in Gonçalves, Xue and Zhang (2020), 22.3 in Liu, Whited and Zhang (2009)
when the GMM moment is the average value premium.
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However, for the July 1991 to December 2016 period, the model generates negative value

premium, −1.87% (t=−0.93), and large and significant alpha, 8.87% (t=3.06). Several recent

papers (for example, Eisfeldt, Kim and Papanikolaou, 2020; Belo et al., 2021) show that

intangible capitals become increasingly important for cross-sectional return and valuation

differences. However, intangible capitals are not modeled in our framework. It is reasonable

that our model fails to generate the value premium if intangible capitals become more and

more critical for the return spread between value and growth firms. A framework with

explicit modeling of intangibles might be the key to explain the value premium, especially

for the sample period after June 1991.

6.3 The accruals anomaly

Table 7 shows that Wit+1/Kit+1 and Yit+1/Kit+1 are the most important drivers of the return

spreads across firms sorted on accruals. According to Table A.4 in the Internet Appendix,

high-accruals firms have higher Wit+1/Kit+1 and Yit+1/Kit+1 than low-accruals firms do.

Our partial derivative analysis shows that higher Wit+1/Kit+1 leads to lower, while higher

Yit+1/Kit+1 leads to higher, fundamental return. Comparative statics in Table 7 show that

the impact of Yit+1/Kit+1 dominates that of Wit+1/Kit+1, resulting in a counterfactual posi-

tive fundamental accruals premium.

The negative effect of Wit+1/Kit+1 on the accruals premium echoes the argument in Wu,

Zhang and Zhang (2010) and Zhang (2013) that the accruals anomaly is a manifestation

of the investment anomaly in the sense that accruals capture fundamental investment in

working capital and high investment is associated with low return. In the absence of the

spread in Yit+1/Kit+1 between high- and low-accruals firms, our model would have generated

a negative accruals anomaly, consistent with the data.

However, differences in Yit+1/Kit+1 between high- and low-accruals firms are likely overes-

timated. Because our model does not distinguish cash basis from accruals basis accountings,

earnings of these firms are regarded as having the same quality. In contrast, data shows

that subsequent write-offs of account receivables happen more often to high-accruals firms

(Dechow and Dichev, 2002, among others). Therefore, the quality-adjusted difference in

Yit+1/Kit+1 between high- and low-accruals firms will be smaller and imply a smaller or even

negative fundamental accruals premium. A model that incorporates earnings quality is an
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interesting topic for future research.

7 Discussions

In this section, we explore whether the model can explain the dynamics of these 12 anomalies,

such as the correlation between the realized and fundamental factor portfolios, the persistence

of their returns, and the dependences of these factor premiums on market states. In addition,

we discuss whether the in-sample feature of the baseline estimation is critical for the model’s

ability to explain anomalies. Finally, we examine the model’s out-of-sample predictive power

on stock returns at the cross section. Fundamental stock returns in this section are computed

based on the posterior means of parameter values under the baseline specification. Given

that the posterior distribution is extremely narrow, the results in this section can be largely

carried over to any set of parameter values within the 95% credible interval of the posterior

distribution.

7.1 Correlation between realized and fundamental portfolio re-

turns

Table 8 reports the contemporaneous correlations between the realized and fundamental

returns on the 120 decile portfolios and the 12 high-minus-low decile portfolios for the 12

anomalies. The fundamental and realized portfolio returns are all highly correlated and the

correlation coefficients are all significant at the 1% level. The average correlation is 0.69 for

decile portfolios and 0.43 for the high-minus-low deciles.

Notice that although the model cannot generate significant value premium and accruals

premium with the correct sign, the fundamental returns on the BM and accruals deciles

are still highly correlated with the realized ones. The correlations of these 20 deciles range

between 0.63 and 0.78, while the correlations of the high-minus-low deciles are 0.53 for BM

and 0.41 for accruals.

Figure 7 plots the time-series returns of the 12 high-minus-low deciles. Although the

fundamental and realized return series do show strong comovements, the realized portfolio

returns are much more volatile than the fundamental ones. In particular, the model fails

to generate the extreme movements observed in the data, such as the momentum crash of
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2009. The lack of large variations in fundamental returns is driven by the fact that firm

fundamentals, measured by accounting information, do not exhibit fluctuations as large as

those in realized stock returns.

7.2 Factor premiums and market states

The performance of long-short anomaly strategies often varies with the market conditions due

to cyclical changes in firm fundamentals and market risk premiums. For example, Gonçalves,

Xue and Zhang (2020) show that value and investment premiums are counter-cyclical while

momentum and profitability premiums are procyclical. Following Gonçalves, Xue and Zhang

(2020), we define up market as periods following nonnegative prior 36-month market returns

and down market as periods following negative prior 36-month market returns, and examine

the cyclicality of the 12 factor premiums.18

Table 9 shows that the momentum, ROE, NSI, GP/A, and ROA premiums exhibit strong

pro-cyclicality, while the BM, I/A, size, ∆PI/A, and Ad/M premiums exhibit counter-

cyclicality. In contrast, the fundamental premiums show less variations between up and

down states, but they do exhibit the same cyclicality as those of the realized premiums.

For example, the momentum premium is 18.51% following up markets but −12.99% follow-

ing down markets. The contrast is 12.43% versus 8.77% for the fundamental momentum

premium.

The realized RD/M premium does not show significant dependence on market states,

being 8.61% following up markets and 9.53% following down markets. However, the pre-

dicted RD/M premium exhibits strong pro-cyclicality, being 6.12% versus −1.54%. This

discrepancy highlights the importance of modeling R&D explicitly in order to capture the

time-series dynamics of the RD/M premium. In the current model, R&D investment is not

directly modeled and its influence on stock returns is bridged by its correlations with prof-

itability and investments in physical and working capitals. Finally, the predicted accruals

premium continues to show opposite signs as those of the realized one, following both up

and down markets.

18Results do not change qualitatively when up and down markets are defined based on prior 12- or
24-month market returns.
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7.3 Persistence of factor premiums

One important aspect of a factor premium is its persistence, which varies greatly across

anomalies. Figure 8 presents the event-time dynamics of the realized (top of each panel)

and fundamental returns (bottom of each panel) for the high and low deciles during the

36-month period after the portfolio formation for each anomaly. The momentum, ROE, and

ROA premiums diminish within 12 months after the portfolio formation, while the other

premiums subsist much longer. The model succeeds in reproducing the short-lived nature

of the momentum, ROE, and ROA premiums, as well as the long-lived nature of the rest

with the exception of the accruals premium. The accruals premium lasts for 18 months in

the data while there is no noticeable decrease in the fundamental premium after 36 months.

Given that the model cannot get the sign of the accruals anomaly right, it is not surprising

that the model cannot explain the persistence either.

7.4 Recursive estimation of parameters with expanding window

Our baseline estimation utilizes the information of the entire sample and in principle should

generate parameter estimates closest to their true values if the model is correct. However,

one may be concerned that the performance of the model comes from the look-ahead ad-

vantage of the in-sample estimation. In this section, we recursively estimate the model’s

parameters with expanding windows and compute the one-year-ahead fundamental returns.

This procedure, which combines the recursive parameters with realized accounting variables

(instead of their forecasts), is in the same spirit as in Fama and French (1997).

Starting from October 1980, we recursively estimate the model parameters from an ex-

panding window that starts in June 1967 and ends in May of each year from 1980 to 2018.

The latest accounting variables in the first recursive estimation must come no later than May

1980, the latest month for fiscal year 1979. Following Gonçalves, Xue and Zhang (2020),

we impose a 4-month lag to ensure no look-ahead bias. For example, with the parameters

estimated at the end of May 1980, we compute the one-year-ahead fundamental returns from

October 1980 to September 1981. We expand the recursive windows one year at a time until

May 2017. To compare with realized returns that need to be smoothed within a 12-month

window, we evaluate the fit of the recursive estimation for the sample between March 1981

and December 2016. We allow parameters to vary across industry within each estimation
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window.

Table 10 compares the high-minus-low alpha (αH-L), i.e., the alpha of the factor premium,

and the average absolute decile alpha (|αD|) constructed from recursive estimations with

those from the baseline estimation for each anomaly between March 1981 to December 2016.

As we expect, the average absolute decile alpha becomes larger in the out-of-sample (OOS)

estimation than that of the baseline for most anomalies except for the momentum and size

because the in-sample estimate matches stock returns better on average. However, in terms

of matching the anomaly premiums, the OOS estimation does not perform worse than the

baseline estimation. Each specification fails to explain two anomalies, in addition to the value

and accruals anomalies. Neither of them can explain the net stock issues (NSI) premium,

the high-minus-low alpha of which is significant at the 5% level under both specifications.

In addition, the baseline estimation cannot explain the gross profitability (GP/A) premium

while the OOS estimation cannot explain the asset growth (I/A) premium.

In sum, whether parameters are estimated in sample or out of sample is not critical for

the model’s ability to explain factor premiums in general. The fact that our estimation

targets firm-level returns, not the average anomaly premiums, might be a key reason behind

this result.

7.5 Out-of-sample (OOS) return forecast

Traditional forecasts on cross-sectional stock returns rely on linear models to organize in-

formation. Gu, Kelly and Xiu (2020) show that machine learning methods can significantly

improve the OOS forecasting performance of traditional linear models.19 However, machine

learning methods lack economic structures, similar to linear risk-factor models. One advan-

tage of our estimation is that it combines the Bayesian MCMC method with a simple yet

powerful economic structure. We examine its OOS forecasting performance in this section.

To forecast stock returns, we need to forecast the firm fundamentals used in Equation

(6) in addition to recursively estimating parameter values as in Section 7.4.20 To reduce

19The set of machine learning methods studied in Gu, Kelly and Xiu (2020) includes generalized linear
models with penalization, dimension reduction via principal components regression (PCR) and partial least
squares (PLS), regression trees (including boosted trees and random forests), and neural networks.

20We have tried three specifications of recursive estimation: (1) allow both industry and time variations
within each estimation window, and use the parameter estimates at the end of the expanding window to
construct the one-year-ahead fundamental returns; (2) allow both industry and time variations within each

31



measurement errors, we set the expected rBait+1, τt+1, and δit+1 values to their current values

from the most recent fiscal year-end at least four months ago. In addition, values of physical

and working capital stocks, Kit+1 and Wit+1, are known at the beginning of time t+ 1. The

key is to forecast Yit+1 and Iit+1. Following Gonçalves, Xue and Zhang (2020), we forecast

Iit+1/Kit+1 on lagged Tobin’s Qit, sales-to-total capital, Yit/(Kit +Wit), and investment-to-

physical capital, Iit/Kit, and forecast annual sales growth, Yit+1/Yit, on the year-over-year

quarterly sales growth rates of the prior four quarters. We winsorize the sales growth rates

at the 2.5%-97.5% level.

At the beginning of each month t from October 1980 to September 2018, we use the

prior 120-month rolling window to estimate the cross-sectional forecasting regressions of

Iit+1/Kit+1 and Yit+1/Yit. Monthly Fama and MacBeth (1973) cross-sectional weighted least

squares regressions are used for the forecast. The Iit+1 and Yit+1 data are obtained from the

most recent fiscal year ending at least four months prior to month t, and the predictors in the

forecasting regressions are further lagged accordingly. We then construct predicted returns

using forecasted fundamentals and recursively estimated parameters based on Equation (6)

in Section 7.4.

At the beginning of each month t from October 1980 to September 2018, we form deciles

based on the predicted stock returns and NYSE breakpoints and hold them for one month.

Table 11 presents the realized average monthly excess returns, the CAPM alpha, the Fama-

French three-factor, Carhart four-factor, and Fama-French five-factor alphas, and the Hou,

Xue and Zhang (2020) q-factor alpha of the 10 deciles and the high-minus-low decile. First

of all, our model shows strong and reliable forecast capability, with the realized average

monthly excess return of the high-minus-low decile being 0.45% (t=2.45). Second, and more

importantly, this realized return spread between firms with the highest and lowest predicted

returns cannot be explained by the commonly used risk factors. In fact, the risk-adjusted

alphas are even larger and more significant than the average excess return in some cases.

The CAPM alpha, the Fama-French three-factor, Carhart four-factor, and Fama-French five-

estimation window, and use the average of the time-series parameter estimates to construct the one-year-
ahead fundamental returns; (3) allow industry but not time variations, and use the estimates to construct
the one-year-ahead fundamental returns. The last specification, which is the one used in Section 7.4, gives
us the highest prediction power. Estimates of the third specification better utilize the information of the
entire prior sample in a structural way. The only scenario where the first specification would perform better
is when there is a trend in the time series of parameter estimates, which is not the case here as shown in
Figure 2.
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factor alphas, and the Hou, Xue and Zhang (2020) q-factor alpha are 0.43% (t=2.38), 0.58%

(t=3.25), 0.52% (t=2.87), 0.61% (t=3.08), and 0.47% (t=2.22), respectively. The fact that

these linear factor models cannot explain the return spread between firms with the highest

and lowest predicted returns suggests that the nonlinear structure imposed by the simple

q-model plays a critical role in explaining the cross-sectional return differences.

8 Conclusion

Can stock market anomalies be explained within an investment-based asset pricing frame-

work? To answer this question, prior studies often choose model parameters to fit a specific

set of anomalies and different values are needed to fit each anomaly. Using Bayesian MCMC,

this paper estimates a simple two-capital q-model to match firm-level stock returns. The

estimated model generates large and significant size, momentum, investment, profitability,

and intangibles premiums. The results hold for a variety of alternative specifications, in-

cluding in-sample and out-of-sample estimations, and estimations with industry and time

variations in parameter values, with time variations only, with industry variations only, and

with constant values. Moreover, the model exhibits reliable out-of-sample forecasts on stock

returns in the cross section, which can not be explained by the commonly used linear factor

models. Our results show that the simple q-model goes a long way in explaining stock market

anomalies.
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Figure 1: Simulation study

This figure plots the true values (in red solid lines), the NLS estimates (in green lines with triangle markers),

the Bayesian MCMC posterior means (in blue dashed lines) and the 95% prediction intervals (in shaded

areas) of the model parameters estimated from the simulated data. The marginal product and adjustment

costs parameters of Consumer Nondurables, Manufacturing, and Business Equipment industries are denoted

as γi and ai for i = 1, 2, 3, respectively..

2 4 6 8 10 12 14

0.2

0.3

0.4

0.5

0.6

0.7

0.8
1

2 4 6 8 10 12 14

5.0

5.5

6.0

6.5

7.0

7.5

8.0

a1

2 4 6 8 10 12 14

0.3

0.4

0.5

0.6

0.7

0.8

2

2 4 6 8 10 12 14

4.25

4.50

4.75

5.00

5.25

5.50

5.75

6.00

a2

2 4 6 8 10 12 14

0.3

0.4

0.5

0.6

0.7

0.8
3

2 4 6 8 10 12 14
3.0

3.5

4.0

4.5

5.0

5.5

a3

37



Figure 2: Time series of estimated parameters

This figure shows the time series (1967-2016) of the posterior means of the marginal product parameter,

γ, and physical investment adjustment costs parameter a, averaged across the Fama-French 10 industries.

Parameter values are plotted in solid lines and the 95% credible intervals are in dotted lines.
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Figure 3: Distribution of firm-level returns: realized vs. fundamental

Panel (a) presents the histograms of the realized (in blue) and fundamental (in orange) firm-level stock

returns from June 1967 to December 2016. Panel (b) presents the time series of the value-weighted returns

on the market. Returns are in percentage per annum. The number of observations is 136,598. Observations

in Panel (a) are trimmed at 0.5 and 99.5 percentiles for illustration purposes.
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Figure 4: Posterior distributions of the fundamental factor premiums

This figure plots the posterior probability density functions of the fundamental factor premiums formed on

book-to-market (BM), momentum (R11), asset growth (I/A), return-on-equity (ROE), size (Size), accruals

(Accruals), net share issues (NSI), investment-to-assets ratio (∆PI/A), gross profitability (GP/A), return-

on-assets (ROA), R&D-to-market ratio (RD/M), and advertising-to-market ratio (Ad/M). The red lines

represent normal distributions with means and standard deviations being the posterior means and standard

deviations of the corresponding factor premiums. The 2.5%, 50%, and 97.5% percentiles of each posterior

distribution are labeled below the horizontal axes.
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Figure 5: Factor premiums: realized vs. fundamental

The realized factor premiums and the posterior means of the fundamental factor premiums are plotted in

Panel (a). The error bars represent the 95% credible intervals of the posterior distributions. The average

fundamental returns of the decile portfolios sorted on the 12 anomaly variables are plotted against the

corresponding realized ones in Panel (b). Returns are in percentage per annum.

BM R11 I/A ROE
Size

Accruals NSI
PI/A GP/A

ROA
RD/M

Ad/M
-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

Fa
cto

r P
re

mi
um

 (%
)

Realized
Fundamental

(a) Factor premiums

0 5 10 15 20 25
Realized factor premiums (%)

0

5

10

15

20

25

Fu
nd

am
en

tal
 fa

cto
r p

re
mi

um
s (

%)

BM
R11
I/A
ROE
Size
Accruals
NSI

PI/A
GP/A
ROA
RD/M
Ad/M

(b) Returns of decile portfolios

40



Figure 6: Alternative estimation specifications

This figure plots the posterior distributions of da =
1

T

∑T
t=1

1

Nt

∑Nt

i=1 d
a
it for three alternative settings:

parameters with industry variations only, time variations only, and constant values, respectively, where

dait =
∣∣∣rSit+1 − r

F (a)
it+1

∣∣∣ − ∣∣∣rSit+1 − r
F (b)
it+1

∣∣∣, rF (a) and rF (b) are the fundamental returns under the alternative

specification, a, and the baseline, b, and da is in percentage per annum.
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Figure 7: Time series of factor premiums: realized vs. fundamental

This figure plots the time series of the realized (in blue solid lines) and fundamental (in red dotted lines)

factor premiums. Returns are in percentage per annum and in monthly frequency.
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Figure 7: Time series of factor premiums: realized vs. fundamental (continued)
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Figure 8: Persistence of factor premiums: realized vs. fundamental

This figure plots the realized (top of each panel) and fundamental returns (top of each panel) on the low

(blue solid lines) and high (red dotted lines) deciles for 36 months after the portfolio formation for each

anomaly. Returns are in percentage per annum and in monthly frequency.

R11

6 12 18 24 30 36
0

5

10

15

20

25

6 12 18 24 30 36
0

5

10

15

20

25

ROE

6 12 18 24 30 36
0

5

10

15

20

25

6 12 18 24 30 36
0

5

10

15

20

25

ROA

6 12 18 24 30 36
0

5

10

15

20

25

6 12 18 24 30 36
0

5

10

15

20

25

BM

6 12 18 24 30 36
9

10

11

12

13

14

15

16

17

18

19

6 12 18 24 30 36
12

12.2

12.4

12.6

12.8

13

13.2

13.4

13.6

13.8

14

NSI

6 12 18 24 30 36
0

5

10

15

20

25

6 12 18 24 30 36
0

5

10

15

20

25

Ad/M

6 12 18 24 30 36
0

5

10

15

20

25

6 12 18 24 30 36
0

5

10

15

20

25

44



Size

6 12 18 24 30 36
0

5

10

15

20

25

6 12 18 24 30 36
0

5

10

15

20

25

RD/M

6 12 18 24 30 36
0

5

10

15

20

25

6 12 18 24 30 36
0

5

10

15

20

25

PI/A

6 12 18 24 30 36
0

5

10

15

20

25

6 12 18 24 30 36
0

5

10

15

20

25

GP/A

6 12 18 24 30 36
0

5

10

15

20

25

6 12 18 24 30 36
0

5

10

15

20

25

I/A

6 12 18 24 30 36
0

5

10

15

20

25

6 12 18 24 30 36
0

5

10

15

20

25

Accruals

6 12 18 24 30 36
0

5

10

15

20

25

6 12 18 24 30 36
0

5

10

15

20

25

45



T
ab

le
1:

D
e
sc

ri
p
ti

v
e

p
ro

p
e
rt

ie
s

o
f

d
e
ci

le
p

o
rt

fo
li

o
s

T
h

is
ta

b
le

re
p

or
ts

th
e

m
on

th
ly

av
er

ag
e

ex
ce

ss
re

tu
rn

s
o
f

d
ec

il
e

p
o
rt

fo
li

o
s

fo
r

1
2

a
n

o
m

a
ly

va
ri

a
b

le
s,

in
cl

u
d

in
g

b
o
o
k
-t

o
-m

a
rk

et
eq

-

u
it

y
ra

ti
o

(B
M

),
m

om
en

tu
m

(R
11

),
as

se
t

gr
ow

th
(I

/
A

),
re

tu
rn

-o
n

-e
q
u

it
y

(R
O

E
),

si
ze

(S
iz

e)
,

a
cc

ru
a
ls

(A
cc

ru
a
ls

),
n

et
sh

a
re

is
su

es

(N
S

I)
,

in
ve

st
m

en
t-

to
-a

ss
et

s
ra

ti
o

(∆
P

I/
A

),
gr

os
s

p
ro

fi
ta

b
il

it
y

(G
P

/
A

),
re

tu
rn

-o
n

-a
ss

et
s

(R
O

A
),

R
&

D
-t

o
-m

a
rk

et
ra

ti
o

(R
D

/
M

),
a
n

d

ad
ve

rt
is

in
g-

to
-m

ar
ke

t
ra

ti
o

(A
d

/M
).

T
h

e
t-

st
at

is
ti

cs
a
d

ju
st

ed
fo

r
h

et
er

o
sc

ed
a
st

ic
it

y
a
n

d
a
u
to

co
rr

el
a
ti

o
n

s
a
re

re
p

o
rt

ed
in

p
a
re

n
th

es
es

.

D
ec

il
e

p
or

tf
ol

io
s

ar
e

fo
rm

ed
w

it
h

N
Y

S
E

b
re

ak
p

o
in

ts
a
n

d
va

lu
e-

w
ei

g
h
te

d
re

tu
rn

s.
L

d
en

o
te

s
th

e
lo

w
d

ec
il

e,
H

th
e

h
ig

h
d

ec
il

e,
a
n

d

H
-L

th
e

h
ig

h
-m

in
u

s-
lo

w
d

ec
il

e.
T

h
e

sa
m

p
le

p
er

io
d

is
fr

o
m

J
a
n
u

a
ry

1
9
6
7

to
J
u

n
e

2
0
1
7

fo
r

a
ll

a
n

o
m

a
ly

va
ri

a
b

le
s

ex
ce

p
t

fo
r

R
O

A
,

R
D

/M
,

an
d

A
d

/M
.

T
h

e
sa

m
p

le
st

ar
ts

a
t

J
u
ly

19
7
2
,

J
u

ly
1
9
7
6
,

a
n

d
J
u

ly
1
9
7
3

fo
r

R
O

A
,

R
D

/
M

,
a
n

d
A

d
/
M

,
re

sp
ec

ti
ve

ly
,

d
u

e
to

d
a
ta

av
ai

la
b

il
it

y.

L
2

3
4

5
6

7
8

9
H

H
-L

B
M

0.
40

0.
53

0.
6
0

0
.5

1
0
.4

9
0
.5

4
0
.6

5
0
.6

3
0
.7

2
0
.9

0
0
.5

0
(1

.8
3)

(2
.6

7)
(3

.1
4)

(2
.4

8
)

(2
.6

4
)

(2
.9

2
)

(3
.4

1
)

(3
.3

3
)

(3
.5

8
)

(3
.7

7
)

(2
.3

9
)

R
11

-0
.0

1
0.

34
0.

52
0
.4

8
0
.4

8
0
.4

6
0
.4

9
0
.6

0
0
.6

4
1
.0

4
1
.0

5
(-

0.
04

)
(1

.2
5)

(2
.4

0)
(2

.3
9
)

(2
.5

4
)

(2
.3

8
)

(2
.8

4
)

(3
.3

0
)

(3
.1

1
)

(3
.9

1
)

(3
.5

1
)

I/
A

0.
71

0.
70

0.
6
3

0
.5

0
0
.5

5
0
.5

4
0
.5

6
0
.5

0
0
.5

4
0
.2

6
-0

.4
5

(2
.9

7)
(3

.6
4)

(3
.7

4)
(2

.9
2
)

(3
.1

9
)

(2
.9

6
)

(3
.0

6
)

(2
.5

2
)

(2
.2

7
)

(1
.0

2
)

(-
3
.0

6
)

R
O

E
0.

04
0.

27
0.

42
0
.4

2
0
.5

5
0
.4

8
0
.5

3
0
.4

9
0
.5

5
0
.6

8
0
.6

4
(0

.1
2)

(1
.0

8)
(1

.9
5)

(2
.3

0
)

(3
.0

4
)

(2
.4

7
)

(2
.7

6
)

(2
.5

5
)

(2
.8

8
)

(3
.2

8
)

(3
.1

0
)

S
iz

e
0.

84
0.

70
0.

65
0
.6

4
0
.6

9
0
.6

1
0
.6

1
0
.6

2
0
.5

3
0
.4

6
-0

.3
7

(2
.6

3)
(2

.4
9)

(2
.5

0)
(2

.6
1
)

(2
.8

3
)

(2
.7

2
)

(2
.6

9
)

(2
.9

6
)

(2
.7

5
)

(2
.6

6
)

(-
1
.5

5
)

A
cc

ru
al

s
0.

58
0.

51
0.

5
7

0
.4

7
0
.5

8
0
.5

8
0
.5

9
0
.4

4
0
.3

3
0
.1

9
-0

.4
0

(2
.3

1)
(2

.4
8)

(3
.2

8)
(2

.6
2
)

(2
.9

6
)

(3
.0

6
)

(2
.9

6
)

(2
.0

9
)

(1
.3

9
)

(0
.6

9
)

(-
2
.6

1
)

N
S

I
0.

80
0.

61
0.

53
0
.5

6
0
.5

0
0
.5

1
0
.6

2
0
.5

8
0
.3

0
0
.1

9
-0

.6
2

(4
.3

5)
(3

.4
0)

(2
.7

7)
(3

.0
0
)

(2
.6

1
)

(2
.6

3
)

(3
.0

0
)

(2
.6

3
)

(1
.3

3
)

(0
.7

8
)

(-
4
.0

7
)

∆
P

I/
A

0.
75

0.
65

0.
59

0
.5

4
0
.4

8
0
.5

3
0
.5

3
0
.5

4
0
.3

3
0
.3

4
-0

.4
1

(3
.2

5)
(3

.3
7)

(3
.4

0)
(2

.9
8
)

(2
.5

3
)

(2
.9

5
)

(2
.7

0
)

(2
.6

1
)

(1
.4

7
)

(1
.3

1
)

(-
2
.9

6
)

G
P

/A
0.

28
0.

39
0.

41
0
.4

2
0
.6

3
0
.5

5
0
.4

7
0
.5

2
0
.6

1
0
.6

3
0
.3

5
(1

.4
1)

(2
.0

5)
(2

.0
2)

(2
.0

4
)

(3
.1

8
)

(2
.7

8
)

(2
.2

2
)

(2
.4

6
)

(3
.0

2
)

(3
.1

5
)

(2
.3

6
)

R
O

A
0.

01
0.

23
0.

49
0
.4

5
0
.3

8
0
.5

9
0
.5

2
0
.5

1
0
.5

7
0
.5

9
0
.5

8
(0

.0
3)

(0
.8

3)
(2

.0
7)

(2
.2

2
)

(1
.8

5
)

(2
.7

8
)

(2
.5

7
)

(2
.4

7
)

(2
.7

1
)

(2
.6

7
)

(2
.7

3
)

R
D

/M
0.

37
0.

56
0.

45
0
.6

2
0
.6

1
0
.6

6
0
.7

1
0
.8

8
0
.7

4
1
.0

2
0
.6

5
(1

.8
5)

(2
.5

3)
(1

.9
8)

(2
.7

2
)

(2
.6

4
)

(3
.0

9
)

(3
.1

6
)

(3
.6

2
)

(2
.9

5
)

(3
.1

1
)

(2
.4

1
)

A
d

/M
0.

42
0.

56
0.

51
0
.6

4
0
.5

4
0
.8

0
0
.6

4
0
.7

1
0
.9

4
0
.9

1
0
.4

8
(1

.6
2)

(2
.3

2)
(2

.1
8)

(2
.8

4
)

(2
.5

5
)

(3
.8

6
)

(3
.0

2
)

(3
.1

4
)

(3
.5

8
)

(3
.2

3
)

(2
.0

8
)

46



T
ab

le
2:

D
e
sc

ri
p
ti

v
e

st
a
ti

st
ic

s
o
f

fi
rm

-l
e
v
e
l

a
cc

o
u
n
ti

n
g

v
a
ri

a
b
le

s
in

th
e

fu
n
d
a
m

e
n
ta

l
re

tu
rn

s

T
h

is
ta

b
le

re
p

or
ts

th
e

ti
m

e
se

ri
es

av
er

a
ge

s
of

th
e

cr
o
ss

-s
ec

ti
o
n

a
l

su
m

m
a
ry

st
a
ti

st
ic

s
(P

a
n

el
A

),
in

cl
u

d
in

g
m

ea
n

,
st

a
n

d
a
rd

d
ev

ia
ti

o
n

,

p
er

ce
n
ti

le
s

(5
th

,
25

th
,

50
th

,
75

th
,

an
d

95
th

),
an

d
p

a
ir

w
is

e
co

rr
el

a
ti

o
n

s
(P

a
n

el
B

)
fo

r
fi

rm
-l

ev
el

a
n

n
u

a
l

a
cc

o
u

n
ti

n
g

va
ri

a
b

le
s.

T
h

e

sa
m

p
le

p
er

io
d

of
fu

n
d

am
en

ta
l

re
tu

rn
s

is
fr

om
J
u

n
e

1
9
6
7

to
D

ec
em

b
er

2
0
1
6
.

P
a
n
e
l
A
.
S
u
m
m
a
ry

st
a
ti
st
ic
s

M
ea

n
S

td
D

ev
p

5
p

2
5

p
5
0

p
7
5

p
9
5

I i
t
/K

it
0.

37
0.

4
8

-0
.0

4
0
.1

1
0
.2

2
0
.4

3
1
.4

3
∆
W
it
/W

it
0.

13
0.

3
6

-0
.3

4
-0

.0
6

0
.0

7
0
.2

3
0
.8

8
Y
it
/K

it
7.

82
8.

7
2

0
.4

4
2
.2

3
4
.9

1
9
.4

2
3
1
.9

4
Y
it
/W

it
3.

09
1.

7
9

0
.7

0
1
.8

6
2
.7

2
3
.9

5
7
.4

7
Y
it
/
(K

it
+
W
it

)
1.

64
0.

9
4

0
.3

0
0
.9

7
1
.5

3
2
.1

5
3
.7

8
K
it
/(
K
it

+
W
it

)
0.

39
0.

2
5

0
.0

6
0
.1

9
0
.3

4
0
.5

7
0
.8

8
w
B it

0.
29

0.
2
3

0
.0

1
0
.0

9
0
.2

4
0
.4

5
0
.7

4
δ i
t+

1
0.

19
0.

1
3

0
.0

5
0
.1

0
0
.1

5
0
.2

4
0
.5

3
rB i
t+

1
0.

10
0.

0
6

0
.0

2
0
.0

6
0
.0

9
0
.1

2
0
.2

9

P
a
n
e
l
B
.
P
a
ir
w
is
e
c
o
rr
e
la
ti
o
n
s

I
i
t
+

1

K
i
t
+

1

∆
W

i
t

W
i
t

∆
W

i
t
+

1

W
i
t
+

1

Y
i
t
+

1

K
i
t
+

1

Y
i
t
+

1

W
i
t
+

1

Y
i
t
+

1

(K
i
t
+

1
+
W

i
t
+

1
)

K
i
t
+

1

(K
i
t
+

1
+
W

i
t
+

1
)

w
B it

δ i
t+

1
rB i
t+

1

I i
t
/K

it
0.

32
0.

32
0.

0
9

0
.1

6
-0

.0
7

0
.0

5
-0

.1
7

-0
.1

8
0
.3

0
0
.1

0
I i
t+

1
/K

it
+

1
0.

24
0.

3
2

0
.3

7
0
.0

2
0
.2

1
-0

.2
7

-0
.2

7
0
.5

4
0
.2

6
∆
W
it
/W

it
0.

0
3

0
.0

7
-0

.0
5

0
.0

0
-0

.0
7

-0
.0

9
0
.0

6
0
.0

4
∆
W
it

+
1
/W

it
+

1
0
.0

9
0
.2

7
0
.2

0
0
.0

8
-0

.1
3

0
.0

8
0
.1

7
Y
it

+
1
/K

it
+

1
0
.0

7
0
.6

0
-0

.6
5

-0
.1

6
0
.5

4
0
.1

0
Y
it

+
1
/W

it
+

1
0
.5

7
0
.4

7
0
.1

8
-0

.1
9

0
.0

5
Y
it

+
1
/
(K

it
+

1
+
W
it

+
1
)

-0
.3

5
-0

.0
7

0
.2

1
0
.1

3
K
it

+
1
/(
K
it

+
1

+
W
it

+
1
)

0
.3

2
-0

.5
6

-0
.0

8
w
B it

-0
.3

2
-0

.1
1

δ i
t+

1
0
.1

3

47



Table 3: Parameter estimates

Column γ reports the times-series average of the posterior means of the marginal product parame-

ter γ for each of the Fama-French 10 industries; column CIγ reports the time-series average of the

95% credible intervals of γ; column σ(γ) reports the time-series standard deviation of the posterior

means of γ; and similar definitions apply to columns a, CIa, and σ(a) for the adjustment costs pa-

rameter a. Column q reports the model implied average Tobin’s q for each industry, defined as qj =
1
T

∑T
t=1

∑Njt

i=1$it−1

{[
1 + ajt(1− τt) IitKit

]
Kit+1

Kit+1+Wit+1
+ Wit+1

Kit+1+Wit+1

}
, where $it−1 = Vit−1∑Njt−1

i=1 Vit−1

, Njt is

the number of firms in industry j in time t, Vit, Iit, Kit, and Wit are the market equity, investment in

physical capital, physical capital, and working capital of firm i at time t, respectively.

Industry γ CIγ σ(γ) a CIa σ(a) q

Consumer Nondurables 0.13 [0.11, 0.14] 0.09 0.41 [0.29, 0.55] 0.43 1.60

Consumer Durables 0.16 [0.14, 0.19] 0.18 1.15 [0.83, 1.47] 1.13 1.71
Manufacturing 0.16 [0.15, 0.17] 0.11 0.58 [0.51, 0.65] 0.98 1.60
Energy 0.20 [0.18, 0.22] 0.13 0.45 [0.40, 0.48] 0.54 1.33
Business Equipment 0.23 [0.21, 0.24] 0.19 1.78 [1.67, 1.83] 2.00 1.81

Telecom 0.28 [0.25, 0.30] 0.21 0.71 [0.65, 0.76] 0.66 1.33

Wholesale & Retail 0.08 [0.07, 0.09] 0.06 0.87 [0.77, 0.96] 0.98 1.62

Healthcare 0.19 [0.17, 0.21] 0.16 0.60 [0.44, 0.73] 0.68 1.68

Utilities 0.29 [0.25, 0.32] 0.17 0.25 [0.20, 0.32] 0.32 1.16

Others 0.17 [0.15, 0.18] 0.13 0.48 [0.47, 0.54] 0.52 1.47
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Table 4: Summary statistics of the realized and fundamental firm-level stock
returns

This table reports the following key statistics for the realized (rS) and fundamental (rF ) firm-level stock

returns: mean, standard deviation, skewness, kurtosis, mean absolute error (m.a.e.) of the fundamental

returns, and the time series average of cross-sectional correlations between the realized and fundamental

returns. The m.a.e. is defined as m.a.e. ≡ 1

T

∑T−1
t=0

1

Nt+1

∑Nt+1

i=1 |rSit − rFit |, where Nt+1 is the number of

firms in period t + 1. For fundamental returns, both the posterior means and the 95% credible intervals

(in square brackets) of these statistics are reported. Both realized and fundamental returns are winsorized

at 0.5 and 99.5 percentiles. The fundamental stock returns are computed based on four model setups: the

baseline setup (under column θjt) in which the estimated parameters are industry specific and time varying;

the setup (θj) in which the estimated parameters are industry specific but constant over time; the setup

(θt) in which the estimated parameters are time varying but constant across industries; and the setup (θ)

in which the estimated parameters are constant over time and across industries. The sample period is from

June 1967 to December 2016.

Data θjt θj θt θ

Mean 14.45 15.65 15.47 14.97 15.47

[15.55, 15.75] [15.36, 15.57] [14.87, 15.06] [15.60, 15.83]

StdDev 60.78 34.17 18.49 27.36 19.76

[34.06, 34.27] [18.39, 18.59] [27.26, 27.46] [19.67, 19.85]

Skewness 2.15 1.68 1.68 1.66 2.12

[1.67, 1.70] [1.66, 1.70] [1.64, 1.67] [2.11, 2.14]

Kurtosis 11.05 11.20 10.66 10.74 13.33

[11.11, 11.29] [10.59, 10.73] [10.66, 10.82] [13.26, 13.41]

Correlation na 0.20 0.12 0.12 0.09

[0.20, 0.20] [0.12, 0.12] [0.12, 0.12] [0.09, 0.10]

m.a.e na 40.10 41.85 40.85 42.45

[40.06, 40.13] [41.82, 41.89] [40.82, 40.88] [42.42, 42.48]
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Table 5: Posterior summary of anomaly premiums under the baseline estimation

For each anomaly premium, this table reports the average annualized returns of the 12 anomaly premiums,

rS , and their corresponding t-values in the data, the posterior means of the fundamental premiums, rF , the

t-values of rF , and the t-values of alphas, defined as α ≡ rS−rF , in the baseline estimation. The t-values are

adjusted for heteroscedasticity and autocorrelations with lags up to 24 months. We report the 95% credible

intervals for rF , t(rF ), and t(α) in square brackets. The posterior distributions are based on 5,000 Bayesian

MCMC draws. Returns are in percentage per annum. The sample period is from June 1967 to December

2016 for all anomaly variables except for ROA, RD/M, and Ad/M, for which The sample starts at December

1972, December 1976, and December 1973, respectively, due to data availability.

Anomaly rS t(rS) rF t(rF ) t(α)

BM 6.74 2.57 0.46 0.26 3.33
[0.31, 0.60] [0.18, 0.35] [3.24, 3.42]

R11 13.75 4.15 11.82 12.51 0.78
[11.74, 11.90] [12.38, 12.65] [0.75, 0.81]

I/A -6.30 -3.23 -3.08 -2.25 -2.10
[-3.17, -2.99] [-2.32, -2.18] [-2.16, -2.04]

ROE 7.69 3.06 4.62 5.72 1.81
[4.53, 4.70] [5.58, 5.85] [1.76, 1.86]

Size -4.84 -1.37 -5.99 -5.63 0.34
[-6.07, -5.90] [-5.73, -5.54] [0.31, 0.37]

Accruals -5.58 -3.14 4.74 4.45 -6.28
[4.65, 4.84] [4.34, 4.56] [-6.37, -6.19]

NSI -7.65 -4.26 -3.05 -3.36 -2.93
[-3.14, -2.96] [-3.48, -3.25] [-2.99, -2.86]

∆PI/A -5.79 -2.85 -5.79 -4.81 -0.00
[-5.88, -5.69] [-4.93, -4.71] [-0.07, 0.07]

GP/A 3.87 2.00 7.26 5.84 -2.63
[7.08, 7.44] [5.63, 6.07] [-2.78, -2.48]

ROA 6.46 2.52 3.80 3.99 1.48
[3.70, 3.89] [3.86, 4.11] [1.43, 1.53]

RD/M 8.70 2.26 5.24 2.12 1.42
[5.04, 5.43] [2.04, 2.21] [1.33, 1.50]

Ad/M 6.10 1.87 7.46 2.82 -0.58
[7.28, 7.65] [2.74, 2.90] [-0.66, -0.50]
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Table 6: Anomaly premiums under alternative estimation specifications

This table reports the posterior means of the fundamental factor premiums (rF ) and the alphas (α = rS−rF )

of the 12 anomalies, with the posterior means of the corresponding t-statistics in parentheses. Fundamental

stock returns are computed based on four estimation specifications: the baseline specification (under column

θjt) with industry specific and time varying parameter values; the specification (θj) with industry variations

in parameter values only; the specification (θt) with time variations only; and the setup (θ) with constant

parameter values. The fundamental premiums and alphas that are significant at the 1%, 5%, and 10% levels

are denoted with three stars, two stars, and one star, respectively. The sample period is from June 1967 to

December 2016 for all anomaly variables except for ROA, RD/M, and Ad/M, for which the sample starts at

December 1972, December 1976, and December 1973, respectively, due to data availability.

rF α

θjt θj θt θ θjt θj θt θ

BM 0.46 -0.64 -3.78∗∗ -3.25∗ 6.28∗∗∗ 7.38∗∗∗ 10.52∗∗∗ 9.99∗∗∗

(0.26) (-0.52) (-2.17) (-1.95) (3.33) (3.25) (4.20) (4.23)

R11 11.82∗∗∗ 3.59∗∗∗ 5.75∗∗∗ 3.82∗∗∗ 1.93 10.16∗∗∗ 8.00∗∗∗ 9.92∗∗∗

(12.51) (7.75) (6.88) (6.38) (0.78) (4.06) (2.93) (3.82)

I/A -3.08∗∗ -0.06 -0.68 0.48 -3.22∗∗ -6.24∗∗∗ -5.62∗∗∗ -6.78∗∗∗

(-2.25) (-0.09) (-0.43) (0.48) (-2.10) (-3.42) (-3.18) (-4.03)

ROE 4.62∗∗∗ 3.89∗∗∗ 5.32∗∗∗ 4.72∗∗∗ 3.07∗ 3.80∗∗ 2.36 2.97

(5.72) (9.65) (9.26) (9.30) (1.81) (2.10) (1.29) (1.60)

Size -5.99∗∗∗ -5.82∗∗∗ -7.57∗∗∗ -8.10∗∗∗ 1.15 0.98 2.73 3.26

(-5.63) (-8.62) (-6.05) (-8.84) (0.34) (0.28) (0.73) (0.93)

Accruals 4.74∗∗∗ 4.90∗∗∗ 8.80∗∗∗ 9.01∗∗∗ -10.32∗∗∗ -10.48∗∗∗ -14.38∗∗∗ -14.59∗∗∗

(4.45) (7.96) (14.55) (16.76) (-6.28) (-5.96) (-7.68) (-8.08)

NSI -3.05∗∗∗ -2.80∗∗∗ -4.59∗∗∗ -4.70∗∗∗ -4.60∗∗∗ -4.85∗∗ -3.07 -2.96

(-3.36) (-4.28) (-6.70) (-7.18) (-2.93) (-2.44) (-1.49) (-1.51)

∆PI/A -5.79∗∗∗ -4.21∗∗∗ -3.12∗∗ -2.29∗∗ -0.01 -1.58 -2.67 -3.50∗

(-4.81) (-6.99) (-2.07) (-2.26) (-0.00) (-0.87) (-1.48) (-1.90)

GP/A 7.26∗∗∗ 6.77∗∗∗ 15.48∗∗∗ 15.28∗∗∗ -3.39∗∗∗ -2.90 -11.61∗∗∗ -11.42∗∗∗

(5.84) (13.05) (14.63) (19.27) (-2.63) (-1.47) (-5.41) (-5.20)

ROA 3.80∗∗∗ 3.06∗∗∗ 4.10∗∗∗ 3.84∗∗∗ 2.66 3.40∗ 2.35 2.62

(3.99) (6.25) (5.80) (6.85) (1.48) (1.77) (1.24) (1.34)

RD/M 5.24∗∗ 2.52∗ 0.47 0.52 3.46 6.18 8.22∗∗ 8.18∗∗

(2.12) (1.92) (0.50) (0.49) (1.42) (1.49) (2.07) (1.97)

Ad/M 7.46∗∗∗ 6.39∗∗∗ 13.89∗∗∗ 14.14∗∗∗ -1.36 -0.29 -7.79∗∗ -8.04∗∗∗

(2.82) (5.75) (7.32) (8.96) (-0.58) (-0.10) (-2.42) (-2.71)
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Table 7: Comparative statics of anomaly premiums under the baseline estimation

This table reports the fundamental factor premium, denoted rF , and alpha, defined as α ≡ rS − rF ,

from the baseline estimation and four comparative statics for the 12 anomalies. In the comparative static

analysis denoted Iit/Kit, Iit/Kit is set to be its cross-sectional median at period t across all the firms.

The parameters from the baseline estimation are used to construct the fundamental returns, with all the

other firm characteristics remain unchanged. The other three comparative static analyses, Iit+1/Kit+1,

Yit+1/Kit+1, and Wit+1/Kit+1, are designed similarly. The t-values reported in parentheses are adjusted for

heteroscedasticity and autocorrelations of up to 24 lags.

BM R11 I/A ROE

rF α rF α rF α rF α
Baseline 0.47 6.27 11.88 1.87 -3.14 -3.16 4.64 3.05

(0.27) (3.33) (11.03) (0.57) (-2.29) (-2.06) (4.26) (1.33)

Iit/Kit -6.62 13.36 14.38 -0.63 3.58 -9.88 5.34 2.35
(-3.43) (5.90) (10.49) (-0.19) (2.26) (-5.47) (4.69) (0.96)

Iit+1/Kit+1 6.86 -0.12 5.45 8.29 -7.22 0.92 2.33 5.36
(3.58) (-0.06) (4.74) (2.24) (-5.22) (0.55) (1.41) (1.93)

Yit+1/Kit+1 69.00 -62.26 -1.13 14.88 -11.83 5.53 -17.83 25.52
(8.97) (-7.47) (-0.41) (3.69) (-4.83) (1.72) (-5.87) (7.62)

Wit+1/Kit+1 -5.51 12.25 12.56 1.19 -4.50 -1.79 5.17 2.52
(-2.74) (6.03) (6.54) (0.32) (-1.09) (-0.48) (4.08) (1.06)

Size Accruals NSI ∆PI/A

rF α rF α rF α rF α
Baseline -5.98 1.14 4.75 -10.33 -3.09 -4.56 -5.83 0.04

(-5.62) (0.34) (4.46) (-6.29) (-3.41) (-2.90) (-4.82) (0.03)

Iit/Kit -6.26 1.42 3.97 -9.54 -0.74 -6.91 -0.06 -5.73
(-5.36) (0.40) (3.06) (-5.29) (-0.69) (-3.64) (-0.04) (-3.92)

Iit+1/Kit+1 -5.35 0.51 6.09 -11.67 -4.40 -3.26 -9.54 3.75
(-5.23) (0.15) (5.53) (-7.01) (-4.16) (-2.15) (-8.12) (2.31)

Yit+1/Kit+1 9.87 -14.71 -16.74 11.17 28.67 -36.32 2.54 -8.33
(4.87) (-4.23) (-6.83) (4.08) (3.96) (-5.14) (0.84) (-2.36)

Wit+1/Kit+1 -20.67 15.83 14.02 -19.60 -3.61 -4.04 -15.20 9.41
(-9.73) (3.95) (7.33) (-7.90) (-2.02) (-2.00) (-3.56) (2.48)

GP/A ROA RD/M Ad/M

rF α rF α rF α rF α
Baseline 7.26 -3.39 3.83 2.63 5.23 3.47 7.49 -1.39

(5.84) (-2.64) (2.84) (1.11) (2.12) (1.42) (2.83) (-0.59)

Iit/Kit 10.94 -7.07 4.67 1.79 4.80 3.90 2.64 3.46
(7.95) (-4.69) (3.70) (0.73) (2.14) (1.17) (0.99) (1.38)

Iit+1/Kit+1 3.47 0.40 2.10 4.36 3.56 5.13 11.52 -5.42
(2.46) (0.29) (1.24) (1.59) (1.48) (2.07) (4.82) (-2.16)

Yit+1/Kit+1 -105.18 109.05 -24.74 31.19 -19.10 27.80 -0.81 6.91
(-10.05) (11.25) (-5.75) (6.67) (-4.27) (8.17) (-0.29) (2.54)

Wit+1/Kit+1 11.45 -7.58 3.43 3.03 11.51 -2.81 6.54 -0.44
(6.70) (-3.68) (2.58) (1.35) (5.32) (-0.83) (1.48) (-0.13)
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Table 9: Market states and factor premium

For each month, we categorize the market state as Up if the value-weighted market returns from month

t-36 to t-1 are nonnegative and as Down if negative. We report the high-minus-low decile returns averaged

across Up and Down states, respectively. rS denotes the stock returns, and rF the fundamental returns.

The t-values are in parentheses and adjusted for heteroscedasticity and autocorrelations with lags up to 24

months. The sample period is from June 1967 to December 2016 for all anomaly variables except for ROA,

RD/M, and Ad/M. The sample starts at December 1972, December 1976, and December 1973 for ROA,

RD/M, and Ad/M, respectively, due to data availability.

BM R11 I/A ROE

Market State rS rF rS rF rS rF rS rF

Down 14.24 7.68 -12.99 8.77 -12.97 -3.50 -6.67 1.01
(5.19) (1.83) (-1.03) (3.05) (-6.07) (-1.66) (-1.31) (0.39)

Up 5.40 -0.82 18.51 12.43 -5.11 -3.08 10.25 5.29
(1.81) (-0.52) (8.30) (11.74) (-2.58) (-2.08) (4.35) (5.09)

Size Accruals NSI ∆PI/A

Market State rS rF rS rF rS rF rS rF

Down -22.71 -8.31 -7.55 3.15 -4.99 -1.70 -14.60 -9.13
(-3.40) (-3.56) (-2.71) (1.18) (-1.09) (-1.18) (-3.76) (-3.27)

Up -1.66 -5.57 -5.23 5.04 -8.13 -3.34 -4.22 -5.24
(-0.47) (-5.09) (-2.65) (4.87) (-4.57) (-3.49) (-2.11) (-4.38)

GP/A ROA RD/M Ad/M

Market State rS rF rS rF rS rF rS rF

Down -4.66 3.02 -7.19 -2.21 9.35 -1.54 17.17 8.28
(-2.06) (0.96) (-1.04) (-0.55) (1.87) (-0.63) (4.05) (1.88)

Up 5.39 8.02 8.89 4.90 8.61 6.12 4.07 7.34
(2.85) (6.34) (3.85) (4.12) (1.99) (2.28) (1.15) (2.48)
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Table 10: Out-of-sample (OOS) prediction with expanding-window estimates

Out-of-sample predicted returns are constructed using parameter estimates from the expanding window

starting in June 1967. Within the expanding window, parameter estimates vary across industries but stay

constant over time. The prediction period is from March 1981 to December 2016. αH-L is the high-minus-

low alpha and |αD| is the average absolute alpha across the 10 decile portfolios of each anomaly. The t-

values are in parentheses and adjusted for heteroscedasticity and autocorrelations with lags up to 24 months.

Significance at the 1%, 5%, and 10% levels are denoted with three stars, two stars, and one star, respectively.

Returns are in percentage per annum.

αH-L |αD|

Baseline OOS Baseline OOS

BM 7.27*** 9.63*** 1.70 1.90
(2.86) (3.25)

R11 -2.81 6.63 1.84 1.67
(-0.71) (1.69)

I/A -1.11 -5.27** 1.14 1.16
(-0.57) (-2.21)

ROE -0.14 0.21 1.28 1.54
(-0.05) (0.06)

Size 2.16 0.88 1.90 1.72
(0.56) (0.23)

Accruals -8.14*** -7.72*** 1.88 2.00
(-5.11) (-4.08)

NSI -3.87** -5.31** 0.89 1.13
(-2.00) (-2.00)

∆PI/A 1.28 -0.73 1.25 1.62
(0.85) (-0.38)

GP/A -3.78*** -2.49 1.20 1.26
(-2.91) (-1.12)

ROA -0.74 0.38 1.33 1.70
(-0.25) (0.12)

RD/M 3.38 8.06 1.72 2.42
(1.45) (1.76)

Ad/M -1.09 1.33 1.01 1.56
(-0.33) (0.37)
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A Derivations in the two-capital Model

A.1

Let the production function be Yit ≡ Y (Kit,Wit, Sit, Xit) = XitK
γK
it W

γW
it S1−γK−γW

it , in which Sit

represents any costly adjustable intermediate inputs and its price pSt is taken as given. Yit is of

constant returns to scale in physical capital, working capital, and intermediate inputs with their

shares given by γK , γW , and 1− γK − γW , respectively. The operating profits function solves the

static optimization problem:

Π(Kit,Wit, Xit) = max
{Sit}

XitK
γK
it W

γW
it S1−γK−γW

it − pSt Sit.

The first-order condition with respect to Sit is (1− γK − γW )Yit/Sit = pSt . Solving for Sit yields

Sit =

[
(1− γK − γW )XitK

γK
it W

γW
it

pSt

] 1
γK+γW

.

Plugging the first-order condition back to Π(Kit,Wit, Xit) yields Πit = (γK +γW )Yit. Plugging the

optimal Sit into Yit to rewrite Πit only in terms of Kit and Wit yields

Π(Kit,Wit, Xit) = (γK + γW )X
1

γK+γW
it

(
1− γK − γW

pSt

) 1−γK−γW
γK+γW

K
γK

γK+γW
it W

γK
γK+γW
it .

As such, Π(Kit,Wit, Xit) is of constant returns to scale in Kit and Wit, and their shares, given

by γK/(γK + γW ) and γW/(γK + γW ), respectively, sum to one. In particular, ∂Πit/∂Kit =

[γK/(γK + γW )](Πit/Kit) = γKYit/Kit. Similarly, ∂Πit/∂Wit = γWYit/Wit.

A.2

The optimization problem can be written as:

Vit(Xit, Kit,Wit, Bit) = max
Iit,∆Wit,Kit+1,Wit+1,Bit+1

{Dit + Et[Mt+1Vit(Xit+1, Kit+1,Wit+1, Bit+1)]}

s.t. Kit+1 = Iit + (1− δit)Kit

Wit+1 = ∆Wit +Wit (1)

where Dit = (1−τt)(Πit−Φit)−Iit−∆Wit+Bit+1−rBitBit+τtδitKit+τt(r
B
it −1)Bit. Let qKit and qWit

2



be the Lagrangian multipliers associated with Kit+1 = Iit + (1− δit)Kit and Wit+1 = Wit + ∆Wit,

respectively. The Lagrangian function can be written as:

Lit = Dit + Et[Mt+1Vit]− qKit (Kit+1 − (1− δit)Kit − Iit)− qWit (Wit+1 −Wit −∆Wit) . (2)

Taking the first-order derivatives of Lit with respect Iit, ∆Wit, Kit, Wit+1, and Bit+1 to zero and

apply the envelop theorem gives the following:

qKit = 1 + (1− τt)
∂Φit

∂Iit
(3)

qWit = 1 (4)

qKit = Et

[
Mt+1

[
(1− τt+1)

(
∂Πit+1

∂Kit+1

− ∂Φit+1

∂Kit+1

)
+ τt+1δit+1 + (1− δit+1)qKit+1

]]
(5)

qWit = Et

[
Mt+1

[
(1− τt+1)

∂Πit+1

∂Wit+1

+ qWit+1

]]
(6)

1 = Et[Mt+1(rBit+1 − (rBit+1 − 1)τt+1)] = Et[Mt+1r
Ba
it+1] (7)

Combining equations (3) and (5) leads to

Et[Mt+1r
K
it+1] = 1

where

rKit+1 =
(1− τt+1)

(
∂Πit+1

∂Kit+1
− ∂Φit+1

∂Kit+1

)
+ τt+1δit+1 + (1− δit+1)qKit+1

qKit
.

Similarly, combining equations (4) and (6) leads to

Et[Mt+1r
W
it+1] = 1

where

rWit+1 = 1 + (1− τt+1)
∂Πit+1

∂Wit+1

.

A.3

To prove equation (4), i.e.,

wKit r
K
it+1 + (1− wKit )rWit+1 = wBit r

Ba
it+1 + (1− wBit )rSit+1 ,

3



we proceed in three steps:

1. Show that firm asset value V a
it can be written as

V a
it = Pit +Bit+1 = Et

[
∞∑
s=1

Mt+sD
a
it+s

]

where

Da
it+1 ≡ (1− τt+1)(Πit+1 − Φit+1) + τt+1δt+1Kit+1 − Iit+1 −∆Wit+1 .

Proof:

V a
t = Pt +Bt+1 = Et [Mt+1 (Dt+1 + Pt+1)] +Bt+1

= Et
[
Mt+1

[
(1− τt+1)(Πt+1 − Φt+1) + τt+1δt+1Kt+1 − It+1 −∆Wit+1 +Bt+2 − rBt+1Bt+1

+τt+1(rBt+1 − 1)Bt+1 + Pt+1

]]
+Bt+1 (8)

The optimality w.r.t. Bt+1, equation (7), implies

Bt+1 = Et
[
Mt+1

[
rBt+1Bt+1 − τt+1(rBt+1 − 1)Bt+1

]]
.

Substitute the above equation into equation (8) and get

V a
t = Et [Mt+1 [(1− τt+1)(Πt+1 − Φt+1) + τt+1δt+1Kt+1 − It+1 −∆Wit + Pt+1 +Bt+2}]

= Et
[
Mt+1

[
Da
t+1 + Pt+1 +Bt+2

]]
= Et

[
∞∑
s=1

Mt+sD
a
t+s

]
.

Q.E.D.

2. Show that qKitKit+1 +Wit+1 = Pt +Bt+1.

4



Proof: Using equations (5) and (6), we have

qKitKit+1 +Wit+1 = qKitKit+1 + qWit Wit+1

= Et

[
Mt+1

[
(1− τt+1)

(
Kit+1

∂Πit+1

∂Kit+1

−Kit+1
∂Φit+1

∂Kit+1

)
+ τt+1δit+1Kit+1

+(1− δit+1)qKit+1Kit+1 + (1− τt+1)Wit+1
∂Πit+1

∂Wit+1

+ qWit+1Wit+1

]]
= Et

[
Mt+1

[
(1− τt+1) (Πit+1 − Φit+1) + τt+1δit+1Kit+1 + qKit+1Kit+2

−It+1 +Wit+1]]

= Et
[
Mt+1

[
Da
it+1 + qKit+1Kit+2 +Wt+2

]]
= Et

[
∞∑
s=1

Mt+sD
a
t+s

]
= Pt +Bt+1 ,

where the second equality is derived using equations (3), (4), and the following two identities

Φit = Iit∂Φit/∂Iit +Kit∂Φit/∂Kit ,

Πit = Kit∂Πit/∂Kit +Wit∂Πit/∂Wit .

Q.E.D.

3. From the definitions of rKit+1 and rWit+1 and the proof in Step 2, it is straightforward to show

that

wKit r
K
it+1 + (1− wKit )rWit+1 =

qKitKit+1r
K
it+1 +Wit+1r

W
it+1

qKitKit+1 +Wit+1

=
Da
it+1 + qKit+1Kit+2 +Wt+2

qKitKit+1 +Wit+1

=
Da
it+1 + Pt+1 +Bt+2

Pt +Bt+1

= wBit r
Ba
it+1 + (1− wBit )rSit+1 .

Q.E.D.
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B Bayesian MCMC

Estimation of the model parameters σ and latent variables θ in the baseline model is very difficult

due to the high dimensionality. The total dimension of σ and θ that needs to be estimated is 1063

(that is, dim(θ) + dim(σ) = 2× 10× 53 + 3), which makes it impractical to use moment based or

maximum likelihood methods. We use the Bayesian MCMC method to overcome this estimation

difficulty. The main objective of Bayesian analysis is to make inferences about model parameters

σ and latent variables θ based on observations: X, rS, and rBa. That is, we need to estimate

P(σ,θ|X, rS, rBa), the so called joint posterior distribution of (σ,θ) given (X, rS, rBa).

According to Bayes’ rule, the joint posterior distribution is

P(θ,σ|X, rS, rBa)

=
P(θ,σ,X, rS, rBa)

P(X, rS, rBa)

∝P(rS|X, rBa;θ,σ)P(θ,σ)

=P(rS|X, rBa;θ,σ)P(θ|σ)π(σ),

(9)

where P(rS|X, rBa;θ,σ) is the conditional distribution of returns given fundamental variables,

latent variables and parameters, P(θ|σ) is the conditional distribution of latent variables given

parameters σ, and π(σ) is the joint prior distribution of σ.

More specifically, we define weighted scaled asset return 1

retit+1 = $
1/2
it ×

(
rSit+1 +

wBit r
Ba
it+1

1− wBit

)
=

$
1/2
it

1− wBit
rKit+1 + σre

r
it+1. (10)

The newly defined ret can be seen as a function of latent variables, which we denote function-

ally, for firm i that belongs to industry j at time t+ 1 but to industry j′ at time t, as

retit+1 ≡ Λit+1

(
γjt+1, ajt+1, aj′t

)
+ σre

r
it+1, (11)

where Λit+1(γjt+1, ajt+1, aj′t) =
$

1/2
it

1−wBit
rKit+1 and rKit+1 is defined in (2).

We further assign conjugate inverse gamma distributions as priors for the parameters: σ2
r ∼

IG(κr1, κ
r
2), σ2

γ ∼ IG(κγ1 , κ
γ
2) and σ2

a ∼ IG(κa1, κ
a
2). With this variable transformation (retit+1) and

1We use the weighted scaled asset returns instead of stock returns to facilitate discussion of posterior distribu-
tions. Another benefit of using the weighted scaled asset returns is that they are homogeneous (of equal variance).
When the estimation is finished, we convert ret back to stock returns.
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prior specifications, equation (9) can be written in proportion as:

P(θ,σ|X, rS, rBa) ∝
T−1∏
t=0

Nt+1∏
i=1

N
(
retit+1; Λit+1, σ

2
r

)
·
T−1∏
t=0

Nd∏
j=1

N
(
γjt+1; γjt, σ

2
γ

)
·
T−1∏
t=0

Nd∏
j=1

N
(
ajt+1; ajt, σ

2
a

)
·IG
(
σ2
r ;κ

r
1, κ

r
2

)
· IG

(
σ2
γ;κ

γ
1 , κ

γ
2

)
· IG

(
σ2
a;κ

a
1, κ

a
2

)
,

(12)

where Nt is the number of firms at time t, Nd is the number of industries, and T is the length of

the observation period.2

Given the high dimensionality of parameters and latent variables, it’s impossible to draw di-

rectly from this joint posterior distribution. However, the Clifford-Hammersley theorem indicates

that the joint posterior is equivalent to its complete conditionals. In other words, instead of draw-

ing directly from the 1063-dimensional joint posterior distribution, MCMC draws iteratively from

1063 one-dimensional complete conditionals individually, resulting in legitimate draws from the

target joint posterior distribution.

Specifically in our model, the joint posterior distribution of parameters σ and latent variables

θ given returns and fundamental variables, the target, is equivalently characterized by its complete

conditional posteriors:

P(θ,σ|X, rS, rBa)⇐⇒ P(θ|σ,X, rS, rBa) and P(σ|θ,X, rS, rBa). (13)

Therefore, we simulate the posterior samples of each parameter and latent variable (of σ and

θ) from the complete conditionals as follows iteratively. Given initial values (σ(0),θ(0)), for the

current (g + 1)th iteration:

• draw θ(g+1) ∼ P(θ|σ(g),X, rS, rBa);

• draw σ(g+1) ∼ P(σ|θ(g+1),X, rS, rBa),

where σ(g) is the MCMC draw from the previous iteration.

It is worth noting that there are two advantages of using MCMC algorithms to implement

the above iterative procedure: (1) MCMC samplers do not require a closed form of the poste-

2$ is not present in the formula to be consistent with equation (9). Besides, it has no influence in the following
derivation. Also note that in equation (12), no prior distributions for latent variables are assigned because we treat
the initial latent variables γj0 and aj0 as unknown constants. The driver for the evolvement of latent variables is
fully explained by the variances of eγjt+1 and eajt+1 so we do not assign priors to the other latent variables, either.

7



rior distribution and (2) MCMC samplers need only the conditional posterior up to a constant

proportion. In implementing MCMC, Metropolis-Hastings embedded Gibbs sampler is used for

estimation in our paper. Whenever the closed form for complete conditional posterior distribution

is not directly attainable, we use Metropolis-Hastings algorithm. For a thorough discussion of

Gibbs sampling and Metropolis-Hastings, see Robert and Casella (2013).

For time t+ 1, t ∈ [0, T − 1] and industry j ∈ [1, Nd], let Djt+1 be the set of firms that belong

to industry j at time t+ 1 and let Ejt+1 be the set of firms that belong to industry j at time t and

exist at time t+ 1. We derive the complete conditional posterior distributions of latent variables

γjt+1 and ajt+1 and parameters σ2
r , σ

2
γ and σ2

a (in a proportional form) as follows:

Posterior for γjt+1:

For the latent variables γjt+1, the posterior is normal. Let 1condition be the indicator function, i.e.,

1 = 1 when condition holds, and otherwise, 1 = 0:

p

(
γjt+1

∣∣∣∣ {γjt} ,{ajt} , σ2
r , σ

2
γ, σ

2
a

)
∝ N

(
γjt+1;

v1

u1

,
1

u1

)
, (14)

where

u1 :=
1

σ2
r

∑
i∈Djt+1

A2
it+1 +

1 + 1t+1/∈{1,T}

σ2
γ

,

v1 :=
1

σ2
r

∑
i∈Djt+1

ϕit+1Ait+1 +
1

σ2
γ

(γjt1t≥0 + γjt+21t+2≤T ),

ϕit+1 :=retit+1 −$1/2
it ×

τit+1δit+1 + Wit+1

Kit+1
+ (1− δit+1)

(1− wBit )
[
1 + (1− τit)ait IitKit + Wit+1

Kit+1

]
−$1/2

it ×
1
2
(1− τit+1)

(
Iit+1

Kit+1

)2

+ (1− δit+1)(1− τit+1) Iit+1

Kit+1

(1− wBit )
[
1 + (1− τit)ait IitKit + Wit+1

Kit+1

] ajt+1,

and Ait+1 :=$
1/2
it ×

(1− τit+1) Yit+1

Kit+1

(1− wBit )
[
1 + (1− τit)ait IitKit + Wit+1

Kit+1

] .
Posterior for ajt+1:

For adjustment costs parameters ajt+1, there are no clear closed form posterior distributions. We

implement Metropolis-Hastings. It is a propose-reject method which first proposes a candidate
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draw and then decide whether a jump is made from the current state to the proposed. Depending

on the difference of proposal distributions, there are many variations under this generic heading.

In our paper, the candidate is chosen in a manner that exploits as much information from the

posterior distributions as possible.

We first consider the posterior of ajt+1 although it is not clear what distribution it follows:

p

(
ajt+1

∣∣∣∣ {γjt+1

}
,
{
ajt+1

}
, σ2

r , σ
2
γ, σ

2
a

)
∝

T−1∏
t=0

N∏
i=1

N
(
retit+1; Λit+1, σ

2
r

) T−1∏
t=0

N
(
ajt+1; ajt, σ

2
a

)
. (15)

We propose from

N
(
ajt+1;

v2

u2

,
1

u2

)
(16)

where

u2 :=
1

σ2
r

∑
i∈Djt+1

B2
it+1 +

1 + 1t+1/∈{1,T}

σ2
a

,

v2 :=
1

σ2
r

∑
i∈Djt+1

ψit+1Bit+1 +
1

σ2
a

(ajt1t≥0 + ajt+21t+2≤T ) ,

ψit+1 :=retit+1 −$1/2
it ×

τit+1δit+1 + Wit+1

Kit+1
+ (1− δit+1)

(1− wBit )
[
1 + (1− τit)ait IitKit + Wit+1

Kit+1

] ,
−$1/2

it ×
(1− τit+1) Yit+1

Kit+1

(1− wBit )
[
1 + (1− τit)ait IitKit + Wit+1

Kit+1

]γjt+1,

and Bit+1 :=$
1/2
it ×

1
2
(1− τit+1)

(
Iit+1

Kit+1

)2

+ (1− δit+1)(1− τit+1) Iit+1

Kit+1

(1− wBit )
[
1 + (1− τit)ait IitKit + Wit+1

Kit+1

] .

To decide whether to accept the candidate, let 3

π(x) =
∏

i∈Djt+1

N
(
retit+1; Λit+1

(
γjt+1, x, ait

)
, σ2

r

)
·
∏

i∈Ejt+2

N
(
rit+2; Λit+2

(
γit+2, ait+2, x

)
, σ2

r

)
·N
(
x; ajt+2, σ

2
a

)
· N
(
x; ajt, σ

2
a

)
.

3Here a slight abuse of notation for generality is that we change aj′t to ait to indicate that firms belong to
different industries at time t. Similarly, we use γit to indicate firms belong to different industries at time t.

9



The acceptance rate α is then

α =
π(apropjt+1)

π(ajt+1)
·
N
(
ajt+1;

v2

u2

,
1

u2

)
N
(
apropjt+1;

v2

u2

,
1

u2

) =

∏
i∈Ejt+2

N
(
rit+2; Λit+2

(
γit+2, ait+2, a

prop
jt+1

)
, σ2

r

)
∏

i∈Ejt+2
N
(
rit+2; Λit+2

(
γit+2, ait+2, a

(g−1)
jt+1

)
, σ2

r

) .

Posteriors for σ2
r , σ

2
γ and σ2

a:

The posterior distributions for parameters σ2
r , σ

2
γ and σ2

a are:

p

(
σ2
r

∣∣∣∣ {γjt} ,{ajt} , σ2
γ, σ

2
a

)
∼ IG

(
κr1 +

∑T−1
t=0 Nt+1

2
, κr2 +

1

2

T−1∑
t=0

N∑
i=1

(retit+1 − Λit+1)2

)
. (17)

p

(
σ2
γ

∣∣∣∣ {γjt} ,{ajt} , σ2
r , σ

2
a

)
∼IG

(
κγ1 +

NdT

2
, κγ2 +

1

2

T−1∑
t=0

Nd∑
k=1

(γjt+1 − γjt)2

)
. (18)

p

(
σ2
a

∣∣∣∣ {γjt} ,{ajt} , σ2
r , σ

2
γ

)
∼IG

(
κa1 +

NdT

2
, κa2 +

1

2

T−1∑
t=0

Nd∑
k=1

(ajt+1 − ajt)2

)
. (19)

where κr1, κr2, κγ1 , κγ2 , κa1 and κa2 are prior parameters for prior inverse gamma distributions.

In each MCMC iteration, a systematic scan is used, i.e., we sample by a pre-specified order the

parameters/latent variables from the above posterior distribution conditional on the most updated

information. After all the parameters and latent variables are updated, a new iteration is started.

We run 20,000 iterations in total and use the last 5,000 iterations to obtain posterior means and

95% credible intervals.
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C Definition of Sorting Variables

BM (Davis, Fama and French, 2000) Book-to-market equity ratio, defined as the book value of

equity for fiscal year end in the previous calendar year t− 1 divided by the market value of equity

at the end of December of the previous calendar year t − 1. We measure book equity as stock-

holders’ book equity, plus balance sheet deferred taxes and investment tax credit (item TXDITC

or the sum of item TXDB and item ITCB) if available, minus the book value of preferred stock.

Stockholders’ equity is the value reported by Compustat (item SEQ) if it is available. If not, we

measure stockholders’ equity as the book value of common equity (item CEQ) plus the par value

of preferred stock (item PSTK), or the book value of assets (item AT) minus total liabilities (item

LT). Depending on availability, we use redemption (item PSTKRV), liquidating (item PSTKL),

or par value (item PSTK) for the book value of preferred stock.

R11 (Fama and French, 1996; Carhart, 1997) Prior 11-month returns from month t-12 to t-2.

I/A (Cooper, Gulen and Schill (2008)) We measure I/A as change in total assets (Compustat

annual item AT) scaled by lagged total assets. At the end of June of each year t, we use NYSE

breakpoints to split stocks into deciles based on I/A for the fiscal year ending in calendar year t-1

and calculate monthly value-weighted decile returns from July of year t to June of t+1.

ROE (Hou, Xue and Zhang, 2020) ROE is income before extraordinary items (Compustat quar-

terly item IBQ) divided by 1-quarter-lagged book equity. From 1972 onward, quarterly book

equity is shareholders’ equity, plus balance sheet deferred taxes and investment tax credit (item

TXDITCQ) if available, minus the book value of preferred stock (item PSTKQ). Depending on

availability, we use stockholders’ equity (item SEQQ), or common equity (item CEQQ) plus the

book value of preferred stock (item PSTKQ), or total assets (item ATQ) minus total liabilities

(item LTQ) in that order as shareholders’ equity. Prior to 1972, we expand the sample coverage

by using book equity from Compustat annual files and imputing quarterly book equity with clean

surplus accounting.

At the beginning of each month t, we sort stocks into deciles on their most recent ROE. Before

1972, we use the most recent ROE computed with quarterly earnings from the fiscal quarter end-

ing at least four months ago. From 1972 onward, we use ROE computed with quarterly earnings

from the most recent quarterly earnings announcement date (item RDQ). For a firm to enter the

portfolio formation, we require the end of the fiscal quarter corresponding to its most recent ROE
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to be within six months prior to the portfolio formation and its earnings announcement date to be

after the corresponding fiscal quarter end. Monthly decile returns are calculated for the current

month t, and the deciles are rebalanced at the beginning of month t + 1.

Size (Fama and French, 1992) Size is price times shares outstanding from CRSP. At the end of

June of each year t, we use NYSE breakpoints to sort stocks into deciles based on the June-end

Size, and calculate monthly value-weighted decile returns from July of year t to June of t+1.

Accruals (Sloan, 1996) We measure Accruals as ∆ACT−∆CHE−∆LCT+∆DLC+∆TXP−∆DP
(AT+AT−1)/2

, where

∆ACT is the annual change in total current assets, ∆CHE is the annual change in total cash and

short-term investments, ∆LCT is the annual change in current liabilities, ∆DLC is the annual

change in debt in current liabilities, ∆TXP is the annual change in income taxes payable, ∆DP

is the annual change in depreciation and amortization, and (AT +AT−1)/2 is average total assets

over the last two years. At the end of June of each year t, we use NYSE breakpoints to sort all

stocks into deciles based on Accruals for the fiscal year ending in calendar year t-1, and calculate

monthly value-weighted decile returns from July of year t to June of t+1.

NSI (Fama and French, 2008) We measure net stock issues (NSI) as the natural log of the ratio

of the split-adjusted shares outstanding scaled by lagged split-adjusted shares outstanding. The

split-adjusted shares outstanding is shares outstanding (Compustat annual item CSHO) times the

adjustment factor (item AJEX). At the end of June of each year t, we use NYSE breakpoints

to sort all stocks into deciles based on NSI for the fiscal year ending in calendar year t-1, and

calculate monthly value-weighted decile returns from July of year t to June of t+1.

∆PI/A (Lyandres, Sun and Zhang, 2008) We measure ∆PI/A as changes in gross property, plant,

and equipment (Compustat annual item PPEGT) plus changes in inventory (item INVT) scaled

by lagged total assets (item AT). At the end of June of each year t, we use NYSE breakpoints

to sort stocks into deciles based on ∆PI/A for the fiscal year ending in calendar year t-1, and

calculate monthly value-weighted decile returns from July of year t to June of t+1.

GP/A (Novy-Marx, 2013) We measure GP/A as total revenue (Compustat annual item REVT)

minus cost of goods sold (item COGS) divided by current total assets (item AT). At the end of

June of each year t, we use NYSE breakpoints to sort stocks into deciles based on GP/A for the

fiscal year ending in calendar year t-1, and calculate monthly value-weighted decile returns from
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July of year t to June of t+1.

ROA (Balakrishnan, Bartov and Faurel, 2010; Hou, Xue and Zhang, 2020) We measure ROA as

income before extraordinary items (Compustat quarterly item IBQ) divided by 1-quarter-lagged

total assets (item ATQ). At the beginning of each month t, we use NYSE breakpoints to sort all

stocks into deciles based on ROA computed with the most recently announced quarterly earnings.

Monthly value-weighted decile returns are calculated for month t, and the deciles are rebalanced

at the beginning of t+1. For a firm to enter the portfolio formation, we require the end of the

fiscal quarter that corresponds to the most recently announced earnings to be within six months

prior to the portfolio formation to exclude stale earnings information.

RD/M (Chan, Lakonishok and Sougiannis, 2001; Hou, Xue and Zhang, 2020) We measure RD/M

as R&D expenses (Compustat annual item XRD) divided by market equity. At the end of June

of each year t, we use NYSE breakpoints to split stocks into deciles based on RD/M, which is

R&D expenses for the fiscal year ending in calendar year t-1 divided by the market equity at

the end of December of t-1, and calculate monthly value-weighted decile returns from July of

year t to June of t+1. We keep only firms with positive R&D expenses. Because the accounting

treatment of R&D expenses was standardized in 1975, the RD/M decile returns start in July 1976.

Ad/M (Chan, Lakonishok and Sougiannis, 2001; Hou, Xue and Zhang, 2020) We measure Ad/M

as advertising expenses (Compustat annual item XAD) divided by market equity. At the end of

June of each year t, we use NYSE breakpoints to split stocks into deciles based on Ad/M, which

is advertising expenses for the fiscal year ending in calendar year t-1 divided by the market equity

at the end of December of t-1, and calculate monthly value-weighted decile returns from July of

year t to June of t+1. We keep only firms with positive advertising expenses. Because sufficient

XAD data start in 1972, the Ad/M decile returns start in July 1973.
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D Simulation study

The simulation study is implemented in four steps.

1. We select a balanced panel of 1, 052 firms from seven industries between 1991 to 2005, all

of which have no missing variables needed to construct fundamental returns during the 15-

year period. These seven industries are Consumer nondurables, Manufacturing, Business

equipment, Wholesale, Healthcare, Utilities, and Others. Note that our methodology does

not require a balanced panel. The only requirement is to have financial and accounting

information of a firm for at least three consecutive years from year t − 1 to t + 1, which is

required to compute the fundamental return at year t. The choice of a balanced panel is for

simplicity.

2. We generate the time series of the latent variables by simulating random walk processes

according to equation (7) for each of the seven industries, denoted as θ. The standard

deviations of these random walk processes, σγ and σa, are chosen to be 0.1 and 0.3, which

are close to the estimated magnitudes. The time 0 value of the technology parameter γj0

of industry j is randomly chosen from a logic-transformed-normal distribution to ensure

that the technology parameter falls into the range between 0 and 1. The time 0 value

of the adjustment cost parameter aj0 is drawn from a normal distribution with mean and

standard deviation being 5 and 0.3. The mean of the distribution is close to the estimates

in Gonçalves, Xue and Zhang (2020).

3. We generate stock returns for firm i in the selected subgroup based on equation (8) added

with white noises, i.e.,

rSit+1 = f (Xit,Xit+1|θt,θt+1) +$
−1/2
it+1 σre

r
it+1 ,

where Xit is the accounting information of firm i at time t, $
−1/2
it is computed based on

equation (9) using firm i’s financial information, σr is set to be 5%, and erit+1 follows the

standard normal distribution so that the volatility of the simulated returns rSit+1 is compa-

rable to the volatility of the corresponding observed stock returns. The simulated sample of

firm-level stock returns has mean, standard deviation, and skewness of 0.66, 1.09, and 7.63,

compared with 0.21, 0.71, and 9.78 in the data for the sample.

4. Using the Bayesian MCMC method in Section 4, we draw from the posterior distributions

of the latent variables given the financial and accounting information X and the simulated

14



stock return rS of this subgroup of firms. The initial guesses, θ
(0)
jt+1, for industry j at time

t + 1 are the minimizers of the residual sum of squares (RSS) of firm-level stock returns of

firms in industry j at time t+ 1 given θ
(0)
t , defined as

θ
(0)
jt+1 = argmin

Nj∑
i=1

[
f
(
Xit,Xit+1|θ(0)

t ,θt+1

)
− rSit+1

]2

.

Assuming that θ
(0)
j0 = θ

(0)
j1 , the initial guesses for t = 1, · · · , T can be estimated sequentially.

We have tried constant initial guesses and the estimation converges to the same posterior

distributions. It shows that our method is robust to the choice of initials.
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E Comparison of Bayesian and NLS via simulation studies

Frequentist methods, such as Nonlinear Least Squares (NLS), can also be used to match firm-level

stock returns. Under NLS, parameter values are chosen to minimize the sum of squared estimates

of errors sequentially as follows. For parameter θjt+1, for j = 1, . . . , Nd and t = 1, . . . , T − 1:4

θ̂NLSjt+1 = arg min
θjt+1

Njt+1∑
i=1

$it

[
f
(
Xit, Xit+1|θ̂NLSjt , θjt+1

)
− rSit+1

]2

, (20)

where Nd is the number of industries, Njt+1 is the number of firms in industry j at time t + 1,

θ̂NLSjt is the estimated parameters for industry j at t, and $it−1, which is proportional to the

market equity Vit−1 as defined in equation (9), is used to be consistent with our Bayesian MCMC

estimates. For t = 0, we assume that θj0 = θj1 so the NLS estimate is

θ̂NLSj1 = arg min
θj1

Nj1∑
i=1

$i0

[
f (Xi0, Xi1|θj1, θj1)− rSi1

]2
, for j = 1, . . . , Nd.

In this section, we use simulation studies to examine the advantages of Bayesian MCMC over

NLS.

Figure 1 plots the true values (in red solid lines), the NLS estimates (in green lines with

triangle markers), and the Bayesian posterior means (in blue dashed lines) and the associated

95% credible intervals (in shaded areas) of the model parameters θ estimated from the simulated

data under the specification with industry specific and time varying parameters. Credible interval

is frequently used in Bayesian framework. It refers to the interval wherein a random variable (here

a parameter) falls with the specified probability. It is an interval in the domain of a posterior

4The NLS estimates with industry variations only, time variations only, and the estimates with constant values
are obtained, respectively, as follows:

θ̂NLSj = arg min
θj

T−1∑
t=0

Njt∑
i=1

$it

[
f (Xit, Xit+1|θj , θj)− rSit+1

]2
, for j = 1, . . . , Nd ,

θ̂NLSt+1 = arg min
θt+1

Nd∑
j=1

Njt∑
i=1

$it

[
f
(
Xit, Xit+1|θ̂NLSt , θt+1

)
− rSit+1

]2
, for t = 0, . . . , T − 1 ,

and

θ̂NLS = arg min
θ

T−1∑
t=0

Nd∑
j=1

Njt∑
i=1

$it

[
f (Xit, Xit+1|θ, θ)− rSit+1

]2
.
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distribution of a parameter. Because we assume parameters to be random variables in Bayesian

framework, we can calculate the probability that a parameter locates in a given interval based on

its posterior distribution. Notationally, let Ip be the posterior credible interval of θ that satisfies

P (θ ∈ Ip|X, rS, rBa) = p, where p is the probability.5

Figure 1 shows that the NLS estimates are often very far from the true. On the contrary, the

true values of the model parameters are almost always confined in the narrow credible intervals

of the Bayesian MCMC posterior distributions. The posterior means imply small relative mean

absolute errors (m.a.e.) of 3.59% and 3.37% on average across industries for γ and for a, respec-

tively. Similar results are found in the specification with time variation in parameter values only

and the results are plotted in Figure A.3 in the Internet Appendix.

Table A.1 reports the true values, the NLS estimates, and the Bayesian posterior means and

associated credible intervals of the model parameters under the specification with only industry

variation in Panel A and under the specification with constant parameter values in Panel B.

As under the specifications with time-varying parameter values, the 95% credible intervals from

the Bayesian estimation always cover the corresponding true values. Bayesian estimates again

have smaller estimation errors in general, although the differences between the NLS and Bayesian

estimates are smaller when parameters are not time varying. For example, with constant parameter

values, the Bayesian posterior means of γ and a are 0.1500 and 0.1300, which are identical to the

true values (up to the fourth digit), while the the corresponding NLS estimates are 0.1501 and

0.1280.

Bayesian MCMC estimation approach is fundamentally different from NLS and GMM. Bayesian

MCMC is able to extract more information from the data than these two frequentist methods. In

essence, these frequentist methods choose model parameters to match a given set of moments. In

the case of NLS, the matching moments are

Njt+1∑
i=1

$it

∂f
(
Xit, Xit+1|θ̂NLSjt , θjt+1

)
∂θjt+1

[
f
(
Xit, Xit+1|θ̂NLSjt , θjt+1

)
− rSit+1

]
= 0 ,

for j = 1, . . . , Nd and t = 1, . . . , T − 1 and

Nj1∑
i=1

$i0
∂f(Xi0, Xi1|θj1, θj1)

∂θj1

[
f(Xi0, Xi1|θ1j, θ1j)− rSi1

]
= 0, for j = 1, . . . , Nd,

5For illustration purpose, Figure 1 only includes the results of three industries: Consumer Nondurables, Man-
ufacturing, and Business Equipment. The results of the other industries used in the simulation study are plotted
in Figure A.2 in the Internet Appendix.

17



assuming θj0 = θj1, where 0 are vectors of zeros of corresponding dimensions.6 In the case of GMM

used in Liu, Whited and Zhang (2009) and Gonçalves, Xue and Zhang (2020) among others, the

matching moments are the average returns of the testing portfolios. By matching moments only,

these frequentist methods fail to capture the detailed information in each firm-year observation,

which, on the contrary, is utilized in Bayesian MCMC. The posterior likelihood in equation (10)

captures the entire posterior distributions of the firm-level stock returns.

Another critical difference is that the posterior of any specific industry-time parameter, θjt,

utilizes the information of not only industry j at time t, but the entire data sample. This feature is

critical for the superior performance of Bayesian MCMC relative to NLS in our simulation studies

when true parameter values are time varying. The reasons are as follows. First, the random walk

process imposed on parameters in equation (7) connects information across different points in

time. Second, physical adjustment costs parameter ajt enters into the probability distributions of

both rit and rit+1 of firm i in industry j as shown in equations (2) and (10), which also connects

information in returns across time. Third, due to entry and exit, the probability distribution of

stock return rit+1 can also connect information in returns across industries if firm i switches from

industry j to k at time t + 1. Consequently, the identification of any specific latent variables ajt

and γjt utilizes the information of the entire data sample.7

6The matching moments under the specification with industry variations only, time variations only, and with
constant parameter values are given, respectively, by:

T−1∑
t=0

Njt∑
i=1

$it
∂f (Xit, Xit+1|θj , θj)

∂θj

[
f (Xit, Xit+1|θj , θj)− rSit+1

]
= 0 , for j = 1, . . . , Nd ,

Nd∑
j=1

Njt∑
i=1

$it

∂f
(
Xit, Xit+1|θ̂NLSt , θt+1

)
∂θt+1

[
f
(
Xit, Xit+1|θ̂NLSt , θt+1

)
− rSit+1

]
= 0 , for t = 0, . . . , T − 1 ,

and
T−1∑
t=0

Nd∑
j=1

Njt∑
i=1

$it
∂f (Xit, Xit+1|θ, θ)

∂θ

[
f (Xit, Xit+1|θ, θ)− rSit+1

]
= 0 .

7Even though γjt enters into the probability distribution of stock return rit only for firm i in industry j at
time t, γjt is identified together with ajt. Therefore, the value of γjt also reflects the information of the entire data
sample.
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F Do industry and time variations in parameter estimates

make economic sense?

In the baseline estimation, we allow the technology parameter in the production function, γjt, and

the physical adjustment costs parameter, ajt, to be industry specific and time varying. In this

section, we explain the economic forces that drive the variations in parameter values across indus-

tries and times, and then test whether the estimated values are consistent with these underlying

economics.

Within the model framework, γjt reflects industry j’s profit margin as the model implies

Πit = γjtYit for any firm i in industry j at time t, where Πit and Yit are the profits and sales,

respectively. Therefore, variations in γjt can be driven by both technology changes and changes

in market demand, the latter of which can be caused by fluctuations in consumer taste, economic

conditions, market competitiveness, etc.

Equation (5) implies that Tobin’s q of firm i in industry j at time t follows qit = 1 + ajt(1 −
τt)Iit/Kit×Kit+1/(Kit+1 +Wit+1). Therefore, the magnitude of ajt reflects both the marginal costs

and marginal benefits of investing one dollar in physical capital and has a positive relation with

Tobin’s q. Consequently, variations in ajt can be driven by changes in production technology, price

of capital goods, which is cyclical (Eisfeldt and Rampini, 2006), and opportunity costs in terms of

lost output, which vary with procyclical capacity utilization. Lastly, entry and exit in an industry

can also lead to changes in the estimated parameter values of this industry at a given fiscal year

t. It thus makes economic sense to allow γjt and ajt to be industry specific and time varying.

Even though γ and a are estimated to match firm-level stock returns, their values should

be consistent with the underlying economics that they reflect. The above discussion implies that

variations in the estimated values of γ should positively correlated with the variations in operating

profits-to-sales ratio across industries and times. Specifically, the following regression should yield

a positive and significant coefficient on γjt:

Π/Y jt = cγ + bγ γjt + εγjt ,

where the dependent variable is the value-weighted operating profits-to-sales ratio for industry

j at time t, defined as Π/Y jt ≡
∑Njt

i=1 $it−1(Πit/Yit), the independent variable is the estimated

value of γ for the same industry and time, and cγ and bγ are regression coefficients. Operating

profits is measured by operating income before depreciation (item OIBDP). The weight $it−1 is

proportional to the market equity Vit−1 as defined in equation (9), and is used to be consistent
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with the fact that the variance of estimation error is assumed to be proportional to the inverse of

$it−1 in equation (8). If our model is the true model, we would expect cγ and bγ to be zero and

one, respectively.

Similarly, variations in the estimated values of a should positively correlates with the variations

in average Tobin’s q across industries and times. Specifically, the following regression should yield

a positive and significant coefficient on ajt:

qjt = ca + ba ajt × I/Kjt + εajt .

where the dependent variable is the value-weighted Tobin’s q for industry j at time t, defined

as
∑Njt

i=1$it−1qit, the independent variable is an interaction term between the estimated value of

a for the same industry and time and the weighted industry average investment rate, defined

as I/Kjt ≡
∑Njt

i=1$it−1(1 − τt) ×Kit+1/(Kit+1 + Wit+1) × (Iit/Kit), and ca and ba are regression

coefficients. If our model is the true model, we would expect ca and bγ to be one.

Table A.3 shows that bγ is 0.19 with t-stat being 6.10 and ba is 1.97 with t-stat being 3.33,

both of which are positive and highly significant. The constant term cγ is 0.18 (t=34.83) and ca is

2.16 (t = 34.49). On one hand, these results confirm that our estimation generates economically

sensible values for the structure parameters γ and a. On the other hand, values of the regression

coefficients are different from the values if our model is the true model. Possible reasons behind this

mismatch include measure errors in operating profits and Tobin’s q, and model misspecification

error. The existence of model misspecification error is not surprising, as we intentionally choose

such a simple model. We show in Section 6.2 that adding intangible assets to the model is a

promising direction for future research.
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G Comparative statistics

Given equation (6), it is straightforward to show that:

∂rFit+1

∂(Iit/Kit)
=

−(1− τt)rFwaccit+1 ajt

(1− wBit )
[
1 + (1− τt)ajt

(
Iit
Kit

)
+ Wit+1

Kit+1

] < 0

∂rFit+1

∂(Iit+1/Kit+1)
=

(1− τt+1)
(

1 + Iit+1

Kit+1
− δit+1

)
ajt+1

(1− wBit )
[
1 + (1− τt)ajt

(
Iit
Kit

)
+ Wit+1

Kit+1

] > 0

∂rFit+1

∂(Yit+1/Kit+1)
=

(1− τt+1)γjt+1

(1− wBit )
[
1 + (1− τt)ajt

(
Iit
Kit

)
+ Wit+1

Kit+1

] > 0

∂rFit+1

∂(Wit+1/Kit+1)
=

1− rFwaccit+1

(1− wBit )
[
1 + (1− τt)ajt

(
Iit
Kit

)
+ Wit+1

Kit+1

] ,
where rFwaccit+1 is firm i’s fundamental weighted average cost of capital, defined as rFwaccit+1 ≡ (1 −
wBit )r

F
it+1 + wBit r

Ba
it+1.

Since the denominator of all the above derivatives is positive, the signs of these partial deriva-

tives are determined by the numerator. The signs of the derivative of rFit+1 w.r.t. Yit+1/Kit+1,

Iit/Kit, and Iit+1/Kit+1 are clearly negative, positive, and positive, respectively. Fundamental

return decreases with Wit+1/Kit+1 if rFwaccit+1 > 1, and vice versa. Since cost of capital is in gen-

eral positive, i.e., rFwaccit+1 > 1, we expect the relation between rFit+1 and Wit+1/Kit+1 to be mostly

negative.

It is straightforward to see that the magnitude of
∂rFit+1

∂(Yit+1/Kit+1)
increases with the value of

γ, that is, a unit differences in Yit+1/Kit+1 leads to larger fundamental return spread when the

magnitude of γ is larger. The relation of the other three derivatives with model parameters a and

γ depends on the values of firm characteristics such as investment rate and sales-to-capital ratio,

and thus varies across firms in general.

For illustration purpose, we derive the relation of the other three derivatives with constant

model parameters a and γ at the steady state where firm characteristics equal the sample averages,

i.e., Iit/Kit = ik, Yit+1/Kit+1 = yk, Wit+1/Kit+1 = wk, w
B
it = wB, τt = τ , and δit = δ. We can show

that
∂rFwacct+1

∂ a
= −(1− τ)ik[(wk + τ)δ + (1− τ)γyk − (1 + wk)ik/2]

[1 + wk + (1− τ)ika]2
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and

∂

∂ a

∣∣∣∣ ∂rFt+1

∂(It/Kt)

∣∣∣∣ =

(
1− τ

1− wB

){
[(1 + wk)− aik(1− τ)]γyk + (1− τ)ika[(1− τ)(1− δ) + (wk + τ)(1− 2δ)]

+ (1 + wk)[τδ + (1− δ) + wk]

}/
[1 + wk + (1− τ)ika]3 > 0

∂

∂ a

∂rFt+1

∂(It+1/Kt+1)
=

(
1− τ

1− wB

)
(1 + wk)(1 + ik − δ)

[1 + wk + (1− τ)ika]2
> 0 .

The signs of the above derivatives hold when the values of firm characteristics are at the sample

averages, that is, ik = 0.37, wk = 3.60, yk = 3.09, γ = 0.15, δ = 0.19, and τ = 0.39.
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Figure A.1: Replication of Panel B Figure 3 in Gonçalves, Xue and Zhang (2020)

Both the fundamental and realized decile returns are in percentage per annum. The book-to-market (BM) deciles

(except for the two extreme deciles) are in blue circles, the momentum (R11) deciles in red squares, the asset

growth (I/A) deciles in green diamonds, and the return-on-equity (ROE) deciles in black triangles. The low BM

decile is denoted by “L” and the high BM decile by ”H”.
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Figure A.2: Simulation study: parameters with industry and time variations

This figure plots the time series of the true values (in red solid lines), the NLS estimates (in green lines with triangle

markers), the means (in blue dashed lines) and the 95% credible intervals (in shaded areas) of the model parameters

estimated from the simulated data. The marginal product and adjustment costs parameters of Wholesale & Retail,

Healthcare, Utilities, and Others industries are denoted as γi and ai for i = 4, 5, 6, 7, respectively.
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Figure A.3: Simulation study: parameters with time variations only

This figure plots the time series of the true values (in red solid lines), the NLS estimates (in green lines with triangle

markers), the Bayesian MCMC means (in blue dashed lines) and the 95% credible intervals (in shaded areas) of

the model parameters estimated from the simulated data. The marginal product parameter is denoted as γ and

the adjustment costs parameter is denoted as a.
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Figure A.4: Time series of parameter estimates

This figure presents the time series of the posterior means (in solid line) and 95% credible intervals (in dotted line)

of the marginal product parameter, γ, and physical adjustment costs parameter, a, for Fama-French 10 industries.
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Figure A.4: Time series of parameter estimates (continued)
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Figure A.4: Time series of parameter estimates (continued)
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Table A.1: Simulation study: Bayesian MCMC vs. NLS

This table reports the true values, the NLS estimates, and Bayesian posterior means and credible intervals (in

square brackets) of the model parameters, γ and a, under the specification with only industry variation in Panel

A and under the specification with constant parameter values in Panel B.

γ a

True NLS Bayesian True NLS Bayesian

Panel A: Parameters with industry variations only

Consumer Nondurables 0.3295 0.3293 0.3293 5.4954 5.5691 5.5625

[0.3241,0.3347] [5.4930,5.6502]

Manufacturing 0.7138 0.7107 0.7112 3.9548 3.9581 3.9596

[0.7065,0.7158] [3.9129,4.0013]

Business Equipment 0.6348 0.6378 0.6356 6.0973 6.0769 6.0235

[0.6281,0.6421] [5.8258,6.1722]

Wholesale & Retail 0.5154 0.5178 0.5180 5.0573 5.0686 5.0888

[0.5138,0.5219] [4.9892,5.1812]

Healthcare 0.3791 0.3813 0.3800 5.5589 5.5051 5.5078

[0.3723,0.3875] [5.4267,5.5977]

Utilities 0.3068 0.2902 0.2901 4.8656 4.8718 4.8729

[0.2769,0.3030] [4.8470,4.8986]

Other 0.4607 0.4666 0.4661 6.1648 6.1627 6.1626

[0.4559,0.4763] [6.1346,6.1926]

Panel B: Parameters with constant values

0.1500 0.1501 0.1500 0.1300 0.1280 0.1300

[0.1487,0.1520] [0.1297,0.1407]

29



Table A.2: Summary statistics of the realized and fundamental firm-level stock returns
under NLS estimation

This table reports the following key statistics for the realized (rS) and fundamental (rF ) firm-level stock returns:

mean, standard deviation, skewness, kurtosis, mean absolute error (m.a.e.) of the fundamental returns, and the time

series average of cross-sectional correlations between the realized and fundamental returns. The m.a.e. is defined as

m.a.e. ≡ 1

T

∑T−1
t=0

1

Nt+1

∑Nt+1

i=1 |rSit−rFit |, where Nt+1 is the number of firms in period t+1. For fundamental returns,

both the posterior means and the 95% credible intervals (in square brackets) of these statistics are reported. Both

realized and fundamental returns are winsorized at 0.5 and 99.5 percentiles. The fundamental stock returns are

computed based on four model setups: the baseline setup (under column θjt) in which the estimated parameters

are industry specific and time varying; the setup (θj) in which the estimated parameters are industry specific

but constant over time; the setup (θt) in which the estimated parameters are time varying but constant across

industries; and the setup (θ) in which the estimated parameters are constant over time and across industries. The

sample period is from June 1967 to December 2016.

Data θjt θj θt θ

mean 14.45 14.71 20.77 14.09 14.89

StdDev 60.78 32.82 23.69 30.12 19.75

Skewness 2.15 1.3384 2.07 1.05 2.13

Kurtosis 11.05 11.84 10.98 11.40 13.36

Correlation na 0.17 0.09 0.15 0.09

m.a.e. na 43.41 44.25 43.66 42.45
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Table A.3: Economic meanings of industry and time variations in parameter estimates

This table investigates the link between operating profits-to-sales ratio (Tobin’s q) and γjt (ajt). Columns (1) and

(2) report the the following two industry-level ordinary least squares (OLS) regressions, respectively:

Π/Y jt = cγ + bγ γjt + εγjt ,

qjt = ca + ba ajt × I/Kjt + εajt ,

where Π/Y jt ≡
∑Njt

i=1$it−1Πit/Yit, qjt ≡
∑Njt

i=1$it−1qit, and I/Kjt ≡
∑Njt

i=1$it−1(1 − τt) × Kit+1/(Kit+1 +

Wit+1) × (Iit/Kit). In column (1), the dependent variable is the value-weighted operating profits-to-sales ratio

for industry j at time t, the independent variable is the estimated value of γ for the same industry and time,

and cγ and bγ are regression coefficients. Operating profits is measured by operating income before depreciation

(item OIBDP). In column (2), the dependent variable is the value-weighted Tobin’s q for industry j at time t,

the independent variable is an interaction term between the estimated value of a for the same industry and time

and the weighted industry average investment rate I/Kjt, and ca and ba are regression coefficients. Tobin’s q is

measured by the market value divided by the book value of the firm. The market value of the firm is calculated

as the book value of the firm minus the book value of equity plus the market value of equity. The weight $it−1 is

proportional to the market equity Vit−1 as defined in equation (9). The t-values based on robust standard errors

are reported in parentheses. The sample period is from fiscal year 1965 to 2017.

Π
Y q

γjt 0.13
(6.10)

ajt × I/Kjt 1.97

(3.33)

Constant 0.18 2.16
(34.83) (34.49)

Adj.R2 0.078 0.017

Observations 530 530
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Table A.4: Average firm characteristics of high and low decile portfolios

This table reports the average Iit/Kit, Iit+1/Kit+1, Yit+1/Kit+1, and Wit+1/Kit+1 of the low (L) and high (H)

decile portfolios for the 12 anomaly variables. The sample period is from June 1967 to December 2016 for all

anomaly variables except for ROA, RD/M, and Ad/M. The sample starts at December 1972, December 1976, and

December 1973 for ROA, RD/M, and Ad/M, respectively, due to data availability.

BM R11 I/A ROE

L H L H L H L H
Iit/Kit 0.55 0.18 0.39 0.49 0.25 0.53 0.41 0.46
Iit+1/Kit+1 0.45 0.19 0.25 0.48 0.28 0.40 0.30 0.43
Yit+1/Kit+1 8.62 7.44 7.91 9.71 8.75 8.48 7.76 9.90
Wit+1/Kit+1 4.50 3.22 4.27 4.39 4.42 4.22 5.00 3.98

Size Accruals NSI ∆PI/A

L H L H L H L H
Iit/Kit 0.34 0.26 0.34 0.45 0.27 0.48 0.27 0.42
Iit+1/Kit+1 0.31 0.24 0.33 0.38 0.26 0.39 0.28 0.33
Yit+1/Kit+1 9.43 4.27 7.51 11.88 7.90 7.94 9.46 5.85
Wit+1/Kit+1 4.34 1.79 3.45 5.73 3.21 4.35 4.40 2.38

GP/A ROA RD/M Ad/M

L H L H L H L H
Iit/Kit 0.32 0.42 0.43 0.51 0.39 0.32 0.50 0.24
Iit+1/Kit+1 0.27 0.38 0.32 0.48 0.31 0.32 0.41 0.24
Yit+1/Kit+1 3.54 12.40 7.90 10.06 6.74 9.09 7.58 10.45
Wit+1/Kit+1 3.30 4.40 5.23 4.44 2.98 6.06 4.37 3.90
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Gonçalves, Andrei, Chen Xue and Lu Zhang. 2020. “Aggregation, capital heterogeneity, and the
investment CAPM.” Review of Financial Studies 33:2728–2771.

Hou, Kewei, Chen Xue and Lu Zhang. 2020. “Replicating anomalies.” Review of Financial Studies
33(5):2019–2133.

Lyandres, Evgeny, Le Sun and Lu Zhang. 2008. “The new issues puzzle: Testing the investment-
based explanation.” Review of Financial Studies 21:2825–2855.

Novy-Marx, Robert. 2013. “The other side of value: The gross profitability premium.” Journal of
Financial Economics 108:1–28.

Robert, Christian and George Casella. 2013. Monte Carlo Statistical Methods. Springer Science
& Business Media.

Sloan, Richard G. 1996. “Do stock prices fully reflect information in accruals and cash flows about
future earnings?” The Accounting Review 71:289–315.

33


	lmwy_new
	OnlineAppendix

