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Abstract
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cus more on exploitation than exploration. When users are impatient, competition
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opment of a forward-looking algorithm may hurt users under monopoly but always
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1 Introduction

Two trends have radically transformed the marketing landscape in the past two decades.

First, the advent of e-commerce, social media, and mobile marketing has made firm-consumer

interactions increasingly frequent and digitized (Godes and Mayzlin 2004, Fader and Winer

2012, Kannan and Li 2017). These interactions have produced a fine-grained digital con-

sumer footprint that provides valuable information to firms. Second, the past decade has

also witnessed exponential growth in leveraging data and computing power in the busi-

ness world. The rapid development of cloud computing, big data, machine learning, and

AI has provided powerful tools to assist in large-scale automated decision making. These

tools have greatly increased firms’ ability to understand and fulfill customers’ needs in real

time (Chintagunta, Hanssens, and Hauser 2016, Huang and Rust, 2018, Ma and Sun, 2020).

Driven by these trends, firms now routinely analyze historical interactions with consumers

to infer their preferences and generate customized offerings, often in real time. Prominent

examples abound. Personalized product recommendation systems are now indispensable on

e-commerce websites such as Amazon and Taobao. Digital advertisements are increasingly

personalized based on a user’s past behaviors. Even more prevalent are popular social media

and content platforms such as Facebook, YouTube, Spotify, TikTok, and many news media

sites that customize content feeds to individual users based on their historical interactions

with the platform. Such personalized real-time customization is being conducted through

increasingly sophisticated AI algorithms, which have become a major source of competitive

advantage for many firms.

While the scale and scope may be new, the practice of learning about consumers and

making customized recommendations dates back to the early days of marketing (Wedel

and Kannan 2016). Conceptually, three paradigms exist for recommendations. First, using

historical data, a firm can learn about consumer preferences at the group level in a static

fashion, and make customized recommendations based on the inferred segmentation. A

rich body of literature, e.g., dynamic choice models, incorporates consumer heterogeneity in

an increasingly sophisticated manner, enabling effective segmentation and personalization

(Kamakura and Russell 1989, Rossi, McCulloch, and Allenby 1996). These methods are now

commonly used in industry to enhance sales, profit, customer satisfaction, and loyalty. Since

such models are typically estimated only periodically using datasets containing large batches

of historical observations, and decisions are updated infrequently (often non-machine-assisted

human decisions), this paradigm is non-adaptive to users’ real-time behaviors.

In the second paradigm, a firm can refine its learning adaptively using new information,

potentially on a real-time basis (Zhang and Krishnamurthi 2004, Steckel et al. 2005, Sun,
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Li, and Zhou 2006). In this paradigm, as time passes and new data become available, the

firm continuously update its understanding of consumer preferences based on the new in-

formation. At each point in time, the firm makes personalized offerings based on its best

understanding of a consumer’s preferences. Many statistical techniques, such as machine

learning, can help firms perform such adaptive learning and recommendations. For example,

today’s recommendation systems use methods such as content-based filtering and collabo-

rative filtering to generate candidates to recommend. They then use a predictive model to

rank them by objectives such as click-through rate or session watch time (Google Develop-

ers 2020). These automated algorithms are increasingly common to help firms effectively

adapt to and act on a constant stream of incoming data in real time. We call this second

paradigm the myopic recommendation algorithm. The word “myopic” highlights that these

algorithms only aim to offer the “best” recommendation at the moment, without considering

the long-term benefit of acquiring knowledge and improving personalized targeting.

Going one step further from the myopic algorithm, a third and more powerful recom-

mendation paradigm is emerging. A firm not only learns adaptively from past information,

but also takes a forward-looking perspective in its recommendations to proactively gather

new information in a guided manner. For example, based on the current understanding, a

consumer is most likely to enjoy a specific type of content, but the firm may instead find it

useful to recommend something different. Such recommendation may lead to a reduction of

service quality and a lower profit in the short term, but it speeds up the learning of consumer

preferences, which can then improve future recommendations and enhance customer reten-

tion. Central to this paradigm is the exploitation-exploration trade-off, where the firm has

to balance the conflict between maximizing the current payoff and acquiring new knowledge.

The adoption of this third paradigm is partly driven by the recent success of reinforcement

learning, which allows computers to better approximate human decision making (Sutton and

Barto 2018). Major social media and content platforms, such as YouTube, are also devel-

oping reinforcement learning algorithms to maximize users’ long-term satisfaction with the

system (Chen et al. 2019). We call this third paradigm the forward-looking recommendation

algorithm.

The proliferation of consumer data has attracted considerable attention from scholars in

multiple fields. Research in computer science has developed a vast and powerful tool set to

extract information from large volumes of data. Empirical research in marketing and eco-

nomics has consistently confirmed the value of consumers’ digital footprint on understanding

their preferences and decisions (e.g., Winer and Neslin 2014). However the theoretical im-

plications of firms’ continuous personalization, especially under competition, are noticeably

left out of both streams of research. Developing the capability to learn and recommend in
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real time requires considerable investment. Adopting a forward-looking solution framework

such as reinforcement learning is an even more demanding initiative. To optimize investment

decisions, it is crucial for firms to understand the value of such continuous, forward-looking

personalization in different competitive scenarios. It is also important for policy makers to

understand how competition, or the lack thereof, affects the adoption of advanced algorithms

and the subsequent consumer welfare implications.

In this paper, we study the competition between content platforms, such as YouTube

and TikTok, which compete for users’ attention through personalized content recommen-

dations. This is a representative setting where firms offer adaptive personalized offerings

to each user, and forward-looking, multi-homing users dynamically switch between different

platforms. We examine myopic users as a special limiting case. While our analysis focuses on

advertising-supported content recommendations, key intuitions and findings from this paper

can potentially be generalized to other similar settings, such as product recommendations

on e-commerce websites or targeted advertising.

In our model, users differ in their preferences for different types of content. Using a user’s

responses to past recommendations on the platform as noisy signals, a firm gradually learns

about the user’s preferences and adjusts the recommendations adaptively. We formulate

firms’ problem as a continuous-time, multi-armed bandit problem. This framework incorpo-

rates key factors such as firms’ continuous learning of user preferences, adaptive responses

to real-time information, and forward-looking optimization in a parsimonious manner. For

simplicity, we focus on firms’ learning from repeated interactions with a single user, thus

ignoring potential learning across users.

Studying such a market allows us to focus on sequential learning and the optimal content

personalization strategy by abstracting away from other strategic decisions such as adver-

tising, pricing, and positioning. The setup also abstracts away from other issues related to

the value of data, such as privacy (e.g., Acquisti, Taylor, and Wagman 2016, Ke and Sudhir

2022), sharing or selling data to third parties (e.g., Chen, Narasimhan, and Zhang 2001), or

using data from existing customers to target similar customers (e.g., Schafer et al. 2007).

In light of rising concerns expressed by regulators over major tech firms’ market power,

our research investigates the effects of market power on firms’ incentives to develop advanced

AI algorithms and the implications on industry profit and consumer welfare. We address

three questions. First, how does the presence of competition affect the optimal trade-off

between exploration and exploitation in personalization? Many recommendation algorithms

have been found to prioritize popular, mainstream content over less popular, niche content.

Firms should understand how to balance between mainstream and niche content in their

recommendation algorithms in different competitive scenarios. Second, does the forward-
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looking algorithm provide additional value over the myopic algorithm to firms? And how

does upgrading from the myopic algorithm to the forward-looking algorithm affect consumer

welfare? Third, how does competition affect firms’ decisions to invest in the forward-looking

algorithm? These questions have theoretical and managerial implications for technology

adoption as well as regulation.

We compare the myopic recommendation algorithm that only focuses on exploitation

to the optimal forward-looking algorithm that balances exploitation and exploration. We

analyze two market structures: (1) when a firm monopolizes a user’s attention, and (2) when

two firms compete for a user’s attention. In the competitive scenario, the user strategically

multi-homes by choosing which firm to consume content from at each moment. In this

dynamic multi-homing problem, the two firms and the user each solves a bandit problem.

Our study is among the first to study such a multi-agent bandit problem arising from multi-

homing under competition.

In this paper, a recommendation algorithm is a mapping from information sets to content

types. The optimal forward-looking algorithm in the monopoly case solves the monopoly’s

dynamic optimization problem, while the optimal forward-looking algorithm in the duopoly

case is synonymous with equilibrium strategy. This approach allows us to abstract away

from specific algorithms and focus instead on the value added to firms and consumers when

algorithms gain forward-looking capability. This approach is in contrast to recent papers

that examine outcomes generated by competition between agents that deploy Q-learning, a

reinforcement learning algorithm that has recently received attention in Economics (Johnson

et al. 2020, Asker et al. 2022, Banchio and Mantegazza 2022, Banchio and Skrzypacs 2022).

We derive closed-form solutions to the simultaneous bandit problem, and the solutions

reveal several important insights. For a monopoly, the additional value of developing the

forward-looking algorithm is non-monotonic in the firm’s prior knowledge about a user’s

preferences. To expedite learning of consumer preferences, the forward-looking algorithm

induces the firm to recommend more niche content, i.e., to customize more than the myopic

algorithm does. The exploration-exploitation trade-off also means that the forward-looking

algorithm leads to reduced profit in the near term, although the profit increases later to

compensate for the near-term loss.

The situation changes substantially, however, when firms have to compete for a user’s

attention. The presence of competition pushes the optimal forward-looking algorithm to

shift towards exploitation by recommending less niche content, due to less room for strategic

experimentation. More importantly, the ability for the user to switch platforms forces firms

to optimize with respect to the user’s time preferences. This novel insight implies that

the optimal forward-looking algorithm and the value it provides must depend on the user’s
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discount rate instead of the firms’ discount rate. As users become more impatient, the

forward-looking algorithm moves closer to the myopic algorithm and recommends less niche

content. When users are fully myopic, the myopic algorithm becomes optimal.

We analyze firms’ incentives to invest in upgrading from the myopic algorithm to the

forward-looking algorithm. First, our analysis shows that, when users are sufficiently impa-

tient, firms under competitive pressure reap less benefit from the algorithmic upgrade than

a monopoly. Second, in competition, upgrading to the forward-looking algorithm allows a

firm to steal demand from the competitor. As a result, when the cost of developing the

forward-looking algorithm is in an intermediate range, the equilibrium exhibits prisoner’s

dilemma: both firms invest in the forward-looking algorithm but the total industry profit is

lower than no investment. User myopia can be both a curse and a blessing. A more impa-

tient user decreases the value from the forward-looking algorithm but may help firms avoid

the prisoner’s dilemma. Similarly, a lower cost of developing the forward-looking algorithm

can hurt firms by inducing the prisoner’s dilemma.

There is also a trade-off between innovation incentives and consumer welfare. In par-

ticular, when users are sufficiently impatient relative to firms, a monopoly has a higher

incentive than firms under competition to develop the forward-looking algorithm, but such

technological advancement hurts users due to excessive customization. In contrast, under

competition, the adoption of the forward-looking algorithm is always beneficial to users, but

firms derive less value from such an algorithm than a monopoly does, hindering investment.

These results have implications for policy makers who care about both consumer welfare and

the adoption speed of AI technologies. In recent years, regulators around the world have

increased scrutiny over the market power of algorithmic-driven tech firms (e.g., U.S. House

2020, Competition and Markets Authority 2020). At the same time, many governments have

launched national AI strategies to push for faster adoption of AI technologies in the face of

global competition (Berryhill et al. 2020). Our study shows the potential conflict between

these two policy goals.

The rest of the paper is organized as follows. After reviewing the relevant literature in

Section 2, we set up the monopoly model in Section 3. We then study competitive scenarios

in Section 4. Section 5 explores extensions, including a game of algorithmic investment.

Concluding remarks are offered in Section 6.
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2 Literature Review

Dynamic Programming and Reinforcement Learning

The core idea of reinforcement learning (RL) is deriving solutions to stochastic dynamic pro-

gramming problems under uncertainty. In our context, firms need to learn about consumer

preferences and trade off instantaneous costs with future payoffs to maximize long-term

profit. Facing the inter-temporal trade-off between exploration and exploitation, an agent

solves a statistical decision model and learns about the payoff of different options over time

through experimentation. A stream of marketing research derives and studies the properties

of this problem in various applications of marketing decision support system. Applying to

catalogs, Gonul and Shi (1998) show that the optimal mailing policy resulting from a dy-

namic programming model significantly outperforms its single-period counterpart. Applying

a dynamic-programming-based approach to newspaper subscriber data, Lewis (2005) com-

putes price paths that maximize profit over long-term relationships with customers. Li, Sun,

and Montgomery (2006) derive an optimal multi-step, multi-segment, and multi-channel

cross-selling campaign process that instructs firms when to target whom with what prod-

uct using which channel. Sun and Li (2005) formulate firms’ service allocation decisions as

solutions to a dynamic programming problem and discuss how the experimental nature of

interactive learning and acting on customer information improve customer experience and

firm profit. Sun, Li, and Zhou (2006) present a conceptual framework of customer-centric

marketing-mix decision making as a solution to dynamic programming problems with a two-

step interactive procedure (adaptive learning and proactive marketing decisions). Ching

(2010) present a dynamic oligopoly model of the drug market, in which both firms and

patients learn about the quality of generic drugs over time through patients’ experiences.

Lin, Zhang, and Hauser (2015) consider a dynamic experiential learning problem in which

consumers learn brand quality over time while facing random utility shocks. They show em-

pirically that an index-based heuristic solution is nearly optimal and perform significantly

better than myopic learning.

Recently, RL has been applied to marketing problems with the same idea of continuously

following consumers to deliver the right intervention to the right consumer at the right time

using the right channel. For example, formulating personalized news recommendations as a

bandit problem, Li et al. (2010) propose an algorithm that generates a sequence of articles

based on the historical activities of a user, and the article recommendation policy adapts

based on users’ real-time feedback with the goal of maximizing total user clicks in the long

run. Theocharous, Thomas, and Ghavamzadeh (2015) formulate a personalized advertising

recommendation system as an RL problem to maximize lifetime value (LTV) and show

improvement over a myopic solution with supervised learning. Hybrid and concurrent RL
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are proposed by Li et al. (2015) and Silver et al. (2013) to better incorporate lifetime

value of customers and customer interactions. Other researchers have used the multi-armed

bandit framework to improve adaptive online advertising (e.g., Urban et al. 2014, Schwartz,

Bradlow, and Fader 2017), web content optimization (e.g., Agarwal, Chen, and Elango 2008,

Hauser, Liberali, and Urban 2014), and pricing (e.g., Misra, Schwartz, and Abernethy 2019).

Schwartz, Bradlow, and Fader (2017) propose the Thompson sampling algorithm (which

assigns a treatment with a probability equal to the probability that the treatment is optimal)

for the optimal allocation of advertisements. Misra, Schwartz, and Abernethy (2019) propose

a dynamic price experimentation policy in online retailing by adaptively assigning users to

the treatment with the highest potential. By adjusting adaptively, reinforcement learning

improves over the static approach because successful treatments are rewarded by assigning

more users to these treatments (Athey and Imbens 2019, Sutton and Barto 2018).

This fast developing literature demonstrates the potential of adaptive learning and cus-

tomization using dynamic programming and RL approaches. The proliferation of empirical

research and algorithm development highlights the need for additional studies to investigate

the properties of continuous, forward-looking customization under competition.

Multi-Armed Bandits

From a modelling perspective, our research is related to the literature in economics that

models learning and experimentation as a multi-armed bandit (MAB) problem (Rothchild

1974, Weitzman 1979, Keller and Rady 1999). Bolton and Harris (1999) and Keller, Rady,

and Cripps (2005) study experimentation in teams, and show that members of a team under-

experiment as they try to free-ride on information from others’ experiments. In the contexts

of experience goods market and labor market, respectively, Bergemann and Välimäki (1996)

and Felli and Harris (1996) study a case where an agent pays for experiments that are owned

by separate sellers who compete with each other on price. However, these papers do not

consider a case where multiple bandits compete with each other to determine who gets the

right to experiment, which is the focus of this paper.

This problem of competition and MAB has also received attention in computer science.

The paper closest to ours is Aridor et al. (2021). Both papers study two multi-armed bandit

algorithms that compete for users over time, and observe that competition pushes firms

towards exploitation and disincentivizes firms from adopting better algorithms. However,

there are a few key differences between our models. Most importantly, users in Aridor et al.

(2020) are short-lived and cannot observe other users’ experience. In contrast, firms in our

model face a long-lived user who also solves its own bandit problem when choosing which

firm to visit over time. Differences in our models also lead to very different conclusions.

7



Aridor et al. (2021) find that when facing utility-maximizing consumers, both firms adopt

a myopic algorithm in equilibrium. In contrast, the equilibrium algorithm in the current

paper is still forward-looking. By studying a long-lived user, we are also able to examine

how the user’s time preferences affect the equilibrium choices of algorithms, firms’ incentives

to invest in advanced algorithms, and the welfare impact of such investment.

Ke, Li, and Safronov (2021) find that competition pushes firms to behave more myopically

with respect to assigning tasks to employees in a model of dynamic career concerns. Our

paper differs both in the context and the mechanism that cause the effect. In Ke, Li, and

Safronov (2021), the employee reaps all future surplus from reputation, causing firms to

behave myopically. In our model, competing firms cater to the user’s time preference, thus

acting more myopically when the user is more myopic. Hansen, Misra, and Pai (2020) and

Calvano et al. (2020) numerically study competition between pricing algorithms, but our

paper instead focuses on competition between content recommendation algorithms without

pricing decisions.

Micro Models of AI Technology

A recent stream of literature in economics and marketing has built theoretical models to

study the general microeconomic impact of AI technology. Agrawal, Gans, and Goldfarb

(2018a) argue that the current wave of AI technology can be thought of as an improved

ability to predict future states. Agrawal, Gans, and Goldfarb (2019) split the decision-

making process between machine prediction of states and human judgment of utility, and

show that human judgment can be either complement or substitute for machine prediction.

Agrawal, Gans, and Goldfarb (2018b) consider subscription pricing of such prediction tech-

nology. Miklos-Thal and Tucker (2019) show that algorithmic pricing can lead to collusive

outcomes. Dogan, Jacquillat, and Yildirim (2019) and Athey, Bryan, and Gans (2020) study

the effect of AI on delegation of decision authority in the presence of principal-agent problem.

Berman and Katona (2020) investigate when curation algorithms do and do not create po-

larization in social networks. Liu, Yildirim, and Zhang (2019) consider price discrimination

when consumers purchase from AI-enabled home devices. Xu and Dukes (2020) study per-

sonalized pricing when data analytics enables firms to have more information on consumer

preferences than consumers have. These papers focus on documenting the general impact

of machine-aided decision-making but they do not investigate the inter-temporal trade-off

between exploitation and exploration.
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Continuous-time Decision-Making

We study a continuous-time model with sequential arrival of information, which approx-

imates the nature of real-time learning and acting on customer information. There is a

related stream of literature on the continuous acquisition of information before an agent

undertakes an irreversible action such as purchase or investment (e.g., Branco, Sun, and

Villas-Boas 2012, Ke, Shen, and Villas-Boas 2016, Fudenberg, Strack, and Strzalecki 2018).

Ke and Villas-Boas (2019) consider continuous learning of multiple alternatives before com-

mitting to a choice. These papers capture the continuous nature of learning and solve the

optimal solution to the single decision-maker problem. Ning (2021) expands the single-agent

problem into a continuous-time game by adding dynamic pricing while a buyer and a seller

continuously receive information on their match value. Villas-Boas and Yao (2020) model

a firm’s optimal advertising retargeting policy to a consumer who continuously searches for

product information. Deb, Öry, and Williams (2018) study a continuous-time crowdfunding

game between a long-lived donor and short-lived buyers as information on the total dona-

tion arrives over time. In contrast to these papers, the current paper features competition

between two firms, each deciding its own experimentation strategy and receiving private

information, while factoring in competitive responses from the other firm.

Personalization

Our model also relates to the literature on personalization based on past behaviors. The

literature on behavior-based price discrimination (e.g., Villas-Boas 1999, 2004, Fudenberg

and Tirole 2000, Acquisti and Varian 2005, Pazgal and Soberman 2008) shows that person-

alized pricing based on past purchase behaviors generally hurts firms by intensifying price

competition. Zhang (2011) expands the literature to allow for endogenous product designs

that influence the information that firms collect. The current paper does not consider pric-

ing. Instead, we focus our attention on personalized product offerings. We allow for rich

dynamics where each firm makes personalized offerings over an infinite number of periods,

where each decision affects both immediate profit and firms’ future information about the

customer. Our paper also relates to the extensive literature on targeting, but instead of

deciding whether to target a consumer, in our context, firms decide what content to offer to

that consumer.

Innovation

The paper contributes to the literature on competition and innovation. Dasgupta and Stiglitz

(1980) and Spence (1984) argue that increasing the number of firms in the industry decreases

firms’ incentives to invest in cost reduction, whereas Aghion et al. (2005) and Vives (2008)
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show that increasing the number of firms can foster innovation when the level of competition

is low. While the aforementioned papers model innovation as a reduction in marginal cost or

an increase in labor productivity, this paper considers a very different type of innovation. We

consider the technological upgrade from a myopic algorithm to a forward-looking algorithm,

and show that competition decreases the return from this upgrade when consumers are

impatient.

3 Monopoly Model

Consider a firm that provides personalized content to each user over time. For example,

platforms like YouTube, TikTok, Spotify, and Google News recommend personalized content

to users based on their historical behaviors on the site. The firm’s objective is to increase

user engagement with the content on the site through increased views over a user’s lifetime,

which boosts monetization, such as advertising revenue.1 Table 1 presents the notations for

the monopoly case.

Each user has a unit demand for content at each time t. In this section, we consider the

case of a true monopoly where the user visits the firm at each time t. In Section 4, we give

the user the option of visiting other firms, so that firms have to compete for the user’s time.

For a given user at a given time, the firm can choose to recommend mass-market content

(M) or niche-market content (N). For simplicity, we assume that there are two types of

niche-market content, denoted as N1 and N2. All users equally enjoy mass-market content,

but for niche-market content, they have different preferences. Some users enjoy N1 more

often than N2, and vice versa. Let T ∈ {N1, N2} denote the focal user’s preferred type of

niche-market content. This is drawn by Nature and is unknown to the firm.

Let St ∈ {M,N1, N2} denote the type of content that the firm recommends to the focal

user at time t. If a user receives niche-market content, the user likes the content with

probability α > 0.5 if the content matches the user’s preferred content type, and with

probability 1−α if it is a mismatch. The parameter α captures the consistency of the user’s

preferences for niche-market content. An α close to 1 implies that the user always likes the

same content type, whereas an α close to 0.5 implies that the user’s preferences for content

types are nearly random.

If the user receives mass-market content, the user likes the content with probability c. For

1There are various ways to display ads and generate revenue (pay-per-click/pay-per-impression), but they
all share the common characteristic that revenue is proportional to user engagement, which is captured in
our model. Note that we do not study the customization of advertising in this paper, but only customization
of content.
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the interesting case, we assume that 1
2
< c < α, otherwise the firm either never recommends

mass-market content or always recommends mass-market content. Note that a user is more

likely to engage with mass-market content than randomly selected niche-market content.

This reflects the general popularity of mass-market content.

So the probability that a user of type T likes the content recommended at time t, denoted

as y(T, St), can be written as:

y(T, St) =


α if St = T

c if St = M

1− α otherwise

(1)

If the user likes the recommended content, the firm earns an advertising profit of size p and

the user gets a utility of u, both of which can be normalized to 1.2 So the expected flow

profit generated from recommending content type St given that the user’s preferred content

type is T is simply πt = p ∗ y(T, St) = y(T, St), and the standard deviation of the flow profit

is

σt =
√
α(1− α) · 1{St 6= M}+ c(1− c) · 1{St = M} (2)

To capture the idea that these interactions occur at a high frequency and the firm can

monitor a user’s behavior continuously, we use a continuous-time model, where the firm’s

cumulative profit, Yt, accrues as

dYt = y(T, St)dt+ σtdWt, (3)

where y(T, St), as defined in equation (1), is the expected profit flow, and σt, as defined in

equation (2), is the instantaneous standard deviation, and Wt is a standard Wiener process.3

2The normalization is only with loss of generality when considering social surplus, or how surplus is split
between users and firms. Because our model focuses on one focal user, we do not discuss social surplus in
this paper. In the Online Appendix, we study a case where the firm can control the degree of monetization
that affects both the flow profit as well as the speed of learning.

3In discrete time, we have:

E[Yt] =

t∑
s=1

y(T, Ss) and V ar(Yt) = α(1− α)

t∑
0

1{St 6= M}+ c(1− c)
t∑
0

1{St = M}

The noise is independent across time, and by the central limit theorem, the distribution of Yt can be
approximated by the Gaussian distribution N (E[Yt], V ar(Yt)) for large t. The unique continuous-time
process with independent noise in increments that satisfies Yt ∼ N (E[Yt], V ar(Yt)), where

E[Yt] =

∫ t

0

y(T, Ss)ds and V ar(Yt) = α(1− α)

∫ t

0

1{St 6= M}ds+ c(1− c)
∫ t

0

1{St = M}ds

is
dYt = y(T, St)dt+ σtdWt,
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3.1 Information and Learning Process

At t = 0, the firm receives a binary signal on the user’s type with accuracy λ0 > 0.5. That

is, the firm observes the correct user type with probability λ0, and observes the incorrect

type with probability 1−λ0. Thus, the firm either has a prior belief that the user prefers N1

with probability λ0, or has a prior belief that the user prefers N2 with probability λ0. This

represents the prior knowledge the firm has about this user. We can always relabel the two

content types without loss of generality, so we can simply assume that the firm has a prior

belief that the user prefers N1 with probability λ0.

Let λt denote the firm’s posterior belief that the user prefers N1 over N2. The history of

realized profit from the user serves as the information source. We have

λt = Pr(T = N1|Ft)

where Ft is the filtration generated by the past observations of profit from the user.

The Exploration vs. Exploitation Trade-off

Note that the firm only gains information about the user’s preferences when it recommends

niche-market content. Consider a scenario where λt is close to 0.5. There is enough un-

certainty about the user’s preferences that the user has a higher probability of liking mass-

market content than niche-market content. Thus, to maximize the immediate profit, the firm

should recommend mass-market content. However, the firm may still want to offer niche-

market content, because the user’s response to it reveals information about her preferences,

which allows the firm to make better recommendations in the future. Thus, in this model,

the firm’s decision on whether to recommend niche-market content captures the trade-off

between exploration and exploitation in a parsimonious way.

Updating of Posterior Belief

From the firm’s perspective, with a belief λt, the expected profit flow from recommending

content type St to the user at time t can be written as:

y(λt, St) =


λtα + (1− λt)(1− α) if St = N1

(1− λt)α + λt(1− α) if St = N2

c if St = M

(4)

Because the firm gains no information when it recommends mass-market content, the pos-

terior belief, λt, is only updated when the firm recommends niche-market content. From

Liptser and Shiryaev (1977), the updating process of λt, when the firm recommends niche-
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market content, follows the process

dλt = [α− (1− α)]
λt(1− λt)

σ2
t

[y(T, St)− y(λt, St)]dt+ [α− (1− α)]
λt(1− λt)

σt
dWt (5)

where the term [y(T, St)− y(λt, St)] represents the new information, which is the difference

between the expected flow profit under the current belief and the true expected flow profit.

The speed of updating is weighted by the difference in outcomes between the right and the

wrong actions, which is captured by α − (1 − α) = 2α − 1. The term σt is the standard

deviation of flow profit from equation (2).

Because the expected value of [y(T, St) − y(λt, St)] is zero, the change to the posterior

belief, λt, has zero drift. We can simplify equation (5) to

dλt =
σ(λt)

σ2
t

[y(T, St)− y(λt, St)]dt+ σ(λt)dWt (6)

where σ(λt) is the instantaneous standard deviation of λt, i.e.,

σ(λt) ≡
λt(1− λt)(2α− 1)

σt
=
λt(1− λt)(2α− 1)√

α(1− α)

Note from the above equation that the instantaneous standard deviation of λt, σ(λt),

increases in α (α is assumed to be > 0.5), so the posterior belief is more responsive to user

behaviors when α increases. When α is larger, different types of users exhibit more different

behaviors. Thus, information inferred from their behavior is more precise. The belief λt

is updated faster, so the instantaneous volatility of λt is higher. Notice that as λt goes to

either 0 or 1, the standard deviation will go to zero. In the limit as time goes to infinity, the

user’s preferences will be fully revealed. But for any finite length of time, there will be some

amount of uncertainty regarding the user’s preferences.

3.2 Firm’s Decisions

The firm is risk neutral and maximizes the present value of discounted expected profits with

a discount rate of rf by choosing recommendation St as a function of λt, which is the belief

at time t that the user prefers type N1 over N2. The firm can only recommend one unit of

content to a user at a time.

The lifetime value of the user given a path of St is

V ({St}, λ0) = E

∫ ∞
0

e−rf ty(λt, St)dt

13



where y(λt, St) is the expected flow profit defined in equation (4).

The firm’s problem is to find the optimal algorithm, St = S(λt), that maximizes the

user’s lifetime value. We can then rewrite the lifetime value of the user with a prior λ0 as

V (λ0) ≡ max
S(λt)

V ({S(λt)}, λ0),

In the Appendix, we derive and solve the Hamilton-Jacobi-Bellman equation. Under the

optimal algorithm, the firm’s value function must satisfy

V (λt) =
y(λt, St)

rf
+ bλ

−(γ−1)/2
t (1− λt)(γ+1)/2, where γ =

√
1 +

8rfα(1− α)

(2α− 1)2
(7)

for some coefficient b.

We describe the myopic recommendation algorithm and the forward-looking algorithm

separately, as discussed in the introduction.

Myopic Recommendation Algorithm

Consider a firm that employs the myopic recommendation algorithm, which only aims to

maximize the instantaneous profit. This case resembles a firm with a supervised learning

algorithm that continuously predicts the likelihood that a user will enjoy each type of content,

and simply recommends the one with the highest ranking.

The firm recommends the content type that maximizes the instantaneous payoff y(λt, St)

from equation (4). The optimal myopic algorithm is the following: the firm recommends

content type N1 if λt > λ∗ = c−(1−α)
2α−1 , type N2 if λt < 1 − λ∗, and type M if λt ∈ [1 −

λ∗, λ∗]. Intuitively, the firm recommends whichever content type that the user has the

highest probability of liking at each time point.

Forward-Looking Recommendation Algorithm

Now we solve the optimal forward-looking algorithm, which needs to balance the exploration

vs. exploitation trade-off. Due to symmetry, we only need to focus on the case of λt > 0.5. In

this case, if the firm recommends niche-market content, it must recommend type N1. Also, as

noted earlier, once the firm recommends mass-market content to the user, it stops learning, so

it will always recommend mass-market content in the future. Thus, the firm’s value function

when it recommends mass-market content must be c/rf . So to obtain the optimal forward-

looking algorithm, we only need to know at what point the firm switches from recommending

niche-market content to recommending mass-market content. Let λ̂ denote the cutoff such
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that the firm begins serving mass-market content to the user if λt ≤ λ̂. The threshold λ̂

must satisfy the value-matching and the smooth-pasting conditions (see, e.g., Dixit 1993)

for the value function:

rfV (λ̂) = c, V ′(λ̂) = 0

Plugging these boundary conditions back into the solution of the HJB equation (7) produces

the solution for λ̂ and b2.

We describe the optimal threshold and the firm’s value function under the optimal thresh-

old below:

Lemma 1 Define

λ̂ =
[c− (1− α)](γ − 1)

(2α− 1)(γ − 1) + 2(α− c)
, where γ =

√
1 +

8rfα(1− α)

(2α− 1)2

1. If λ̂ > 0.5, then the optimal forward-looking algorithm recommends content type N1 if

λt > λ̂, type N2 if λt < 1− λ̂, and type M if λt ∈ [1− λ̂, λ̂].

The firm’s value function is symmetric around 0.5. For λt > λ̂

V (λt) =
λtα + (1− λt)(1− α)

rf
+

2(α− c)
r(γ − 1)

(
λ̂

1− λ̂

)(γ+1)/2

λ
−(γ−1)/2
t (1− λt)(γ+1)/2

and V (λt) = c
rf

for 0.5 ≤ λt < λ̂.

2. If λ̂ ≤ 0.5, then the optimal forward-looking algorithm recommends N1 if λt > 0.5 and

N2 if λt < 0.5.

The firm’s value function is symmetric around 0.5 where for λt > 0.5,

V (λt) =
λtα + (1− λt)(1− α)

rf
+

2α− 1

rfγ

(
λ̂

1− λ̂

)(γ+1)/2

λ
−(γ−1)/2
t (1− λt)(γ+1)/2

From Lemma 1 we have λ̂ < λ∗, which implies that the firm recommends more niche-

market content under the forward-looking algorithm than under the myopic algorithm. Con-

sider λt ∈ (λ̂, λ∗). The forward-looking algorithm recommends content type N1, which is

expected to generate lower instantaneous profit than type M , in order to gather more infor-

mation about user i’s preference. Figure 1 compares the decision under the forward-looking

and the myopic algorithm.
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Figure 1: Recommendations under the forward-looking vs. the myopic algorithm

Note that λ̂ is an increasing function of γ, while γ is an increasing function of rf and a

decreasing function of α. Thus, λ̂ increases with rf and decreases with α. Intuitively, when

rf is smaller, the firm weights future profit more and thus it becomes more important for

the firm to learn and adapt. Consequently, the firm is less likely to recommend mass-market

content. When α is lower, it means that the user’s preferences are less consistent and less

correlated over time. It is more difficult to predict what a user likes at a given moment.

Additionally, the firm also receives less precise information from the user’s past behaviors.

As a result, the firm recommends less niche-market content.

Proposition 1 The optimal forward-looking threshold, λ̂, is strictly lower than the myopic

threshold, λ∗ = c−(1−α)
2α−1 . The optimal forward-looking threshold increases with discount rate,

rf , and decreases with preference consistency, α.

3.3 Additional Value from the Forward-Looking Algorithm

Different recommendation algorithms require different levels of technology. An upgrade from

the myopic algorithm to the forward-looking algorithm requires balancing the value from

exploration and exploitation through techniques such as reinforcement learning. In this

section, we examine the value of such a technological upgrade. This can also be interpreted

as a monopoly’s incentive to invest in such an upgrade if it is costly. We denote the firm’s

ex-ante expected profits under the myopic and forward-looking algorithms as V MY (λt) and

V FL(λt), respectively.
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Under the myopic algorithm, the firm switches from niche-market content to mass-market

content when λt drops below λ∗, and makes a flow profit of c in perpetuity when serving

mass-market content. To find the value function for λt > λ∗, we solve equation (7) with the

boundary condition rfV (λ∗) = c, from which we get b = 0. Thus, the firm’s expected profit

at t = 0 is

V MY (λ0) =


λ0α+(1−λ0)(1−α)

rf
for λ0 > λ∗

c
rf

for λ0 ∈ (1− λ∗, λ∗)
λ0(1−α)+(1−λ0)α

rf
for λ0 < 1− λ∗

(8)

The firm’s expected profit at t = 0 under the forward-looking algorithm, V FL(λit), is

given in Lemma 1, from which we can get, for λ0 ≥ λ∗,

V FL(λ0)− V MY (λ0) =
2(α− c)
rf (γ − 1)

(
λ̂

1− λ̂

)(γ+1)/2

λ
−(γ−1)/2
0 (1− λ0)(γ+1)/2

and for λ0 ∈ (λ̂, λ∗),

V FL(λ0)−V MY (λ0) =
λtα + (1− λt)(1− α)− c

rf
+

2(α− c)
rf (γ − 1)

(
λ̂

1− λ̂

)(γ+1)/2

λ
−(γ−1)/2
t (1−λt)(γ+1)/2

We call V FL(λ0)− V MY (λ0) the additional value from the forward-looking algorithm.

Proposition 2 The additional value from the forward-looking algorithm, V FL(λ0) −
V MY (λ0), is strictly positive for λ0 /∈ [1− λ̂, λ̂]. The value increases with λ0 for λ0 < 1− λ∗

and 0.5 < λ0 < λ∗, decreases with λ0 for 1− λ∗ < λ0 < 0.5 and λ0 > λ∗, decreases with rf ,

and increases with α.

This result has implications for when firms should prioritize investing in a forward-looking

algorithm. Proposition 2 shows that the benefit of the optimal algorithm is non-monotonic

in the firm’s knowledge about users. In Figure 2, we plot the additional value from the

forward-looking algorithm as a function of λ0. While it might be intuitive to think that

learning is more important when the company knows less about customers’ preferences, that

is not always true. The less a company knows to begin with, the longer and more costly

the learning process. Exploration requires tolerating a lower profit in the short term before

enough information is gathered.

As λ increases, there are two effects. On the one hand, there will be less uncertainty,

which decreases the additional value from the algorithm. On the other hand, the firm will

suffer fewer losses in earlier periods, which increases the value for λ < λ∗. The additional

value from the forward-looking algorithm peaks at λ = λ∗, which is the point at which the

forward-looking algorithm and the myopic algorithm begin to diverge.
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Figure 2: Additional value from the forward-looking algorithm

for α = 0.8, c = 0.7 and r = 0.6

3.4 Evolution of Recommendations and Profit

As the firm learns about its users over time, how do the firm’s beliefs evolve? What propor-

tion of users are recommended mass-market versus niche-market content? In the Appendix,

we solve for the population density of the firm’s beliefs to characterize learning-induced user

heterogeneity and describe the evolution of the firm’s recommendations under the myopic

and forward-looking algorithms. We present the results here.

Proposition 3 Assume λ0 /∈ [1 − λ̂, λ̂]. As t approaches infinity, the firm recommends

niche-market content to λ0−λ̂
1−λ̂ fraction of users under the forward-looking algorithm, and

λ0−λ∗
1−λ∗ fraction of users under the myopic algorithm. Both fractions decrease with rf and

increase with α.

We illustrate the evolution of the fraction of users who are recommended niche-market

content in Figure 3. Note that under both the forward-looking and the myopic algorithm,

the fraction of users who are recommended niche-market content decreases and converges

to a constant in the long-term steady state. This fraction decreases with discount rate rf

and increases with preference consistency α. Intuitively, with a bigger α, the firm cares

more about learning users’ preferences, and with a smaller rf , the firm cares more about

the long-term profit, so the steady-state amount of niche-market content increases. The

forward-looking algorithm recommends more niche-market content both in the short-term
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Figure 3: Fraction of Users Receiving Niche-Market Content

for λ0 = 0.88, α = 0.8, c = 0.7 and r = 0.6

and in the long-term.

One can also compare the evolution of expected flow profit and expected cumulative

profit over time under different algorithms. Compared to the myopic algorithm, the forward-

looking algorithm may create lower profit in early periods. The flow profit under the forward-

looking algorithm increases over time, which makes it more profitable than the myopic algo-

rithm in the long run. When a company does not have much information about a customer’s

preference, e.g., when the customer is relatively new, the company should prioritize strategic

experimentation to extract information from the customer’s responses and expedite learning.

However, doing so could lead to worse recommendations, lower user engagement, and lower

profit in the near term. As companies upgrade their technology, it is important to recognize

this implication and be prepared to tolerate worse performance in the near term. In Figure

4a, we plot the expected flow profit under different algorithms. In Figure 4b, we plot the the

difference in expected cumulative profit between the forward-looking and myopic algorithms.

The detailed derivation is presented in the Appendix.

4 Competition

In this section, we study firms’ optimal recommendation algorithm under competition. We

explore how competition affects the trade-off between exploration and exploitation, the ad-
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Figure 4: Evolution of profit

(a) Expected profit flow (b) Difference in expected cumulative profit

for λ0 = 0.88, α = 0.8, c = 0.7 and r = 0.6

ditional value from the forward-looking algorithm, and the impact of different algorithms on

consumer welfare. Table 2 presents the notations under competition.

We expand the monopoly model to allow for two firms, firm 1 and firm 2, competing for a

multi-homing user’s time. The user can consume content only from one of the two platforms

at each t, but can switch back-and-forth over time without switching cost. At t = 0, both

firms simultaneously choose their recommendation algorithms, which are functions mapping

information sets to content types. Because the model is in continuous time and the user has

no switching cost, we assume that the user can observe both firms’ recommendations at each

t for simplicity. The user optimally chooses to consume content from one of the two firms at

each t. Both firms observe the user’s choice, but cannot observe a user’s flow utility when

consuming content from the competitor. Thus, if the user does not visit firm j at time t,

then firm j does not earn profit nor receive information about the user’s preferences.

As in the monopoly model, each firm can recommend one of three types of content:

mass-market content and two types of niche-market content. Niche-market content from the

two firms is different, so that there are a total of four types of niche-market content. For

simplicity, and to capture the fact that different platforms often carry different content, we

assume the user’s preferences for niche-market content types are independent between the

two platforms.

We allow the user to have different values of α on the two platforms, so the user has

different consistencies in her preferences for niche-market content on the two platforms. Let

N j
s denote niche-market content type s on firm j’s platform. The user’s expected flow utility
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from seeing the content recommended by firm j at time t, Sjt ∈ {M j, N j
1 , N

j
2}, is

u(T j, Sjt ) =


αj if Sjt = T j

c if Sjt = M j

1− αj otherwise

(9)

where T j ∈ {N j
1 , N

j
2} represents the user’s preferred type of niche-market content on firm

j’s platform.

As in the monopoly model, firm j’s expected flow profit from serving content Sjt to the

user at time t (conditional on the user visiting firm j), denoted as yj(T j, Sjt ), can be written

as:

yj(T j, Sjt ) =


αj if Sjt = T j

c if Sjt = M

1− αj otherwise

(10)

The user has a discount rate of ru, and both firms have a discount rate of rf . We make

no restrictions on the values of ru and rf , but our analysis focuses more on the case where

users are less patient than the firms.4

Firm Learning

As in the monopoly model, at t = 0, firm j receives a binary signal on the user’s preferred

content type on its own platform with accuracy λj0 > 0.5. That is, firm j observes the correct

user type with probability λj0, and observes the incorrect type with probability 1 − λj0. We

can always relabel the content types without loss of generality, so we can simply assume that

firm j has a prior belief that the user prefers N j
1 with probability λj0. Note that we allow

λ10 6= λ20, so firms can start with different amounts of information on the user’s preferences.

Each firm then updates its posterior belief λjt in the same way as in the monopoly model.

User Learning

With competition, we need to model how the user learns, which then determines her platform

choices. We assume that the user does not know her preferred type of niche-market content

at firm j, T j. She only observes her utility from the recommended content.

4This is motivated by the observation that online users often exhibit short attention spans and would
quickly abandon sites or content that does not interest them, especially on mobile devices. A study by
Google and Akamai finds that on e-commerce sites, a 100-millisecond delay in page load time decreases the
conversion rate by 7% (Akamai 2017). A Facebook study finds that, on average, mobile users spend 1.7
seconds on each content, versus 2.5 seconds for desktop users (Facebook IQ 2016). Our model focuses on
the case where users are less patient than firms, and examines how the two discount rates separately affect
the equilibrium outcome.
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Assumption 1 The user does not know her preferred type of niche-market content, T jt .

This assumption is needed to avoid unravelling of information. Consider the following

case described in discrete time. The user visits firm 1 at time 0. If the user observes that

firm 1 recommends the right niche-content type, then the user returns in the next period. If

the user observes that firm 1 recommends the wrong type of niche-market content, then the

user visits the competitor in the next period. Either way, the user’s preferred content type

is immediately revealed to firm 1, so there is no more learning. Such unravelling does not

happen in reality for a few reasons. First, there are more than two types of content. Second,

users may not know how much they like each type of content ex-ante. They also learn about

their own preferences over time as they consume various types of content.

Under this assumption, the user has to update her belief on how well each firm’s next

recommendation will match her taste, given her past experiences with the firm. Intuitively,

if a user enjoyed recent content recommended by Instagram Reels, then her expectation

for the next recommendation from Instagram Reels increases. However, if Instagram Reels

recommended multiple short videos that she did not enjoy, then she would have a lower

expectation of the quality of the next recommendation, and may spend more time on TikTok

instead.

Given her knowledge of the game, the user has a prior belief of λj0 that firm j receives

the correct signal on the user’s preferences for niche-market content at time 0. The user

updates her posterior belief that firm j infers her preferred type correctly. Because both the

user and firm j receive the same feedback from each recommendation, the user’s posterior

belief is the same as firm j’s posterior belief, λjt .

Multi-Homing with Strategic Firms

In this multi-homing problem, each firm decides what content to recommend, while the user

decides which firm to visit. While their decisions have to balance the trade-off between

exploration and exploitation, they also have to factor in decisions made by the other agents.

For example, a firm’s decision to “explore” with niche-market content does not yield any

information if a user chooses to visit the other firm, and the user’s choice set also depends on

what types of content the user expects each firm to recommend. Figure 5 gives an intuitive

illustration of the setup.

All three players face a bandit problem where the return from each “arm” depends on

the other two players’ strategies. A solution has to simultaneously solve all three players’

bandit problem. To solve the problem, we first characterize the user’s optimal choice rule

when presented with a menu of content. Then taking user behavior as given, we look
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Figure 5: Multi-Homing with Strategic Firms

for Nash equilibrium at t = 0 when the two firms simultaneously choose recommendation

algorithms. Finally, we confirm that the user’s choice rule is optimal under the equilibrium

recommendation strategies. We can then confirm that the equilibrium we characterize indeed

solves all three players’ dynamic optimization problem simultaneously.

4.1 Against a Mass-Market Content Provider

We first analyze a simpler case, where a focal strategic firm competes with a traditional

content provider that only serves mass-market content. This can also be seen as adding an

outside option to the monopoly model. However, even though the outside option is non-

strategic, the focal firm still has to compete with it for the user’s attention. We assume that

firm 1 is the focal firm and firm 2 is the outside option.

First, let us consider the user’s preferences between niche-market content from firm 1

and mass-market content. Suppose that the user can always choose between niche-market

content from firm 1 and mass-market content. Because in our model the user and the firm

receive the same utility from each recommended content, the user’s problem is identical

to the monopoly’s problem of choosing between recommending niche-market content and

mass-market content, but with a different discount rate.

The user’s optimal threshold to switch from niche-market content from firm 1 to mass-

market content, λ̂1u, can be adapted from Proposition 1.

λ̂1u =
[c− (1− α1)](γ1u − 1)

(2α1 − 1)(γ1u − 1) + 2(α1 − c)
where γ1u =

√
1 +

8ruα1(1− α1)

(2α1 − 1)2
(11)

The user prefers niche-market content from firm 1 for λ1t > λ̂1u or λ1t < 1 − λ̂1u, and prefers
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mass-market content for λ1t ∈ [1− λ̂1u, λ̂1u].

If both firms offer mass-market content, we assume that the user will split her time equally

between the two firms. Let Dt ∈ {0, 12 , 1} denote the user’s demand for firm 1 at time t.

Thus, we have Dt = 1
2

when firm 1 recommends mass-market content, and Dt = I{λ1t > λ̂1u}
when firm 1 recommends niche-market content.

It is straightforward to show that firm 1’s optimal forward-looking algorithm must follow

the threshold λ̂1u. The firm switches from niche-market content to mass-market content as

λ1t drops below λ̂1u. To see this, note that the firm’s profit from mass-market content is
1
2
c. Given our assumption that c < 1, we have λtα

1 + (1 − λt)(1 − α1) > 1
2
c. That is, the

expected flow profit from offering niche-market content is always higher than the flow profit

from splitting demand with mass-market content. Thus, the firm has no incentive to offer

mass-market content as long as the demand for niche-market content is positive. However,

if λt ∈ [1− λ̂1u, λ̂1u], then the user does not visit the firm offering niche-market content, so it

has to recommend mass-market content.

Proposition 4 When competing with a mass-market content provider, the firm recommends

niche-market content if and only if λt /∈ [1− λ̂1u, λ̂1u].

Note that the optimal threshold, λ̂1u, is optimal for the user. Giving the user an outside

option forces the firm to adopt a recommendation algorithm that addresses the user’s time

preferences. If the user is less patient than firms, i.e. ru > rf , then λ̂1u must be higher than

the monopoly’s optimal threshold, λ̂. Thus, when there is an outside option, the firm rec-

ommends less niche-market content than a monopoly does, shifting away from exploration

and toward exploitation. The firm has less room to experiment because users will switch to

the competitor’s platform if past recommendations do not sufficiently interest them. Con-

versely, if ru < rf , having an outside option forces the algorithm to shift toward exploration

by recommending more niche-market content n.

Figure 6 shows firms’ equilibrium threshold as a function of the user’s discount rate ru

for the case where the user is less patient than firms, i.e., ru ≥ rf , and compares them to

the myopic threshold and the monopoly’s forward-looking threshold derived from Section 3.

Note that the optimal forward-looking algorithm when facing an outside option spans the

continuum between the myopic algorithm and the monopoly’s optimal algorithm.
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Figure 6: The optimal threshold as a function of the user’s discount rate

for rf = 1, c = 0.7, and α1 = 0.8

4.2 Duopoly

Now we consider competition between two strategic firms that are both employing the

forward-looking algorithm. We show that the same algorithm from Proposition 4 is optimal

when the opponent is also strategic and forward-looking.

User’s Behaviors

First, consider the user’s dynamic preferences when her choices include niche-market content

from firm j and mass-market content from the other firm. Because the user receives the same

normalized utility from each recommended content as the firm, the user’s problem is identical

to the monopoly’s problem of choosing between recommending niche-market content and

mass-market content, but with a different discount rate. This is a bandit problem with a

stopping option (mass-market content). Adapting Proposition 1, we can infer that the user’s

optimal content choice between niche-market content from firm j and mass-market content

is marked by the threshold

λ̂ju =
[c− (1− αj)](γju − 1)

(2αj − 1)(γju − 1) + 2(αj − c)
where γju =

√
1 +

8ruαj(1− αj)
(2αj − 1)2

(12)
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The user prefers niche-market content from firm j for λjt > λ̂ju or λjt < 1 − λ̂ju, and prefers

mass-market content for λjt ∈ [1− λ̂ju, λ̂ju].

Next, consider the user’s dynamic preferences when her choices are comprised of niche-

market content from two different firms. This is a two-armed bandit problem without a

stopping option. The user’s optimal policy is to consume from the firm with a higher Gittins

index.5 The Gittins index for niche-market content from firm j at a given λjt , G
j(λjt), is

equivalent to a fixed flow payoff such that she should switch from consuming firm j’s niche-

market content to consuming a fixed flow payoff of Gj(λjt) exactly at λjt . We can thus use

equation (12) to solve for Gj(λjt), by replacing c with Gj(λjt). We then have the following

equation:

λjt =
[Gj(λjt)− (1− αj)](γju − 1)

(2αj − 1)(γju − 1) + 2[αj −Gj(λjt)]
(13)

which gives the Gittins index for firm j’s niche-market content:

Gj(λjt) =
[λjt(2α

j − 1) + 1− αj](γju − 1) + 2αjλjt

2λjt + γju − 1
(14)

Finally, the user must be indifferent between mass-market content from the two firms. If

her choice set is only comprised of mass-market content from each firm, we assume that she

evenly splits her time between the two firms.

For simpler notation, we let Sjt = M denote firm j recommending mass-market content

to the user at time t, and let Sjt = N denote firm j recommending niche-market content to

the user at time t.6 Let Dj
t (λ

1
t , λ

2
t |S1

t , S
2
t ) ∈ {0, 12 , 1} denote the user’s demand for firm j at

time t. We can summarize D1
t as:
D1
t (λ

1
t , λ

2
t |N,N) = I{G(λ1t ) ≥ G(λ2t )}

D1
t (λ

1
t , λ

2
t |N,M) = I{λ1t > λ̂ju}

D1
t (λ

1
t , λ

2
t |M,N) = 1− I{λ2t > λ̂ju}

D1
t (λ

1
t , λ

2
t |M,M) = 1

2

(15)

whereas the user’s demand for firm 2 at time t is D2
t = 1−D1

t .

Firms’ Problem

Now we consider the firms’ equilibrium recommendation algorithms at time 0, given that

the user behaves as discussed above.
5See Bank and Küchler (2007) for a derivation of Gittins index theorem in continuous time.
6Because it is apparent which type of niche-market content firm j would choose given any λjt , we drop

the notation on the type of niche-market content.
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Given the demand function, we can write firm j’s expected flow profit from the user

as yj(λjt , S
j
t )D

j
tdt. For a given pair of recommendation paths, ({S1

t }, {S2
t }), the expected

lifetime value of the user for firm 1 is

V 1({S1
t } | λ10, λ20, {S2

t }) = E

∫ ∞
0

e−rf ty1(λ1t , S
1
t )D

1
t dt

The firm’s problem is to find the optimal path of content Sjt to maximize the user’s expected

lifetime value. The expected lifetime value of the user to firm 1 with prior λ10 is

V 1(λ10) ≡ max
{S1
t }
V 1({S1

t } | λ10, λ20, {S2
t }),

Firm j’s information about the user at time t can be written as Ijt = {Sjs , Y j
s , D

j
s}s<t,

where Sjs is firm j’s recommendation at time s < t, Y j
s is firm j’s cumulative profit at time

s < t, and Dj
s is an indicator function for whether the user visits firm j at time s < t. Firm

j’s recommendation algorithm is a function mapping each information set to a content type,

denoted as Sj(Ijt ) ∈ {N
j
1 , N

j
2 ,M}.

Equilibrium

In the monopoly case, the firm’s optimal algorithm is characterized by a stationary function

S(λt). To facilitate direct comparisons with the monopoly model, we look for equilibrium in

which firm j’s recommendation algorithm is similarly characterized by a stationary function

Sj(Ijt ) = Sj(λjt). Note that because the strategy does not depend on the user’s state on the

opponent’s platform, in such an equilibrium, no matter what firm j’s belief of the user’s state

on the competitor’s platform is, there must be a weakly dominant action to take. Such an

algorithm is appealing in practice because each firm only needs to infer a user’s preferences

for content on the firm’s own platform.

Also, in practice, a firm can have different prior information on different users but applies

the same recommendation algorithm to all users. Thus, we do not put assumption on the

priors λj0, and look for equilibrium strategy profiles that are robust to all possible priors.7

Such an equilibrium exists and is unique. We describe the equilibrium strategy profile in the

following proposition.

7Note that the set of equilibria could depend on the initial positions λ10 and λ20. There can be multiple
equilibria that differ only on off-path nodes which have no impact on the equilibrium outcome. For example,
suppose in equilibrium, both λj0 are low so both firms offer mass-market content immediately. Then one can

construct an alternative equilibrium strategy that only differs for some higher value of λjt . Because firms
offer mass-market content so no learning occurs, we never reach such a state in equilibrium. We eliminate
this trivial multiplicity by searching for equilibrium strategy Sj(λjt ) that is invariant to λj0’s. That is, S1(λ1t )
and S2(λ2t ) constitute equilibrium regardless of what λ10 and λ20 are.
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Proposition 5 In a duopoly, firm j recommends niche-market content if and only if λjt /∈

[1−λ̂ju, λ̂ju]. This is the unique stationary algorithm, Sjt = Sj(λjt), that constitutes equilibrium

for all priors λ10 and λ20. Firms’ equilibrium recommendations maximize the user’s utility.

Proposition 5 leads to several observations. First, comparing Proposition 5 to Proposition

4, we see that the equilibrium algorithm for each firm is the same as when it is competing

against a non-strategic outside option. Second, note that the firms’ equilibrium algorithms

maximize the user’s welfare, similar to when competing against an outside option.8 Thus,

when the user can go to multiple firms to consume content, regardless of each firm’s strategic

capability, the algorithm is now forced to solve the user’s problem. The optimal exploration-

exploitation trade-off under competition has to factor in the user’s, instead of the firm’s own,

time preference.

Solving the user’s problem means that the optimal trade-off between exploration and

exploitation for firms facing competition is significantly different than for a monopoly. When

ru increases, users are more myopic in their content preferences. Consequently, a firm’s choice

of content has to be less forward-looking to prevent users from switching to the competitor.

For example, consider a scenario where a user prefers mass-market content to niche-market

content from either firm. A monopoly may still choose to offer niche-market content because

the firm is more patient and values the information collected. However, if a competitor

recommends mass-market content to the user, then the firm that recommends niche-market

content will lose demand. If a user switches to the competitor’s platform, then the firm

can neither gather information nor profit from that user. This competitive pressure pushes

firms to recommend content that caters to the user’s time preferences. A monopoly can offer

more niche-market content to extract future value from exploration, but when competing for

users’ attention, the value from exploration is muted.

Corollary 5.1 In a duopoly, each firm recommends less (more) niche-market content than

a monopoly would if the user has a higher (lower) discount rate than the firms. Firms offer

less niche-market content as the user’ discount rate increases. The optimal forward-looking

algorithm under competition does not depend on firms’ discount rate.

8To see why this is true, consider an alternative problem where all three types of content (mass-market
content, niche-market content from firm 1, and niche-market content from firm 2) are always available to
the user. This is a classic multi-armed bandit problem for the user. Assuming both λ1t > 0.5 and λ2t > 0.5
WLOG, then by Gittins index theorem, the user’s optimal content choice is niche-market from firm 1 if
G1(λ1t ) > sup{G2(λ2t ), c}, niche-market from firm 2 if G2(λ2t ) > sup{G1(λ1t ), c}, and mass-market content if
c ≥ sup{G1(λ1t ), G2(λ2t )}. Note that this is exactly the user’s content choice in equilibrium. In equilibrium,

firm j offers niche-market content only when λjt > λ̂ju which is equivalent to Gj(λjt ) > c by equations (12)
and (13). Thus the user’s most preferred content type is always available to her.
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Research in computer science shows that many recommendation algorithms suffer from

popularity bias, i.e., algorithms favor more popular, mainstream items over less popular,

niche items (e.g., Abdollahpouri et al. 2017, Abdollahpouri et al. 2019). Martinez (2021) ar-

gues that such bias causes high quality but niche movies on Netflix to be under-recommended.

Music streaming services, which heavily utilize recommendation algorithms, have not driven

the audience “from the mainstream into the niche” as many have hoped (Blake, 2020).

While such bias is mostly viewed as a problem to be solved, our model shows that the degree

to which a recommendation algorithm should favor mainstream content over niche content

depends on competitive pressure. Assuming users are less patient than firms, we predict

that firms in a more competitive market, such as music streaming, would recommend more

mainstream content than firms with more market power, such as YouTube. Similarly, we

predict that when more competitors enter a market, such as when Facebook, Instagram, and

YouTube entered the short video market to compete with TikTok, the incumbent’s algorithm

should move towards recommending more popular, mainstream content.

Second, the firm with a higher αj has a greater ability to learn the user’s preferences,

because the noise in the user’s response, σt (from equation 2), decreases in α. The fact

that α1 ≥ α2 implies λ̂1u ≤ λ̂2u, so the firm with a higher αj recommends more niche-market

content. Intuitively, having a higher αj means that the user’s behavior is less noisy, which

facilitates faster learning. A higher αj also means higher profit from serving niche-market

content. Both factors encourage the firm with a higher αj to recommend more niche-market

content even when the user dislikes previous recommendations.

Corollary 5.2 A firm recommends more niche-market content than its competitor if user

preferences are more consistent on its platform, i.e., λ̂1u ≤ λ̂2u if and only if α1 ≥ α2.

Figure 7 shows both firms’ equilibrium thresholds as functions of the user’s discount rate

ru in the case of ru ≥ rf . Each firm’s optimal recommendation algorithm falls between

its monopoly algorithm and its myopic algorithm. From equation (12), we can see that, as

ru →∞, λ̂ju approaches the myopic threshold, λ∗. As ru → r+f , λ̂ju approaches the monopoly’s

forward-looking threshold, λ̂. Thus, when users are myopic, the myopic algorithm itself is

optimal. This implies that, when facing myopic users, the industry profit when firms use

the forward-looking algorithm is the same as when firms only use the myopic algorithm.

Referring to the difference between the industry profit under the forward-looking algorithm

and that under the myopic algorithm as the additional industry return from the forward-

looking algorithm, we can make the following statement.
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Figure 7: Optimal thresholds as functions of the users’ discount rate

for rf = 1, c = 0.7, α1 = 0.8, and α2 = 0.75

Corollary 5.3 As ru → ∞, the equilibrium forward-looking algorithm under competition

converges to the myopic algorithm, and the additional industry return from the forward-

looking algorithm converges to zero.

Comparing Corollary 5.3 to Proposition 2, we see that the presence of a competitor de-

creases the value from the forward-looking algorithm if the user’s discount rate is sufficiently

high. This also implies that competition must lower firms’ incentives to invest in the tech-

nological upgrade from the myopic algorithm to the forward-looking algorithm when users

are sufficiently impatient. We examine this investment decision more closely in Section 5.

Because firms’ equilibrium algorithms maximize the user’s utility, the impact on user

welfare of both firms upgrading their algorithms from myopic to forward-looking must be

positive. However, note that the monopoly threshold, λ̂, does not depend on the user’s time

preferences. For ru > rf , a monopoly’s forward-looking algorithm recommends too much

niche-market content with respect to user welfare, while a monopoly’s myopic algorithm

recommends too little. In the limit as ru → ∞, the myopic algorithm maximizes the user’s

utility. Thus there must exists a threshold on ru such that, if the user’s discount rate is

above the threshold, the monopoly’s technological upgrade from the myopic algorithm to

the forward-looking algorithm actually decreases user welfare. On the other hand, when

ru → rf , the user’s and the monopoly’s time preferences align, so the monopoly’s forward-

looking algorithm maximizes the user’s utility. Thus the development of the forward-looking
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algorithm may lower user welfare under monopoly, but it always benefits the user under

competition.

Corollary 5.4 Under monopoly, for ru sufficiently high, the user’s welfare is lower when the

firm uses the forward-looking algorithm than when the firm uses the myopic algorithm. Under

duopoly, the user’s welfare is always higher when firms use the forward-looking algorithm.

We summarize our main findings conceptually in Table 3.

Our discussion suggests that there may exist a trade-off between technology adoption

and consumer welfare. When users are sufficiently impatient compared to firms, a firm with

monopolistic power derives more value from the forward-looking algorithm, and thus has a

higher incentive to develop the forward-looking algorithm, but such technology hurts users;

in contrast, firms under competition derive less value from the forward-looking algorithm,

thus may have less incentives to develop the forward-looking algorithm, even though such

technology is beneficial to users. However, whether this trade-off exists depends on the user’s

discount rate. If ru = rf , then a monopoly’s adoption of the forward-looking algorithm must

also increase user welfare. The following section formally investigates firms’ incentives to

invest in the forward-looking algorithm.

Table 3: Impact of Competition When Users Are Sufficiently Impatient

Optimal level of Industry return from Effect of upgrade
exploration algorithmic upgrade on user welfare

Monopoly High High Negative
Duopoly Low Low Positive

5 Investment in Algorithmic Upgrades

In the previous section, firms’ algorithmic capability is exogenous. Should firms invest in

a technological upgrade from the myopic algorithm to the forward-looking algorithm? We

consider an extended game with investment decisions. At the beginning of the game, both

firms first decide whether to develop the forward-looking algorithm for a fixed cost K. If

a firm invests, it proceeds with the forward-looking algorithm. If a firm does not invest, it

proceeds with the myopic algorithm. The two firms compete for a user in the same fashion

as in Section 4.
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Optimal Strategy Against the Myopic Algorithm

To analyze this investment game, we first have to complete our analysis by considering what

happens if firms have asymmetric technologies. We label the forward-looking firm as firm 1

and the myopic firm as firm 2.

As before, we focus on the optimal stationary algorithm that can be characterized by a

stationary function S1(I1t ) = S(λ1t ). We look for stationary strategy profiles that are robust

to all possible priors. One can show that the equilibrium strategy under symmetric duopoly

from Proposition 5 is also the optimal strategy against the myopic algorithm.

Proposition 6 When competing against the myopic algorithm, firm 1 recommends niche-

market content if and only if λ1t /∈ [1− λ̂1u, λ̂1u]. This is the unique stationary algorithm that

is optimal for all priors λ10 and λ20.

The full proof is presented in the Appendix. The proof involves three steps. First, we

solve for user behavior. We show that when both firms offer niche-market content, the user

visits the firm with the higher λ. When the myopic firm offers mass-market content, the user

prefers niche-market content from the forward-looking firm 1 if and only if λ1t /∈ [1− λ̂1u, λ̂1u].
In the second step, we show that if firm 1 can observe the user’s state at firm 2, λ2t , then

the algorithm described in Proposition 4 and 5 is optimal. Because the algorithm does not

depend on λ2t , it must also be optimal when firm 1 cannot observe λ2t . Finally, we prove that

any other stationary algorithm must be sub-optimal for some priors.

While the optimal algorithm is the same as when both firms are forward-looking, the

user’s switching behavior is different. For λ1t > λ̂1u and λ2t ∈ (λ̂2u, λ
∗), the user always prefers

firm 1 when firm 2 is myopic, whereas the user prefers firm 1 if and only if G1(λ1t ) > G2(λ2t )

when firm 2 is forward-looking. Thus the firm with the forward-looking algorithm is expected

to receive more demand.

Similar to Corollary 5.3, Proposition 6 also implies that as ru →∞, the optimal forward-

looking algorithm approaches the myopic algorithm. So the additional value of having the

forward-looking algorithm approaches 0 as the user becomes myopic.

Investment Equilibrium

To analyze the firms’ decisions to invest in an upgrade from the myopic algorithm to the

forward-looking algorithm, we also need to know their expected payoffs from the symmetric

and asymmetric equilibrium. However, it is difficult to calculate expected payoffs analytically

in our model. Instead, we analyze their investment decisions numerically by simulating firms’

payoffs from the subsequent game.
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We simulate the game in discrete time with steps of size dt = 0.05 for a total length of

T = 2000. The parameters used are λ10 = λ20 = 0.7, α1 = α2 = 0.75, c = 0.6, and rf = 0.01.

At different levels of ru, we simulate the game 1000 times each and compute the average payoff

for each firm over the 1000 simulations. We present the results in Table 4. Let V j(TN1, TN2)

denote firm j’s expected payoff when firm 1’s technology is TN1 ∈ {FL,MY } and firm 2’s

technology is TN2 ∈ {FL,MY }, with FL standing for forward-looking and MY standing

for myopic. As expected, when both firms are forward-looking, their payoffs decrease as the

user becomes more myopic. When technology is asymmetric, there is an advantage to having

the forward-looking algorithm, but the size of the advantage decreases as ru increases.

Table 4: Simulated Firm Payoffs

ru = 1 ru = 3 ru = 10 ru = 30 ru = 100 ru = 300 ru = 1000
V j(FL, FL) 3.570 3.526 3.448 3.363 3.292 3.249 3.222
V 1(FL,MY ) 5.874 5.375 4.795 4.364 4.052 3.885 3.786
V 2(FL,MY ) 0.968 1.341 1.753 2.053 2.268 2.383 2.450
V j(MY,MY ) 2.994 2.994 2.994 2.994 2.994 2.994 2.994

Depending on the cost, K, there can be 0, 1, or 2 firms investing in equilibrium. If

V j(MY,MY ) ≥ V 1(FL,MY ) − K, then there exists an equilibrium where neither firm

invests in the forward-looking algorithm. If V j(FL, FL) − K ≥ V 2(FL,MY ), then there

exists an equilibrium where both firms invest. Otherwise, there exists an equilibrium where

only one firm invests.

Figure 8 depicts equilibrium investment decisions and the firms’ payoffs net of investment

cost for different values of K and ru. The equilibrium is described by two thresholds on K.

When K is high, neither firm invests in equilibrium, and the industry profit is characterized

by V 1(MY,MY ) + V 2(MY,MY ). For an intermediate range of K, only one firm invests,

and the industry profit is V 1(FL,MY ) + V 2(FL,MY )−K. Finally, for lower values of K,

both firms invest, and the industry profit is V 1(FL, FL) + V 2(FL, FL)− 2K.

When ru is higher, the additional value of the forward-looking algorithm decreases. As

a result, both thresholds move toward 0, so that firms require lower costs in order to invest.

A higher degree of consumer myopia discourages competing firms from investing in the

algorithmic upgrade.

Note that as K decreases and firms begin to invest in the upgrade, each investment leads

to a drop in total industry profit. There exists an intermediate region of K that exhibits

prisoner’s dilemma, where both firms invest in the forward-looking algorithm and receive

net payoffs lower than what they would receive if both used the myopic algorithm. Having

a higher investment cost, K, can benefit the firms if it moves the equilibrium out of the
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Figure 8: Industry Profit Net of Investment Costs

for λ10 = λ20 = 0.7, α1 = α2 = 0.75, c = 0.6, and rf = 0.01

prisoner’s dilemma region.

To get intuition on why the prisoner’s dilemma arises, we examine sequentially the effects

of each firm’s investment on both firms’ expected payoffs. Figure 9a plots V 1(FL,MY ) −
V 1(MY,MY ) and V 2(FL,MY ) − V 2(MY,MY ), i.e., the changes in firm 1’s and firm 2’s

payoffs when only firm 1 upgrades to the forward-looking algorithm, for different ru. There

are two benefits to firm 1 when firm 1 upgrades its algorithm. First, by providing better

content than its competitor, it steals demand from firm 2, causing firm 1’s payoff to increase

and firm 2’s payoff to decrease. Second, the forward-looking algorithm allows for better

learning of user preferences, creating a higher social surplus. This is reflected in the fact that

|V 1(FL,MY ) − V 1(MY,MY )| > |V 2(FL,MY ) − V 2(MY,MY )|. Because of the demand-

stealing effect, firm 1 places a negative externality on firm 2 when firm 1 upgrades its

algorithm. If K > |V 1(FL,MY ) − V 1(MY,MY )| − |V 2(FL,MY ) − V 2(MY,MY )|, then

firm 1’s investment leads to a decrease in the industry profit.

Figure 9b plots V 1(FL, FL) − V 1(FL,MY ) and V 2(FL, FL) − V 2(FL,MY ), i.e., the

changes to firm 1’s and firm 2’s payoffs when firm 2 also upgrades to the forward-looking

algorithm. Similarly, firm 2 takes demand away from firm 1 when firm 2 upgrades its

algorithm. For K not too high, both firms upgrade to the forward-looking algorithm in

equilibrium. Because firms do not factor in demand externality in their investment decisions,

the total industry profit is lower when both firms invest compared to when neither firm
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Figure 9: Effect of Investment on Profit

(a) Only firm 1 invests (b) Firm 2 also invests

for λ10 = λ20 = 0.7, α1 = α2 = 0.75, c = 0.6 and rf = 0.01

invests, unless the investment cost K is sufficiently small.

The effect of consumer impatience on the equilibrium profit is more nuanced. Locally,

a higher ru decreases the return from having the forward-looking algorithm, as shown in

Corollary 5.3. Thus, the impact of the upgrade on the firms’ payoffs becomes smaller. How-

ever, a higher ru also lowers the investment thresholds. Thus, a higher degree of consumer

myopia can benefit both firms by helping them to avoid the prisoner’s dilemma.

Note that as ru →∞, there must be no incentive for either firm to invest, as the myopic

algorithm is itself optimal. Thus for any K > 0, the equilibrium must be no investment if the

user’s discount rate is sufficiently high. This confirms our previous finding that competition

lowers the firms’ incentives to adopt the forward-looking algorithm if users are sufficiently

impatient in their content consumption behaviors.

6 Conclusion

The increased use of AI and machine learning has dramatically changed marketing practices.

Interactions between firms and consumers are increasingly frequent, personalized, and auto-

mated. However, while extensive research has focused on techniques that enable real-time

collection of customer data and dynamic, personalized interventions based on such data, less

attention has been paid to the strategic implications of such algorithmic capability, especially

under competition.

In this paper, we study the competition between content recommendation algorithms

as a representative setting of adaptive, algorithm-based personalization. We formulate con-
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tent recommendation algorithms as solutions to a stochastic dynamic programming problem

under demand uncertainty. Firms compete for the attention of a multi-homing user who

switches between firms over time. We compare the simpler, myopic recommendation algo-

rithm to the more advanced, forward-looking algorithm, and investigate how the additional

value from the more advanced algorithm varies across different competitive scenarios. The

model allows us to address three questions. How does competition affect the optimal ex-

ploration vs. exploitation trade-off? How does competition affect firms’ incentives to invest

in more advanced algorithms? And how do such technological upgrades affect consumer

welfare?

We find that the optimal recommendation algorithm under competition should cater to

users’ time preferences in order to prevent users from switching. If users are less patient

than firms, competition shifts the optimal algorithm away from exploration and towards

exploitation, as firms under competition recommend less niche-market content and learn less

information about user preferences. For impatient users, competition reduces firms’ incentive

to invest in the optimal forward-looking algorithm. On the other hand, upgrading from the

myopic algorithm to the optimal algorithm always improves user welfare under competition,

while hurting user welfare under monopoly when users are sufficiently impatient. There

exists a prisoner’s dilemma when firms endogenously decide whether to invest in algorithmic

upgrades. In such a case, a higher cost of investment or a higher degree of user myopia can

raise industry profit by avoiding the prisoner’s dilemma.

Our findings add new perspectives to the discussion on the regulation of algorithm-driven

tech firms. In October 2020, the U.S. Congress released a report on competition in digital

markets including search, e-commerce, social media, and digital advertising. The report

suggests that the concentrated market power held by these firms has led to less innovation

as well as lower service quality by deterring entrepreneurs from entering the market (U.S.

House, 2020, pp. 46-56). Earlier in 2020, the UK’s antitrust agency published a similar

report on online platforms, expressing concern that the market power held by Google and

Facebook in their consumer-facing markets hampers innovation and lowers service quality

(Competition and Markets Authority, 2020, pp. 310-313). Both reports also warned against

over-collection of consumer data as a consequence of market power.

Our study presents a complementary view on the effects of market power on innovation

and consumer welfare. While our study echoes the concern that market power leads to over-

learning and lower service quality, we show how competition could potentially discourage

the development and adoption of more advanced learning algorithms. According to OECD,

by the end of 2019, 50 countries (including the European Union) “have launched, or have

plans to launch, national AI strategies” (Berryhill et al. 2020). For policy makers in these
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countries, it is important to understand how the market structure affects the development

of AI capacities in a global race, while balancing AI development with other factors such as

consumer protection, privacy, and general entrepreneurship in digital markets. Additionally,

our results imply that having more forward-looking users is beneficial to all parties: firms

under competition have a higher incentive to develop better algorithms and users enjoy better

recommendations. Thus educating consumers about how their current actions affect their

future experiences on online platforms can be a mutually beneficial intervention for policy

makers and competing firms.

Several limitations of this paper open avenues for future research. First, we focus on

the specific context of content recommendation. Many other marketing decisions such as

pricing, coupon distribution, advertising campaigns, service assignments, and product rec-

ommendations are also solutions to a stochastic dynamic programming problem under de-

mand uncertainty, in which the firm needs to learn about consumer preferences and trade

off short-term cost with future payoff in order to maximize long-term profit. While the key

insights revealed from our analysis have general implications, these contexts also have spe-

cific attributes that warrant more focused examination. Second, our model abstracts away

important elements of competition, including pricing and differentiation. These strategic

decisions can have interactions that significantly alter the optimal algorithm and its value.

Our model also focuses on the hypothetical optimal algorithm instead of algorithms that are

used in practice. Third, in this model, learning is only useful for improving recommendation

for the focal user. We do not consider other benefits of data, such as selling information to

third parties, or learning of preferences across similar consumers.

Our stylized model only features two user types and three content types. It would be

interesting to study a more general distribution of preferences and choices. Future research

may also consider more than two firms or when a user’s preferences are correlated across

firms. Finally, learning in our model is symmetric between a user and the firm she visits

(although asymmetric between firms). Adding private information to users significantly

complicates the problem, but is nonetheless an important direction for future research.
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Table 1: Notation for the Monopoly Model

Variable Description
t time
M mass-market content

N1, N2 niche-market content
T the user’s preferred niche-market content type
α the consistency of the user’s preference for niche-market content
c the probability the user likes a mass-market content
St the firm’s choice of content type at time t

y(T, St) the probability that a user of type T likes content type St
σt standard deviation of the flow profit

Yt(x) cumulative profit
λt belief that the user prefers N1 over N2

y(λt, St) the firm’s expected flow profit from recommending St at time t
σ(λt) instantaneous standard deviation of λt
rf the firm’s discount rate

V (λt) the firm’s value function at state λt
λ∗ the optimal threshold for the myopic algorithm

λ̂ the optimal threshold for the forward-looking algorithm

γ
√

1 +
8rfα(1−α)
(2α−1)2

FL the forward-looking algorithm
MY the myopic algorithm
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Table 2: Notation for the Competition Model

Variable Description
t time
M j mass-market content from firm j

N j
1 , N j

2 niche-market content from firm j
T j the user’s preferred niche-market content type on firm j’s platform
αj the consistency of the user’s preference for niche-market content on firm j’ platform
c the probability the user likes a mass-market content

Sjt firm j’s choice of content type at time t

u(T j, Sjt ) the type Tj user’s expected flow utility from content Sjt
yj(T j, Sjt ) the probability that a user of type T j likes content type Sjt

λjt firm j’s belief that the user prefers N j
1 over N j

2

Gj(λjt) the Gittins index for firm j’s niche-market content at state λjt
yj(λjt , S

j
t ) firm j’s expected flow profit from recommending Sjt at time t if the user visits firm j

rf firms’ discount rate
ru the user’s discount rate

V j(λjt) firm j’s value function at state λjt
Ijt firm j’s information set at time j
λ∗ the optimal threshold for the myopic algorithm

λ̂ju the optimal threshold for the user on firm j’s platform

Dj
t the user’s demand for firm j at time t

γju

√
1 + 8ruαj(1−αj)

(2αj−1)2

TNj firm j’s technology
FL the forward-looking algorithm
MY the myopic algorithm

V j(TN1, TN2) firm j’s expected profit when firm 1 uses TN1 and firm 2 uses TN2

K the cost of upgrading from the myopic algorithm to the forward-looking algorithm
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Appendix

Proof of Equation 7

To derive the Hamilton-Jacobi-Bellman equation, notice that when the firm recommends

niche-market content, the firm’s value function satisfies

V (λt) = y(λt, St)dt+ (1− rfdt)E[V (λt+dt)]

= y(λt, St)dt+ V (λt)− rfV (λt)dt+
σ(λt)

2

2
V ′′(λt)dt (A1)

which simplifies to the following ordinary differential equation:

V (λt) =
y(λt, St)

rf
+
σ(λt)

2

2rf
V ′′(λt) (A2)

The value function has two terms, which can be understood in the following ways. The

first term, y(λt, St)/rf , can be viewed as the present value of the profit if the firm stops

learning information about the user. The second term corresponds to the value from learning

and adapting to user behaviors in the future. Note that it is proportional to the instantaneous

volatility of λt and V ′′. Consequently, V must be convex in λt for the value of learning and

adapting to be positive. The value from adapting to new information is higher when λt is

more volatile.

The general solution for equation (A2) is

V (λt) =
y(λt, St)

r
+ b1λ

(γ+1)/2
t (1− λt)−(γ−1)/2 + b2λ

−(γ−1)/2
t (1− λt)(γ+1)/2, (A3)

with

γ =

√
1 +

8rfα(1− α)

(2α− 1)2
. (A4)

However, because γ > 1, as λt → 1 there will be no more uncertainty and thus the value

function should satisfy V (1) = y(1, S(1))/rf . Consequently, we must have:

b1 = 0. (A5)

Thus the solution simplifies to

V (λt) =
y(λt, St)

rf
+ b2λ

−(γ−1)/2
t (1− λt)(γ+1)/2, (A6)
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Proof of Proposition 3

Users who are the same ex-ante become heterogeneous from the firm’s view as they exhibit

different behaviors towards past recommendations. The population density starts as uni-

modular and becomes bi-modular. As time goes to infinity, the mass moves toward 1 or λ̂.

In the limit, all users who are recommended niche-market content must receive the correct

type of content.

Let Ĥ(t) denote the probability that the user hits threshold λ̂ before time t. By the

law of large numbers, Ĥ(t) is also the proportion of users in the population that hits λ̂. So

1− Ĥ(t) is the number of users being recommended content type N1 at time t.

Let

z = ln

(
λ

1− λ

)
Then we have:

λ = g(z) ≡ ez

1 + ez

h(λ, t) = p(z, t)/g′(z)

g′(z) =
ez

(1 + ez)2

where h(λ, t) and p(z, t) are the probability density functions of λ and z at time t.

For users who prefer content type N1, we have

dz =
1

2
σ2
zdt− σzdW

with σz ≡ (2α− 1)/
√
α(1− α).

The probability density of z is

p1(z, t) =
1√

2πσ2
zt

exp

(
−(z − z0 − σ2

zt/2)2

2σ2
zt

)
The probability density for λ at time t is

h1(λ, t) = p1(z, t)dz/dλ = p1(z(λ), t)/[λ(1− λ)]

And we have

λt =
(λ0/(1− λ0)) exp (σ2

zt/2− σzW (t))

1 + (λ0/(1− λ0)) exp (σ2
zt/2− σzW (t))
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Moreover, there is 1− λ0 proportion of users who prefer content type N2. For this group

of users, their posterior belief λ follows the following stochastic differential equation:

dz = −1

2
σ2
zdt− σzdW

The probability density of y is

p2(z, t) =
1√

2πσ2
zt

exp

(
−(z − z0 + σ2

zt/2)2

2σ2
zt

)
The probability density for λ at time t is

h2(λ, t) = p2(z, t)dz/dλ = p2(z(λ), t)/[λ(1− λ)]

and for users who prefer N2:

λt =
(λ0/(1− λ0)) exp(−σ2

zt/2− σzW (t))

1 + (λ0/(1− λ0)) exp(−σ2
zt/2− σzW (t))

The first hitting time probability density for users who prefer N1 is

h1(z0, t) = (z0 − ẑ)
1√
σ2
zt

3
n

(
z0 − ẑ + σ2

zt/2

σz
√
t

)
The cumulative probability distribution of hitting times for this case is

H1 = Φ

(
(ẑ − z0)− σ2

zt/2

σz
√
t

)
+ exp(ẑ − z0)Φ

(
(ẑ − z0) + σ2

zt/2

σz
√
t

)

For users who prefer N2:

h2(z0, t) = (z0 − ẑ)
1√
σ2
zt

3
n

(
z0 − ẑ − σ2

zt/2

σz
√
t

)
The cumulative probability distribution of hitting times for this case is

H2 = Φ

(
(ẑ − z0) + σ2

zt/2

σz
√
t

)
+ exp(z0 − ẑ)Φ

(
(ẑ − z0)− σ2

zt/2

σz
√
t

)

The probability density is

h(z0, t) = λ0h1(z0, t) + (1− λ0)h2(z0, t)

= (λ0 + (1− λ0) exp(z0 − ẑ))(z0 − ẑ)
1√
σ2
zt

3
n

(
z0 − ẑ + σ2

zt/2

σz
√
t

)
(A7)
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and the total cumulative probability distribution of hitting times for the model is

H(t) = λ0H1(z0, t) + (1− λ0)H2(z0, t)

=
λ0

λ̂

[
Φ

(
(ẑ − z0)− σ2

zt/2

σz
√
t

)
+ exp(ẑ − z0)Φ

(
(ẑ − z0) + σ2

zt/2

σz
√
t

)]
(A8)

where z = ln
(

λ
1−λ

)
and σz = (2α− 1)/

√
α(1− α). As t approaches infinity, Ĥ(t) converges

to a constant:

lim
t→∞

Ĥ(t) =
1− λ0
1− λ̂

Let λ̄t denote the probability that a user who prefers content type N1 conditional on that

the firm recommends content type N1 to her at time t. Since λt is a martingale for all i, we

must have

(1− Ĥ(t))λ̄t + Ĥ(t)λ̂ = λ0

and thus

λ̄t =
λ0 − Ĥ(t)λ̂

1− Ĥ(t)
(A9)

and

lim
t→∞

λ̄ = 1

Since Ĥ(t) is increasing in t, λ̄t must also increase in t. Note that λ̄ approaching 1 implies

that in the limit, only users who prefer type N1 may receive N1 content. Users who prefer

type N2, but were incorrectly recommended type N1 content initially under the prior, receive

mass-market content in the limit. This also implies that there will be 1−λ0
1−λ̂ − (1−λ0) fraction

of users who prefer type N1 but are incorrectly recommended mass-market content in the

long run.

Similarly, for the myopic algorithm, we can show that the probability that the user hits

the myopic threshold λ∗ before time t is

H∗(t) =
λ0
λ∗

[
N

(
(z∗ − z0)− σ2

zt/2

σz
√
t

)
+ exp(z∗ − z0)Φ

(
(z∗ − z0) + σ2

zt/2

σz
√
t

)]
(A10)

and

lim
t→∞

H∗(t) =
1− λ0
1− λ∗

and lim
t→∞

λ̄ = 1

The results above are summarized in Proposition 3.
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Evolution of Profit for a Monopoly

Recall that Ĥ(t) is the fraction of users who have hit the absorbing barrier λ̂ at time t and

λ̄t denotes the population average of λt among the remaining users. The profit flow at time

t is

πt ≡ E

∫
y(λt, S(λt))

= (1− Ĥ(t))y(λ̄t, S(λ̄t)) + Ĥ(t)c

= y(λ0, S(λ0))− Ĥ(t)y(λ̂, S(λ̂)) + Ĥ(t)c

= λ0α + (1− λ0)(1− α)− Ĥ(t)[λ̂α + (1− λ̂)(1− α)− c]

(A11)

Note that c > y(λ̂, S(λ̂)) and Ĥ(t), which is a cumulative density function, is an increasing

function of t. Thus, πt must be increasing in t. If λ0 ∈ (λ̂, λ∗), then π(t) is smaller than c

for small t. For πt = c, we must have

Ĥ(t) =
y(λ0, S(λ0))− c
y(λ̂, S(λ̂))− c

=
λ0(2α− 1) + (1− α)− c
λ̂(2α− 1) + (1− α)− c

The turning point for when expected profit flow is above c is given by t0 = π−1(c) =

Ĥ−1
(
y(λ0,S(λ0))−c
y(λ̂,S(λ̂))−c

)
. This means that the firm expects to suffer losses from deploying the

forward-looking algorithm until the proportion of users that receive mass-market content

reaches y(λ0,S(λ0))−c
y(λ̂,S(λ̂))−c .

We define the discounted cumulative profit function up to time t as Πt. For λ0 ∈ (λ̂, λ∗),

we plot function π(t) and Π(t) in Figures 4a and 4b, and compare them to flow and cumulative

profit under the myopic algorithm. The expected profit flow increases over time but remains

below myopic flow profit until t0. The gap between Π(t) and the cumulative profit under the

myopic algorithm first widens over time, then begins to narrow after t > t0, and eventually

becomes positive after some later time t1. Such t1 must exists, otherwise the algorithm must

not be optimal.

The results are summarized as follows:

Corollary A.1 The expected flow profit under the forward-looking algorithm increases over

time. For λ0 ∈ (λ̂, λ∗), the expected flow profit under the forward-looking algorithm is lower

than the expected flow profit under the myopic algorithm for t < t0 = Ĥ−1
(
y(λ0,S(λ0))−c
y(λ̂,S(λ̂))−c

)
.

Proof of Proposition 5

First, we prove that this is an equilibrium. We show that neither firm has an incentive to

deviate. Due to symmetry around λ = 0.5, we assume WLOG that λ1t ≥ 0.5 and λ2t ≥ 0.5.
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Suppose λ1t ≤ λ̂1u, and consider firm 1’s deviation from mass-market content to niche-market

content. By equation (15), firm 1 will receive no demand for any λ2t . This deviation cannot

be profitable. Suppose λ1t > λ̂1u, and consider firm 1’s deviation from niche-market content to

mass-market content. If λ2t > λ̂2u, then firm 1 has no demand after deviating, which cannot

be profitable. If λ2t ≤ λ̂2u, then firm 1 gets a flow profit of 1
2
c with no new information. Given

our assumption that c < 1, we have λtα
1 + (1− λt)(1−α1) > 1

2
c. That is, the expected flow

profit from offering niche-market content is always higher than the flow profit from splitting

demand with mass-market content. This deviation cannot be profitable. One can show that

firm 2 does not have a profitable deviation in the same way.

Next, we prove that this is the unique equilibrium with stationary algorithm that is

robust to all priors λ10 and λ20. First, consider the case of λ10 6= 0.5 and λ20 = 0.5. We must

have S2(0.5) = M in equilibrium, because firm 2 always gets no demand if it recommends

niche-market content when λ2t = 0.5. Consider an alternative strategy for firm 1. Suppose

there exists an equilibrium strategy profile such that S1(λ̃) = M for some λ̃ > λ̂1u. Then

select λ10 = λ̃ and λ20 = 0.5. At time 0, firm 1 can profitably deviate by switching to the

strategy in Proposition 5. After deviating, firm 1 gets a flow payoff of λ1t >
1
2
c until λ1t hits

λ̂1u, and gets a flow payoff of 1
2
c after λ1t hits λ̂1u. This is strictly more profitable than getting

1
2
c at all t. Now suppose there exists an equilibrium strategy profile with S1(λ̃) = N for

some λ̃ ≤ λ̂1u. Then let λ10 = λ̃ and λ20 = 0.5. Then firm 1 can profitably deviate to offering

mass-market content forever, which increases the total payoff from 0 to c
2rf

. Thus no other

strategy for firm 1 can be equilibrium for all priors.

Now by symmetry we have established that S1(0.5) = M , which then can be used to

prove that there is no alternative strategy for firm 2 that can be equilibrium for all priors.

The strategy profile in Proposition 5 is the unique stationary strategy profile, Sjt = S(λjt),

that constitutes equilibrium for all possible priors.

Proof of Proposition 6

The proof is separated into three steps. We first consider user preferences. Then we solve

for firm 1’s optimal strategy in the simpler case where firm 1 can observe λ2t . We prove that

the algorithm proposed in 6 is optimal if firm 1 can observe λ2t . Because the algorithm does

not depend on λ2t , it must also be optimal when firm 1 cannot observe λ2t . Then we show

that any other stationary algorithm must be sub-optimal for some priors.

Step 1: User Behavior

Firm 2’s myopic algorithm recommends niche-market content if and only if λ2t is greater

than the myopic threshold, λ∗. Note that the user always weakly prefers firm 2’s content to
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mass-market content. Thus the user never strictly prefers the mass-market content from firm

1. The user is indifferent between the mass-market content from firm 1 and the recommended

content from firm 2 when λ2t ≤ λ∗.

Consider the user’s preferences between niche-market content from firm 1 and content

recommended by firm 2. The Gittins index for niche-market content from firm 1 is provided

by equation 14.

Let GMY (λ2t ) denote the Gittins index for the myopic firm’s content. If λ2t ≤ λ∗, then

GMY (λ2t ) = c because firm 2 always offers mass-market content. Consider now the case of

λ2t > λ∗. By the definition of the Gittins index, with a static arm paying a flow payoff of

GMY (λ2t ), the user would switch from firm 2 to the static arm at or below λ2t . However,

because firm 2 only offers niche-market content above λ2t , we must have GMY (λ2t ) = G(λ2t )

where G(λ2t ) is the Gittins index for the niche-market content from firm 2 from equation

14. Thus the Gittins index for the myopic firm is the same as the Gittins index for the

niche-market content for λ2t > λ∗, then jump discretely down to c at λ∗

We can then summarize firm 1’s demand, D(λ1t , λ
2
t |S1

t ), as:

D(λ1t , λ
2
t |N) = 1{G(λ1t ) ≥ GMY (λ2t )}

D(λ1t , λ
2
t |M) =

1

2
(1− 1{λ2t ≤ λ∗})

Step 2: Optimal Algorithm

We only need to prove that the algorithm proposed in 6 is optimal if firm 1 can observe

λ2t . Because the stationary algorithm does not depend on the actual value of λ2t , it must also

be optimal when firm 1 cannot observe λ2t .

Consider deviation from 6. The state, λ1t and λ2t , has three cases.

Case 1: λ2t ≤ λ∗. Firm 2 always recommends mass-market content starting from time t.

Given our analysis in Section 4.1, one can conclude that firm 1 offering niche-market content

if and only if λ1t /∈ [1− λ̂1u, λ̂1u] is the unique optimal solution starting from time t. There is

no profitable deviation.

Case 2: λ2t > λ∗ and λ1t /∈ [1 − λ̂1u, λ̂1u]. In this case, the user strictly prefers firm 2’s

content to mass-market content. Thus firm 1 receives no demand at time t if it deviates to

recommending mass-market content, which cannot be a profitable deviation.

Case 3: λ2t > λ∗ and λ1t ∈ [1 − λ̂1u, λ̂1u]. In this case, the user does not visit firm 1 at

time t regardless of firm 1’s content choice. Thus there is no profitable deviation at time t.

Combining the three cases, we can conclude that the stationary algorithm where firm 1

offers niche-market content if and only if λ1t /∈ [1− λ̂1u, λ̂1u] is optimal.
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Step 3: Uniqueness

If λ20 ≤ λ∗, any other stationary algorithm must be sub-optimal for some λ10, as shown in

the case 1 above. This completes the proof.
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Online Appendix

1 The Additional Value from the Myopic Algorithm

In the main text, we study the value of upgrading from the myopic algorithm to the forward-

looking algorithm. Here we consider the value of upgrading from making non-adaptive

recommendations to the myopic algorithm.

We denote the firm’s ex-ante expected profits under the non-adaptive and the myopic

algorithm as V NA(λt) and V MY (λt), respectively.

Under the non-adaptive algorithm, the firm always recommends niche-market content if

the initial belief, λ0, is not in (1− λ∗, λ∗), where λ∗ = c−(1−α)
2α−1 . The expected lifetime value

for a given λ0 is

V NA(λ0) =


λ0α+(1−λ0)(1−α)

r
for λ0 > λ∗

c
r

for λ0 ∈ (1− λ∗, λ∗)
λ0(1−α)+(1−λ0)α

r
for λ0 < 1− λ∗

(OA1)

Under the myopic algorithm, the firm’s expected profit at t = 0 is given in equation 8:

V MY (λ0) =


λ0α+(1−λ0)(1−α)

r
for λ0 > λ∗

c
r

for λ0 ∈ (1− λ∗, λ∗)
λ0(1−α)+(1−λ0)α

r
for λ0 < 1− λ∗

(OA2)

We call V MY (λ0)− V NA(λ0) the additional value from the myopic algorithm.

Corollary OA.1 The additional value from the myopic algorithm, V MY (λ0)− V NA(λ0), is

zero for all λ0.

Corollary OA.1 suggests that for a monopoly, the value from continuously learning the

user’s preferences is zero if recommendations are made myopically. Many recommender

systems have supervised learning algorithms that can predict the likelihood that a user enjoys

each type of content. This result highlights the inadequacy of recommending myopically

based on this ranking.

The strong result of Corollary OA.1 is due to the fact that the expected profit flow from

recommending niche-market content, y(λt, St), is linear in posterior belief λt (see equation 4).

This linearity means that the net present value of recommending N1 forever is a martingale

in λt. When λt > λ∗, the myopic algorithm and the non-adaptive algorithm make the

same recommendation. They begin to diverge exactly at the moment when λt drops to the
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myopic threshold, λ∗. However, at the myopic threshold, the net present value of always

recommending N1 equates to the net present value of always recommending M. Thus, this

implies that the value functions under the myopic algorithm and the non-adaptive algorithm

are the same under all priors.

If, instead, the expected profit flow from recommending N1 is concave around λ∗, then

the net present value of always recommending N1 becomes a supermartingale in λt, which

implies that at λ∗, recommending M forever is better than recommending N1 forever. So the

additional value from the myopic algorithm becomes positive. This can happen, for example,

when the user has an outside option, which is explored below.

On the other hand, if the expected profit flow from recommending N1 is convex in

λt, then the net present value of always recommending N1 becomes a submartingale in

λt, which implies that the additional value from the myopic algorithm is negative. For

example, if besides customizing content, the firm also has to choose between two types of

advertisements, one targeted to users who prefer N1 and the other targeted to users who

prefer N2, then the flow payoff can be made to be convex in λt.

It is important to note that Corollary OA.1 depends on a few model assumptions besides

linearity. The result is only for a monopoly with fixed demand that does not need to worry

about losing users to a competitor. Additionally, we assume that the firm does not learn

any information when recommending mass-market content. The myopic algorithm will have

more value if we allow the firm to continue learning, at a slower pace, when recommending

mass-market content.

In the monopoly model, the value of upgrading from the non-adaptive algorithm to the

myopic algorithm is zero. However, this is no longer true when users have an outside option.

Intuitively, with the threat from an outside option, the myopic algorithm creates value by

preventing the user from switching to the other platform. If the firm employs the non-

adaptive algorithm, then it will lose the user forever when λt drops to λ̂u. By using the

myopic algorithm, the firm can keep half of the user’s demand on its platform even when

λt drops to λ̂u. This also implies that the presence of an outside option may increase firms’

incentives to develop the myopic algorithm even though it lowers their incentives to develop

the forward-looking algorithm.

Corollary OA.2 When competing against a mass-market content provider, the additional

value from the myopic algorithm is strictly positive if λ0 > λ∗ = c−(1−α)
2α−1 .

Figure 10 shows how the additional value from the myopic algorithm change with λt.

In contrast to the monopoly case, competition makes the myopic algorithm valuable by
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Figure 10: Additional value from the myopic algorithm

for α = 0.8, c = 0.7, and r = 0.6

deterring customers from switching. Competition boosts companies’ incentives to develop

myopic adaptive-learning capacities, but dampens their incentives to develop forward-looking

capacities. Understanding the complexity of the incentive to develop learning capabilities is

important for both managers and policy makers.

2 Endogenous Monetization Level for Monopoly

In the monopoly model, the firm earns a fixed margin when a user engages with the content,

and each user only consumes one unit of content per “period.” The speed of learning is

constant. In this section, we consider an extension in which the firm’s margin, the quantity

of content that a user consumes, and the speed of learning are endogenous. For simplicity,

we assume that users are myopic in that they only maximize their instantaneous utility.

The firm chooses the level of monetization, which affects the quantity of content that

users consume and the firm’s speed of learning. For example, the firm may generate profit

from advertising embedded in the content. The amount of advertising can be seen as a

price levied on users. A higher level of monetization, such as by increasing the amount of

advertising, increases the margin that the firm gets per content consumed, but decreases the

amount of content that a user views on the platform. We also assume that in each period,

users have diminishing marginal utility on the quantity of content consumed in this period.

At time t, the user’s marginal utility from content is du
dqt

= β1 − β2qt − pt, where qt is the
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amount of content consumed by the user at time t, and pt is the level of monetization.

The process for the cumulative profit from the user is the same as in the base model, but

with respect to the cumulative amount of content viewed, Q, instead of time t:

dY (Q) = y(T, SQ)dQ+
√
α(1− α)p2QdW (Q) (OA3)

where the cumulative amount of content viewed follows dQt = qtdt. This implies:

dY (t) = y(T, St)qtdt+
√
qt

√
α(1− α)p2tdW̃t (OA4)

for some Wiener process W̃t. Because the user maximizes her instantaneous consumption

utility, we have

qt =
β1
β2
− 1

β2
pt

The expected profit flow at time t becomes:

πt = qt
[
pt[λtα + (1− λt)(1− α)]

]
The learning process becomes:

dλt =
λt(1− λt)(2α− 1)ptqt

α(1− α)p2t
[y(T )− y(λt)]dt+

λt(1− λt)(2α− 1)ptqt√
α(1− α)p2t qt

dWt

=
λt(1− λt)(2α− 1)(β1

β2
− 1

β2
pt)

α(1− α)pt
[y(T )− y(λt)]dt+

λt(1− λt)(2α− 1)
√

(β1
β2
− 1

β2
pt)√

α(1− α)
dWt

Note that the standard deviation of λt,
λt(1−λt)(2α−1)

√
(
β1
β2
− 1
β2
pt)√

α(1−α)
, decreases in pt. Thus, low-

ering the level of monetization can increase the speed of learning by increasing the amount

of content users view, which increases the speed of data collection.

The firm’s value function, or maximized lifetime value is given by:

V (λt) = max
pt

V (pt, λ0) = V (pt, λ0) = E

∫ ∞
0

e−rf tπtdt

The HJB equation gives us:

0 = 0 +
[

max
pt

qt
(
pt[λtα + (1− λt)(1− α)]

)]
− rfV (λt) +

λ2t (1− λt)2(2α− 1)2p2t qt
2(α(1− α)p2t )

V ′′(λt)

For an interior solution, we take the first-order condition of the right hand side with respect

to pt. If there is no learning, the myopic strategy is to set the monetization level at

p∗t = M−1(0) =
β1
2
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The difference between the myopic level and the forward-looking level is:

p∗t − p̂t =
λ2t (1− λt)2(2α− 1)2

4α(1− α)
V ′′(λt)

Note that in Corollary OA.1, we show that if the firm makes myopic recommendations,

then V ′′(λt) = 0, and the additional value from the myopic algorithm is zero. This means

that if the firm makes recommendations myopically, it should monetize the content at a

constant level of p∗ = β1
2

.

We can obtain the ODE for the value function (for niche-market content) by rearranging

equation (A2):

V (λ) = q̂t
p̂t[λtα + (1− λt)(1− α)]

rf
+ q̂t

λ2(1− λ)2(2α− 1)2

2rfα(1− α)
V ′′(λ)

Because information adds value, we have V ′′(λt) > 0, which implies that the forward-looking

monetization level is always strictly lower than the myopic monetization level. Thus when

there is opportunity to learn and adapt to each user’s preference, a forward-looking firm

should reduce monetization. Less monetization, for example, by limiting the amount of

advertising, encourages users to view more content, which increases the firm’s speed of

learning. There is no closed form solution to the ODEc but we can solve it numerically.

Figure 11 shows this graphically.

For niche-market content, when λt increases, the need for experimentation also falls. As

a result, the firm increases advertising. As λt approaches 0 or 1, the need for information

vanishes, and the forward-looking monetization level must approach the myopic level. How-

ever, if the firm is serving mass-market content, the myopic level is optimal because there is

no more information to learn. As a result, the optimal forward-looking monetization level is

non-monotonic.

Proposition OA.1 With the myopic algorithm, the firm monetizes with a constant rate of
β1
2

. With the optimal forward-looking algorithm, the firm monetizes less when recommending

niche-market content. The reduction in monetization goes to zero as λt → 0 or 1, or as

t→∞.
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Figure 11: The monetization level as a function of λ
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