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Marketing variables that are included in consumer discrete choice models are often endogenous. Extant
treatments using likelihood-based estimators impose parametric distributional assumptions, such as nor-

mality, on the source of endogeneity. These assumptions are restrictive because misspecified distributions have
an impact on parameter estimates and associated elasticities. The normality assumption for endogeneity can
be inconsistent with some marginal cost specifications given a price-setting process, although they are consis-
tent with other specifications. In this paper, we propose a heterogeneous Bayesian semiparametric approach for
modeling choice endogeneity that offers a flexible and robust alternative to parametric methods. Specifically, we
construct centered Dirichlet process mixtures (CDPM) to allow uncertainty over the distribution of endogeneity
errors. In a similar vein, we also model consumer preference heterogeneity nonparametrically via a CDPM.
Results on simulated data show that incorrect distributional assumptions can lead to poor recovery of model
parameters and price elasticities, whereas the proposed semiparametric model is able to robustly recover the
true parameters in an efficient fashion. In addition, the CDPM offers the benefits of automatically inferring the
number of mixture components that are appropriate for a given data set and is able to reconstruct the shape of
the underlying distributions for endogeneity and heterogeneity errors. We apply our approach to two scanner
panel data sets. Model comparison statistics indicate the superiority of the semiparametric specification and the
results show that parameter and elasticity estimates are sensitive to the choice of distributional forms. Moreover,
the CDPM specification yields evidence of multimodality, skewness, and outlying observations in these real
data sets.

Data, as supplemental material, are available at http://dx.doi.org/10.1287/mnsc.2013.1811.
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1. Introduction
Over the past decade, a growing number of stud-
ies have documented the importance of account-
ing for endogeneity and heterogeneity in discrete
choice models involving aggregate (e.g., Berry et al.
1995, Chintagunta 2001, Park and Gupta 2009) or
disaggregate choice data (e.g., Chintagunta et al.
2005). Prices and other marketing variables are often
endogenous because these are set by firms taking into
account product attributes that are unobserved by
the researcher. This results in a correlation between
the observed marketing variables that are included
in the systematic component of utility functions and
the unobserved factors. It is well known that failure
to account for the endogeneity of marketing variables
leads to inconsistent parameter estimates (Villas-Boas
and Winer 1994, 1999). Similarly, a failure to account
for individual differences in model parameters can
yield misleading inferences about consumer response

sensitivities. Both types of inferential problems can
have important consequences for managerial actions.

A number of different approaches have been pro-
posed for handling the endogeneity problem in
individual-level discrete choice models. These range
from structural approaches that explicitly model the
supply side using a game (e.g., Yang et al. 2003,
Villas-Boas and Zhao 2005) to limited information
approaches that model the price-setting process as
a linear equation (e.g., Villas-Boas and Winer 1999).
The latter can be considered a “reduced-form rep-
resentation” of an underlying supply-side model.
A variant of the limited information approach is
the recently proposed control-function method (Petrin
and Train 2010) that uses extra variables to control
for the portion of the variation in the unobserved
factors that is not independent of prices. Endogene-
ity is also handled using brand and time-specific
fixed effects in the utility function. These fixed effects
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represent unobserved attributes of brands that are
correlated with prices (Goolsbee and Petrin 2004,
Chintagunta et al. 2005). A number of estimation
methods have been used in dealing with the endo-
geneity problem. These include generalized method
of moments (GMM), maximum likelihood estima-
tion, fixed-effects, and two-step approaches as well as
Bayesian methods (Chintagunta et al. 2005, Yang et al.
2003, Rossi et al. 2005, Kuksov and Villas-Boas 2008).

In this paper, we investigate how inferences about
model parameters and price elasticities in individual-
level discrete choice models are sensitive to the
distributional assumptions about endogeneity and
heterogeneity errors. We study whether misspeci-
fication of these distributional forms matters and
propose a heterogeneous Bayesian semiparametric
approach for simultaneously modeling endogeneity
and heterogeneity. Our approach is based on cen-
tered Dirichlet process mixtures (Yang and Dunson
2010), which allow uncertainty about the distribu-
tional forms. We show that assumptions about the
joint distribution of the brand and time-specific con-
stants and the residuals in the pricing equation can
have a significant impact on the estimates of utility
parameters and price elasticities.

Previous researchers have been either agnostic
about the distributional forms for the unobserved
variables, as in a GMM approach, or have assumed
normally distributed unobserved variables (Villas-
Boas and Winer 1999, Yang et al. 2003, Chintagunta
et al. 2005). Assuming a parametric distribution leads
to efficiency gains when the true distribution is
used but may distort inferences otherwise. Villas-Boas
(2007) and Park and Gupta (2009) point out that such
an assumption of normality could be inconsistent with
some marginal cost function specifications given a
price-setting process, while being consistent with oth-
ers. Methods based on the GMM are inherently more
robust but can be less efficient than likelihood-based
approaches. Here, we show how using a nonparamet-
ric Bayesian framework gives the benefits of robust-
ness and enhanced efficiency when compared with
parametric models with misspecified distributions.

Our nonparametric approach is related to that of
Conley et al. (2008), who use Dirichlet process mix-
tures for instrumental variable estimation in linear
models. We use centered Dirichlet process mixtures
(CDPM) instead because identification restrictions are
needed on the nonparametric distributions in the con-
text of discrete choice models. We show how the
CDPM can be used in the context of discrete choice
models within a data-augmentation framework. Our
approach for handling endogeneity can be considered
a robust extension of the control-function method
because it nonparametrically determines the appro-
priate control function to use in a given situation.

In addition, it allows a single-step estimation proce-
dure without the need for additional procedures to
calculate the uncertainty in parameter estimates.

We also use the CDPM approach to model hetero-
geneity in our framework. Heterogeneity is typically
handled in discrete choice settings using latent class
models, or via parametric distributions such as the
multivariate normal or a finite mixture of normal dis-
tributions (Geweke and Keane 1999, 2001; Rossi et al.
2005). Researchers have also used the Dirichlet process
(Ansari and Mela 2003, Ansari and Iyengar 2006, Kim
et al. 2004) to accommodate discrete representations
of heterogeneity in choice models. Recently, Burda
et al. (2008) use Dirichlet process mixtures to nonpara-
metrically specify a continuous distribution of het-
erogeneity. However, none of the above papers have
simultaneously considered the endogeneity problem.
Our CDPM approach to modeling heterogeneity can
be regarded as a nonparametric extension of the
finite mixture of the normals approach in that the
CDPM uses a countably infinite mixture of normals,
but it automatically infers the number of mixture
components that are appropriate for a given data
set while taking into account this additional source
of uncertainty. Our approach is capable of flexibly
accommodating situations that may be characterized
by multimodality, skewness, outlying observations,
and misspecification of functional form for the utili-
ties without having to build specific models for each
situation. In addition to the above benefits, Bayesian
methods allow the incorporation of prior information,
when available, and are an inherently small sample
in nature. In contrast, the small sample properties of
other estimation procedures such as the GMM are not
well understood in such complex contexts.

By applying our methods to both simulated and
scanner panel data sets, we show that distributional
assumptions about endogeneity errors impact param-
eter inference and price elasticity estimates signifi-
cantly. Our simulations show that the CDPM approach
is capable of recovering the true parameters and price
elasticities under many different assumptions for the
endogeneity and heterogeneity distributions. Specif-
ically, we show that when the true distribution is
a normal, the CDPM is capable of mimicking the
normal with some loss in efficiency compared with
the true parametric model. In contrast, we find that
a parametric model based on multivariate normal
distributions does a poor job in recovering the param-
eter estimates and price elasticities when the errors
come from nonnormal distributions that are multi-
modal, skewed, or heavy tailed. We apply our model
to two scanner panel data sets involving household
cleaner and shampoo categories. We find that param-
eter estimates are sensitive to the choice of distri-
butional forms and that the CDPM yields evidence
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of multimodality, skewness, and outlying observa-
tions. Model comparison statistics based on the widely
applicable information criterion (WAIC; Watanabe
2010) and the deviance information criterion (DIC;
Spiegelhalter et al. 2002) also indicate the superiority
of the CDPM specification.

The rest of this paper is organized as follows.
Section 2 introduces our modeling framework and
presents the Dirichlet process and centered Dirichlet
process mixtures. Section 3 describes our simulation
and reports the results. Section 4 details the applica-
tion and discusses the results obtained from apply-
ing alternative models on the two panel data sets.
Section 5 concludes the paper with a discussion of
its limitations and highlights areas of future research.
All other details of the analysis are located in the
appendices.

2. Model
In this section, we describe our semiparametric
approach for handling endogeneity and heterogene-
ity in a discrete choice setting. As in the literature,
we follow a random utility framework (Guadagni and
Little 1983). We assume that on any given shopping
trip (e.g., a store week), consumers choose either a
single unit of the brand that gives the highest util-
ity within a product category or an outside option
(e.g., decide not to purchase within the category).
Let J be the number of brands available in the cat-
egory. The different choice alternatives can then be
indexed by j = 0111 0 0 0 1 J , where j = 0 refers to the
“outside good,” or the no-choice option. Let con-
sumers be indexed by i = 11 0 0 0 1 I . The choices made
by consumer i are observed over t = 11 0 0 0 Ti shop-
ping trips. The utility uijt that consumer i receives
from product j on trip t depends on the observed and
unobserved attributes of the product and takes the
following form:

ui0t = �i0t1 j = 01

uijt = x′
jtÂi −�ipjt +�jt + �ijt1 j = 11 0 0 0 1 J 0

(1)

The vector xjt contains nonprice marketing variables
such as feature and display activities for brand j on
trip t as well as brand dummies (i.e., brand-specific
intercepts), and pjt represents the price paid for the
brand on trip t. The parameter vector Âi represents
the consumer’s response sensitivities to these market-
ing variables, and �i captures the price sensitivity
of the consumer. There are two types of unobserved
variables (�jt and �ijt) in the utility equation for a
brand. The demand shock �jt is common across all
consumers who shop in a store in a given week and
represents the average utility that these consumers
obtain from the unobserved attributes of product j .

Such unobserved product attributes could include
shelf space and shelf location in the store, or the
presence of store coupons, for the week in which
the trip is made, all of which are unobserved by the
researcher. Because some of these unobserved fac-
tors could be common across brands, we allow the
demand shocks to be correlated across the different
brands in a store in a given week. The error �ijt repre-
sents factors that vary independently and identically
distributed (i.i.d.) over brands, consumers, and pur-
chase occasions. Assuming these are extreme value
results in a logit model, whereas an assumption of
normality yields a probit choice model.

The price for each product typically depends on
all its attributes, both observed and unobserved.
Thus, the prices in the utility equation are correlated
with the demand shocks �jt . Ignoring these unob-
served attributes, therefore, can result in endogeneity
bias and inconsistent parameter estimates. Previous
researchers have handled this endogeneity problem
using either a full information or a limited infor-
mation approach (e.g., control functions as in Petrin
and Train 2010). In the full information approach, the
price-setting process for the firms is explicitly mod-
eled using a game-theoretic framework and the actual
prices in the data are assumed to be the equilibrium
outcome of such a game (Yang et al. 2003, Villas-
Boas and Zhao 2005). A number of different price-
setting processes have been explored in the literature,
including marginal cost pricing and Nash equilibrium
pricing for single and multiproduct firms or retailers
(Sudhir 2001). Such an explicit modeling of the price-
setting process can yield efficiency gains if the cor-
rect process is used. However, it is unclear whether
prices in the market place are indeed the outcome
of an equilibrium because managers may not know
enough about competition for the typical common
knowledge assumptions to be correct. Moreover, even
if the prices are from an equilibrium, the actual game
is unobservable, and there is always a danger that
the price-setting process is misspecified. In such cases,
the wrong model of the supply side can potentially
contaminate the demand side parameters (Berry 2003,
Dubé and Chintagunta 2003). Another concern with
such a structural approach is that it is often unclear
whether the equilibrium of a particular game being
assumed is unique, and this has implications for the
use of the structural model to examine the effect of
policy changes (Berry et al. 1995).

In contrast, the limited information approach
(Villas-Boas and Winer 1999) is agnostic about the
price-setting process and can therefore be considered
more flexible and robust. In this paper, we follow such
an approach and assume that the pricing equations
for the J brands can be written as

pjt = z′

jtÃj +�jt1 j = 11 0 0 0 1 J 1 (2)
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where zjt contains an intercept and the instrumen-
tal variables that are correlated with the price but
are independent of the common demand shock, �jt ,
in the utility specification. The error �jt in the pric-
ing equation represents unobserved factors that affect
costs. Endogeneity arises if �jt and �jt are correlated.
Given the possible presence of shared unobservables
across brands and the equilibrium considerations that
the price of one brand may depend on the demand
shocks of all brands, we assume that the price shocks
�jt’s and the demand shocks �jt’s are all mutually
correlated.

Rivers and Vuong (1988), Ching (2010), and Petrin
and Train (2010) present alternative approaches to
handling endogeneity that do not require the joint
modeling of the demand and price shocks. Ching
(2010) allows the demand shocks to directly enter the
pricing equation in a linear fashion. Such a specifi-
cation, however, amounts to assuming a normal joint
distribution.1 Petrin and Train (2010) suggest a two-
step procedure in which residuals from the pricing
equation are used in the demand model as a con-
trol function. This approach requires specifying the
functional form for the control function. Our semi-
parametric approach toward joint modeling of these
shocks can be considered a robust extension of the
control-function method because it nonparametrically
determines the appropriate control function to use in
a given situation. Moreover, it offers advantages that
stem from joint modeling of the errors when com-
pared with a two-step control-function approach.

We show in this paper that assumptions about
the joint distribution of Çt = 8�1t1 0 0 0 1�Jt9, and ×t =

8�1t1 0 0 0 1�Jt9 can impact inferences regarding the
other parameters in the utility function. Previous
researchers have either used approaches (e.g., based
on GMM) that makes no specific assumptions about
this joint distribution or have assumed a paramet-
ric distribution such as the normal (Villas-Boas and
Winer 1999, Park and Gupta 2009, Yang et al. 2003).
The GMM approach, although robust to misspecifica-
tion, can be inefficient in the context of linear instru-
mental variable models, as has been shown by Conley
et al. (2008). The assumption of joint normality, if true,
can lead to efficient inference, but otherwise can dis-
tort conclusions. The normality assumption can be
inconsistent with some price-setting behaviors of firms
(Villas-Boas 2007). The presence of outlying observa-
tions or the misspecification of the utility function can
also result in nonnormal errors. We therefore model
this joint distribution flexibly using a Bayesian non-
parametric approach. In particular, we assume that

1 Ching (2010) suggests a general polynomial of demand shocks to
approximate the pricing policy function but uses a linear specifica-
tion because of data limitations.

the vector of unobserved variables Æt = 8Çt1×t9 is
distributed according to a centered Dirichlet process
mixture.

2.1. Centered Dirichlet Process Mixtures for
Endogeneity

We assume that the Æt’s are independently drawn
from an unknown continuous distribution that is cen-
tered at zero. Note that the systematic component of
the utility includes brand-specific intercepts to cap-
ture the mean attraction of each choice alternative.
These brand intercepts are substantively important in
brand choice contexts (e.g., research involving brand
equity), and researchers are also often interested in
characterizing the heterogeneity in brand intercepts
for purposes of preference segmentation. Hence, they
cannot be treated as nuisance parameters that are inte-
grated out of the analysis. Given their inclusion in the
systematic part of the utility, the unobserved compo-
nent Æt needs to have an expectation of zero.

We model the distribution for Æt as a mean mix-
ture of normals N4Ít1ì5, with the mixing distribution
over the means Ít being an unknown distribution G,
which is common for all brands. We let the prior for
this mixing distribution be a centered Dirichlet process
CDP(G01�), with concentration parameter � and base
distribution G0. This gives the following hierarchy for
the distribution of the Æt’s:

Æt ∼ N4Ít1ì51

Ít ∼G1

G∼ CDP4G01�50

(3)

The covariance matrix ì and the concentration
parameter � are given priors at a higher level.
The centered Dirichlet process (Yang and Dunson
2010) is a generalization of the Dirichlet process (DP)
introduced by Ferguson (1973). We now briefly review
the basic properties of these processes.

2.1.1. Dirichlet Processes and Dirichlet Process
Mixtures. In Bayesian nonparametrics, the Dirichlet
process is used to model the uncertainty about the
functional form of an unknown distribution G and
can thus be considered a distribution over distribu-
tions. A Dirichlet process prior for G is determined by
two parameters: a base distribution function G0 that
sets the location of the Dirichlet process prior and a
positive concentration parameter �. Realizations from
the Dirichlet process are discrete with probability one,
which implies that the resulting Ít that draws from G
will be grouped into clusters. The discrete nature of
the DP can be made precise by looking at its construc-
tive definition via the stick-breaking representation



Li and Ansari: Bayesian Semiparametric Endogeneity in Choice Models
Management Science 60(5), pp. 1161–1179, © 2014 INFORMS 1165

because of Sethuraman (1994). According to this def-
inition, G∼ DP4G01�5 implies that

G=

�
∑

h=1

�h��h
1

�h = Vh

∏

l<h

41 −Vl51 Vh ∼ Beta411�51 �h
iid
∼G01

(4)

where ��h
denotes a discrete measure concentrated

at random atom �h, h = 11 0 0 0 1�; and Vh is an
infinite sequence of stick-breaking probabilities (see
Figure 1(a)). The construction of the probabilities �h

(i.e., the weights for the atoms) can be understood
using the following metaphor of breaking a stick into
successive segments. Starting with a stick of length
one, the first break is at �1 = V1. The remaining por-
tion 1 − V1 is then recursively broken to obtain �2 =

41 − V15V2, �3 = 41 − V1541 − V25V3, and so on. Such
a representation ensures that the infinite sum of the
weights converges to one (see Figure 1(b)). The con-
centration parameter � measures the strength of belief
in the prior guess G0. Larger values of � generate
smaller values of the stick-breaking probabilities, Vh,
resulting in a sampled distribution G that mimics the
base distribution G0. In contrast, for small values of �,
the sampled G is likely to place most of its mass on a
few atoms.

Inferences in DP models can use either a Polya-urn
representation of the DP (Blackwell and MacQueen

Figure 1 (a) Stick-Breaking Representation of Dirichlet Process;
(b) Stick-Breaking Metaphor for the Probabilities of
Dirichlet Process

1

1 – V1 V1

V2(1 – V1)(1 – V2)(1 – V1)

…..

π1

π2

π3

π4

π5

π6

π7

θ1 θ2 θ3 θ4 θ5 θ6 θ7

θh ~ G0,
l < h

πh = Vh Π(1 – Vl), Vh ~ Beta(1, �)

(b)

(a)

1973, Ansari and Mela 2003, Ansari and Iyengar
2006, Conley et al. 2008) or the stick-breaking one.
We choose the latter because it allows a straight-
forward implementation of the centering restriction
using a truncation approximation.

Because the realizations of the DP are discrete in
nature, and the unobserved variables in the util-
ity and pricing equations are best considered to be
continuous, one can mix the DP with a continuous
distribution such as the normal to yield a countably
infinite mixture of normals. Any smooth density can
then be accurately approximated using such a Dirich-
let process mixture (DPM; Antoniak 1974). However,
we need a continuous distribution that is centered at
zero to model the variability in Æt . This cannot be
ensured by merely choosing the base distribution G0
to have a zero mean. In such a case, the prior expecta-
tion of the mean of G is zero, but the posterior expec-
tation of the mean of G can differ significantly from
this prior expectation and can bias inferences about
the utility parameters and price elasticities. Hence, we
use centered Dirichlet process mixtures to enforce this
identification constraint.

2.1.2. Centered Dirichlet Process Mixtures. We
follow Yang et al. (2010) and specify a CDPM distri-
bution for the endogeneity errors as follows:2

Æt ∼ N4Ít1ì51

Ít ∼G1

G=

�
∑

h=1

V E
h

∏

l<h

41 −V E
l 5�Èh

1

Èh = È∗

h −Ö∗
G1

È∗

h ∼G01 V E
h ∼ Beta411�E51

(5)

where G0 is a multivariate normal distribution with
specified mean and variance. Our choice of a normal
distribution for G0 yields computational advantages
because of conjugacy and allows us to nonparamet-
rically deviate from the normal, which is a common
choice for parametric models.

In the above, Ö∗
G is the unconstrained mean under

the DP(G01�) prior. The mean Ö∗
G and the variance

è∗
G of the DP prior can be written as

Ö∗

G =

�
∑

h=1

V E
h

∏

l<h

41 −V E
l 5È

∗

h1

è∗

G =

�
∑

h=1

V E
h

∏

l<h

41 −V E
l 54È

∗

h −Ö∗

G54È
∗

h −Ö∗

G5
′0

(6)

The above construction implies that the induced mix-
ture of normal distributions has a mean equal to

2 In the rest of this paper, we use superscript ∗ to denote parameters
from unconstrained Dirichlet processes.
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E4Æt �G5 = 0 and a variance V 4Æt � G5 = è∗
G + ì, thus

yielding a flexible prior that respects the identification
constraint.

This completes our discussion of endogeneity pri-
ors. We now move to a discussion of consumer
heterogeneity.

2.2. Centered Dirichlet Process Mixtures
for Heterogeneity

Consumers are heterogeneous in their price sensi-
tivities �i and other response parameters Âi. Incor-
porating such consumer heterogeneity is crucial for
accurate parameter inference, substantive concerns,
and targeting. There is a vast literature in marketing
on different ways of modeling unobserved hetero-
geneity. Previous researchers have used finite mix-
tures (i.e., latent class), normal distributions, and finite
mixtures of normals to model the variation in the
individual-level parameters. Of these, the finite mix-
ture of normals approach yields the greatest flexibility
in modeling heterogeneity because it allows for mul-
timodality, which may be important if different seg-
ments exist in the market place. However, it has the
disadvantage that one needs to separately determine
the number of components of the mixture. In contrast,
when CDPM distributions are used, the number of
components are automatically determined based on
the data.

To model heterogeneity, we begin by rewriting the
utility function in Equation (1). The utility function
can be written as a sum of two components. The first
component is a composite of factors that vary across
products and time but do not vary across consumers,
whereas the second component includes quantities
that vary across consumers. Thus, we have

uijt = 6x′

jtÂ̄− �̄pjt +�jt7+w′

jtËi + �ijt1 (7)

where w′
jt = 4x′

jt1−pjt5. In the above equation, Â̄ and
�̄ are population means and represent the aggregate
response tendencies in the population. Denoting the
term in square brackets that does not vary across con-
sumers as �jt , we can rewrite the utility function as

uijt =�jt +w′

jtËi + �ijt0 (8)

Because the variables in wjt are also included as part
of �ij , the individual coefficients Ëi are constrained
to have a zero mean for identification. Analogous to
our treatment of endogeneity, we flexibly model the
heterogeneity using a CDPM of the following form:

Ëi ∼ N4Úi1å51

Úi ∼ F 1

F =

�
∑

h=1

V H
h

∏

l<h

41 −V H
l 5�Ùh

1

Ùh =Ù∗

h −Ö∗
F 1

Ù∗

h ∼ F01 V H
h ∼ Beta411�H 51

(9)

where F0 is a multivariate normal distribution with
specified mean and variance. As before, Ö∗

F is the
unconstrained mean of the corresponding Dirichlet
process, and å is the covariance matrix that is esti-
mated from the data.

2.3. Full Model
Bringing together the endogeneity and heterogeneity
submodels, i.e., Equations (5) and (9), respectively, our
modeling framework can be succinctly represented as
follows:

uijt =�jt +w′
jtËi + �ijt1

Ìt = xtÂ̄− �̄pt +Çt1

pt = ztÃ+×t1

Æt ∼ CDPM4G01�
E51

Ëi ∼ CDPM4F01�
H 51

�ijt
iid
∼ normal or extreme value0

(10)

Estimation proceeds via Markov chain Monte Carlo
(MCMC) methods based on data augmentation of the
utility uijt and the mean utility �jt as well as a trunca-
tion approximation of the CDPM such that the result-
ing full conditional distributions are all available in
closed form. The full conditional distributions used in
our MCMC scheme are provided in Appendix A, §A.1.

Inferences about parameters and the number of
components in Dirichlet process mixtures depend to
some extent on the prior for � and the choice of
the base distribution G0. In particular, the number of
clusters could depend on the variance of the base mea-
sure. In practice, data are standardized before analy-
sis and the base distribution is chosen to have close
to unit variance. Unlike most applications in statis-
tics, we use large data sets in our applications and
thus inferences are mostly driven by the information
contained in the likelihood. In the rest of this paper,
we will employ the probit framework for the utilities.
The logit can also be applied with appropriate modifi-
cations to our estimation scheme. We use the MCMC
draws in tandem with the Geweke-Hajivassiliou-
Keane (GHK) algorithm (Geweke 1989, Hajivassiliou
and McFadden 1998, Keane 1994) to compute price
elasticities and model comparison statistics WAIC and
DIC. Details regarding these statistics are reported in
Appendix A, §A.2.

3. Simulated Data
In this section, we apply simulated data to study
the suitability of modeling the distributions of choice
endogeneity and individual heterogeneity using
CDPM. We demonstrate that the proposed model is
able to properly recover the utility parameters and
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price elasticities irrespective of the underlying distri-
butions for the errors. We show that when the actual
endogeneity and heterogeneity errors are normally
distributed, our approach recovers preference param-
eters with some loss in efficiency. More importantly,
we illustrate that when the normality assumption is
violated and the data come from multimodal, skewed,
or heavy-tailed distributions only models based on
the CDPM are able to recover the true parameters
and elasticities accurately. In such instances, models
that assume normal distributions for endogeneity and
heterogeneity errors yield incorrect estimates of the
utility parameters and price elasticities. For the sim-
ulation study, we mainly focus on inferences when
data come from multimodal distributions. However,
we also report briefly, in the end of this section, on
the performance of our model applied on data coming
from unimodal, but skewed and heavy-tailed distribu-
tions. We now describe our simulated data.

3.1. Simulated Multimodal Data
We simulate four different data sets with varying dis-
tributional assumptions on the endogeneity and het-
erogeneity errors according to a 2×2 design involving
two factors.

• The first design factor varies the distribution of
choice endogeneity. That is, we simulate the endo-
geneity errors Æt = 8Çt1×t9 from either a single multi-
variate normal distribution or from a mixture of seven
multivariate normal distributions. In the latter case,
we choose the weights, means, and covariance matri-
ces of the component distributions to ensure a multi-
modal distribution that is centered at zero.

• The second design factor varies the heterogeneity
distribution that characterizes the differences in the
individual-level utility parameters. Analogous to the
first factor, we assume that the person-specific coef-
ficients, Ëi’s, come from either a single multivariate
normal distribution or from a mixture of seven mul-
tivariate normal distributions.

Note that we deliberately refrain from using a
Dirichlet process mixture for generating the endo-
geneity and heterogeneity errors because our interest
is in showing how the CDPM framework can flexi-
bly handle a variety of data sets that are not directly
based on it. The resulting data sets are as follows:

• D1: This uses normal endogeneity and hetero-
geneity components.

• D2: This uses the mixture distribution for endo-
geneity but the normal distribution for heterogeneity.

• D3: This uses normal endogeneity and the mix-
ture distribution for heterogeneity.

• D4: This uses mixture distributions for both the
endogeneity errors and heterogeneity coefficients.

We use the same sample size for all four simu-
lated data sets with I = 300 individuals, T = 400 trips,
and two alternative brands J = 2 plus an outside

good on each choice occasion. We assume that the
vector xt contains the two brand constants and a
single brand-specific exogenous variable (e.g., pro-
motion). In addition, we assume a single brand-
specific endogenous variable (e.g., price). The “prices”
are generated according to Equation (2). The exoge-
nous variable and the “instruments” zt in the price
equations are assumed to be uniformly distributed
independently across brands and observations. The
brand-specific intercepts and the price and promotion
coefficients are allowed to be heterogeneous across
individuals. The true values for all utility and distri-
butional parameters for generating the four data sets
are reported in Appendix B.

3.2. Models
We estimate four models on each of the simulated
data sets. The models are as follows:

• M1: In this model, we use multivariate normal
distributions for both endogeneity and heterogene-
ity errors. This serves as a benchmark model, which
our other models can be compared with to assess the
gains from a semiparametric approach.

• M2: In this model, we use a multivariate normal
distribution to capture heterogeneity but allow the
endogeneity errors to follow a CDPM. A comparison
of M2 with M1 can reveal the benefits of a nonpara-
metric specification for the endogeneity distribution.

• M3: Here, we specify the endogeneity distribu-
tion to be multivariate normal but assume that the
heterogeneity distribution is a CDPM.

• M4: In the last model, we assume two different
CDPM specifications for the endogeneity and hetero-
geneity errors. Thus, M4 is the full model that we
consider in this paper.

Details about the priors for the four models can be
found in Appendix A, §A.1. We now discuss the esti-
mation results for each of the four data sets.

3.3. Results
The results for all 16 model runs are based on 50,000
MCMC draws after discarding an initial set of 50,000
burn-in draws. Convergence is assessed by monitor-
ing the trace plots of the model parameters.

3.3.1. D1: Normal Endogeneity and Normal Het-
erogeneity. Table 1 reports the posterior mean of the
utility parameters, the price elasticities, and their pos-
terior standard deviations for the four models when
applied to D1. In addition, the table also contains
the estimates of the concentration parameters of the
endogeneity and heterogeneity CDPM distributions
for models M2, M3, and M4. Comparing the poste-
rior means across models, we can conclude that all
four models recover well the true parameters and
elasticities. However, the standard deviations for the
utility parameters in models that involve the CDPM
are somewhat higher than those from M1. This loss
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Table 1 MCMC Estimation Results for D1

M1 M2 M3 M4

Parameter Truth Est. Std. Est. Std. Est. Std. Est. Std.

Intercept 1 103 10325 00060 10328 00179 10326 00102 10328 00177
Intercept 2 008 00839 00061 00856 00182 00863 00103 00857 00184
Promotion 007 00628 00031 00652 00036 00653 00058 00650 00050
Price 101 10100 00032 10110 00041 10108 00057 10110 00042
�E — — — 220211 10965 — — 220237 10974
�H — — — — — 170905 10698 170903 10730
e11 −10130 −10131 00037 −10132 00035 −10130 00043 −10133 00037
e12 00616 00621 00022 00622 00023 00621 00029 00621 00024
e21 00365 00372 00011 00372 00011 00371 00013 00372 00012
e22 −10549 −10557 00045 −10558 00045 −10556 00055 −10557 00048
WAIC — 2.827 3.151 2.830 3.293
DIC — 2.804 3.290 2.807 3.341

in efficiency is not surprising given that the actual
data come from normal distributions. However, the
differences in standard deviations are small enough,
particularly for the elasticities, that the qualitative
conclusions based on the models remain unaffected.
Finally, we see that both the WAIC and the DIC
statistics are the lowest for model M1 and thus point
toward the correct model.

We can also assess how well the full model M4
recovers the unimodal nature of the heterogeneity and
endogeneity distributions. As an example, Figure 2
shows the actual distribution as well as the posterior
predictive distribution for endogeneity errors associ-
ated with the price equations for brands 1 and 2. It is
clear from the figure that the CDPM specification is
able to recover the unimodal nature of the true dis-
tribution. The recovery is similar for the other endo-
geneity components as well as for the multivariate
distribution of the heterogeneity errors.

3.3.2. D2: Mixture Endogeneity and Normal Het-
erogeneity. Table 2 reports the posterior mean and
standard deviations of the parameters and the

Figure 2 Actual Distribution of the Endogeneity Errors of D1 (Left) and the Posterior Predictive Distribution of M4 (Right)
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elasticities for the four models on D2. Recall that, in
this data set, the actual endogeneity errors follow a
mixture of seven normal distributions. In M1 and M3,
the endogeneity component assumes a normal distri-
bution and is therefore misspecified. We see that the
posterior means for the parameters in these models
differ significantly from the true values. This differ-
ence is particularly pronounced for the brand inter-
cepts. In contrast, M2 and M4 yield estimates that are
close to the truth. This is because the CDPM specifica-
tion for the endogeneity component in these models
is able to mimic the true finite mixture of normals dis-
tribution. It is also interesting to note that model M3
is unable to recover the true parameters despite its
flexible handling of heterogeneity using the CDPM.
Thus, flexibility in the heterogeneity component is not
sufficient to account for misspecification in the endo-
geneity component. We can see from the table that
the posterior standard deviations, particularly for the
endogenous price variable, are also inflated for mod-
els M1 and M3 when compared with those for M2
and M4. Focusing on the elasticities, we see that
M2 and M4 are not only better at recovering the
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Table 2 MCMC Estimation Results for D2

M1 M2 M3 M4

Parameter Truth Est. Std. Est. Std. Est. Std. Est. Std.

Intercept 1 103 10543 00291 10206 00248 10674 00326 10426 00286
Intercept 2 008 10826 00349 00818 00244 10986 00398 00802 00282
Promotion 007 00626 00148 00768 00048 00623 00152 00768 00053
Price 101 10174 00146 10076 00046 10273 00188 10026 00051
�E — — — 60217 10215 — — 80661 10495
�H — — — — — 20240 00704 20512 00757
e11 −00273 −00292 00037 −00258 00012 −00317 00047 −00256 00013
e12 00102 00111 00014 00099 00005 00120 00018 00098 00006
e21 00083 00089 00009 00079 00003 00095 00011 00079 00004
e22 −00369 −00393 00043 −00350 00014 −00420 00054 −00347 00016
WAIC — 2.557 2.108 2.304 2.342
DIC — 2.439 2.219 2.321 2.237

elasticities but do so efficiently, given the smaller stan-
dard deviations. We also find that the WAIC and DIC
statistics are the lowest for the correct model (M2).
These results clearly indicate that flexibility in model-
ing endogeneity is important to avoid the possibility
of misleading results.

3.3.3. D3: Normal Endogeneity and Mixture Het-
erogeneity. Table 3 reports the results for the four
models on D3. We find that all four models do a rea-
sonably good job in recovering the true utility param-
eters and price elasticities. In addition, we can see
that the posterior standard deviations are also com-
parable across the model. Recall that, in this data
set, the heterogeneity coefficients come from a mix-
ture of normal distributions, whereas the endogeneity
errors are distributed normal. The good performance
of models M1 and M2 (both models use a parametric
multivariate normal distribution for the heterogene-
ity component) indicates that inferences regarding the
utility parameters are not overly sensitive to the mis-
specification of the heterogeneity distribution.

An examination of the recovery of the endogene-
ity and heterogeneity distributions (figures are not
included for brevity) reveals that models M3 and M4

Table 3 MCMC Estimation Results for D3

M1 M2 M3 M4

Parameter Truth Est. Std. Est. Std. Est. Std. Est. Std.

Intercept 1 103 10098 00123 10251 00213 10284 00130 10214 00115
Intercept 2 008 00744 00109 00738 00204 00743 00121 00770 00113
Promotion 007 00604 00034 00603 00035 00606 00075 00587 00067
Price 101 10059 00038 10052 00038 10060 00050 10059 00051
�E — — — 50651 00930 — — 10967 00592
�H — — — — — 40670 10039 60006 10295
e11 −00602 −00584 00019 −00584 00019 −00584 00020 −00585 00022
e12 00294 00290 00011 00290 00011 00288 00011 00291 00012
e21 00184 00182 00007 00182 00007 00181 00007 00182 00007
e22 −00982 −00976 00030 −00975 00030 −00974 00031 −00975 00034
WAIC — 2.455 2.650 2.406 2.614
DIC — 2.423 2.483 2.422 2.382

recover the exact shape of the seven-normal mixture
distribution for the heterogeneity, whereas model M1
is unable to do so. Thus, to the extent that uncover-
ing the pattern of individual differences is important
for managerial actions (e.g., segmentation), it is still
preferable to use the semiparametric specification.

3.3.4. D4: Mixture Endogeneity and Mixture Het-
erogeneity. Table 4 reports the results for the four
models on D4. It is clear from the table that models M1
and M3, which assume a parametric distribution for
the endogeneity errors, do a poor job of recovering the
true parameters as well as the price elasticities. More-
over, the associated posterior standard deviations for
these models are inflated compared with those from
models M2 and M4. The latter two models yield esti-
mates and elasticities that are close to their true values
because both accommodate endogeneity in a flexible
fashion. We also see that the WAIC and DIC identify
the right model M4.

Finally, as before, the full model is able to recover
multimodality of the underlying true distributions.
Figure 3 shows a bivariate marginal distribution of
the endogeneity errors (for the demand shock of
brand 1 and the price shock of brand 2) from the
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Table 4 MCMC Estimation Results for D4

M1 M2 M3 M4

Parameter Truth Est. Std. Est. Std. Est. Std. Est. Std.

Intercept 1 103 20087 00459 10358 00339 20307 00649 10348 00274
Intercept 2 008 10678 00546 00680 00323 10871 00787 00783 00267
Promotion 007 00582 00201 00716 00043 00569 00208 00717 00059
Price 101 10419 00250 10065 00038 10519 00371 10082 00042
�E — — — 120908 10888 — — 80358 10504
�H — — — — — 170513 30405 60073 10316
e11 −00230 −00311 00057 −00225 00009 −00331 00083 −00228 00010
e12 00125 00174 00035 00121 00006 00185 00051 00122 00007
e21 00102 00144 00028 00100 00005 00153 00039 00101 00006
e22 −00608 −00835 00157 −00596 00024 −00888 00227 −00599 00027
WAIC — 2.448 2.360 2.445 2.253
DIC — 2.404 2.284 2.217 2.188

actual seven-normal mixture (top left), the posterior
predictive distribution of M4 (top right), and the pos-
terior predictive distribution of M1 (bottom). It is clear
from the figure that the posterior predictive distribu-
tion of M4 mimics the shape of the true distribution

Figure 3 Bivariate Marginals of the Endogeneity Errors (for the Demand Shock of Brand 1 and the Price Shock of Brand 2) from the
Actual Distribution of D4 (Top Left), the Posterior Predictive Distribution of M4 (Top Right), and the Posterior Predictive
Distribution of M1 (Bottom)
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remarkably well. However, the posterior predictive
distribution of M1 differs from the actual distribution.
Figure 4 shows the univariate marginals from the
true four-dimensional heterogeneity distribution and
from the posterior predictive distribution of M4. Once



Li and Ansari: Bayesian Semiparametric Endogeneity in Choice Models
Management Science 60(5), pp. 1161–1179, © 2014 INFORMS 1171

Figure 4 Marginals of the Heterogeneity Errors from the Actual
Distribution of D4 (Left) and the Posterior Predictive
Distribution of M4 (Right)
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again, we can see that the posterior predictive distri-
bution of M4 mimics the actual heterogeneity distribu-
tion well.

3.3.5. Summary of Results. Summarizing the re-
sults across the four data sets, it is evident that the
estimates of utility parameters and price elasticities
are sensitive to the choice of distributions for the
endogeneity and heterogeneity errors. In particular,
the functional form of the endogeneity distribution
appears to more noticeably impact the results. It is
also clear from the above that the full model does a
good job of recovering these parameters and elastici-
ties. The CDPM specification is able to produce more
efficient estimates in most situations, and it causes
some loss in efficiency only when the data purely
come from a normal distribution. Moreover, the full
model properly reconstructs the shape of the underly-
ing distributions, whether they are unimodal or multi-
modal in nature, thereby giving an accurate portrayal
of the segmentation structure of the market. Lastly,

Table 5 MCMC Estimation Results for the Skewed and
Heavy-Tailed Data

M1 M2

Parameter Truth Est. Std. Est. Std.

Intercept 103 00878 00393 10084 00475
Promotion 008 00719 00173 00739 00114
Price 101 00838 00210 10015 00169
�E — — — 20379 00674
e11 −00602 −00465 00114 −00556 00090
WAIC — 1.958 1.510
DIC — 1.711 1.484

it is evident that the model comparison statistics are
capable of pointing toward the right model.3

So far, we have focused on model performance
when data come from multimodal distributions.
We now briefly discuss how the different models per-
form when the endogeneity errors come from skewed
and heavy-tailed distributions.

3.4. Simulated Skewed and Heavy-Tailed Data
Here, we show the superiority of the proposed CDPM
endogeneity model on skewed and heavy-tailed data.
In this exercise, for brevity, we only consider a data
set involving the choice between a single brand and
an outside option. To generate skewness and heavy
tails in the data, we use a noncentral t-distribution
(Fisher 1931) and a Gaussian copula (Song 2000).
Specifically, we simulate the demand shock, Çt , via a
noncentral t distribution with degrees of freedom = 3,
and a noncentrality parameter = 6. Next we generate
the price shock, ×t , from another noncentral t distri-
bution with degrees of freedom = 4 and a noncentral-
ity parameter = 7. The joint distribution of Çt and ×t

is then constructed using a bivariate Gaussian copula
with correlation = 007 on the two marginal distribu-
tions. For simplicity, the distribution of heterogeneity
errors is kept as a multivariate normal. All other char-
acteristics of the data are similar to the previously
constructed data sets. Given that the heterogeneity
errors are normal, we estimate only M1 and M2 on
this data. Table 5 shows the parameter and elastic-
ity estimates. Figure 5 compares the posterior pre-
dictive distributions of the endogeneity errors from
M1 and M2.

It is clear from Table 5 that M2 outperforms M1 in
recovering the model parameters and the price elastic-
ity. Also, we see from Figure 5 that M2 does a better
job (compared with M1) of mimicking the shape of the

3 We also investigate the importance of centering for Dirichlet pro-
cess mixtures by comparing the parameter estimates from variants
of model M4 that use unconstrained DPM for the endogeneity
and/or heterogeneity distributions. We find that the unconstrained
versions result in a lack of identification, bad mixing, and poor
recovery of model parameters. The results and discussion are pro-
vided in Appendix C.
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Figure 5 Marginals of the Endogeneity Errors from the Actual
Distribution of the Skewed and Heavy-Tailed Data (Top), the
Posterior Predictive Distribution of M1 (Middle), and the
Posterior Predictive Distribution of M2 (Bottom)
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distributions of demand and price shocks. The model
comparison statistics again identify the right model.

4. Real Data Applications
In this section, we apply our method to two real
data sets from the recently available consumer IRI
marketing data set (Bronnenberg et al. 2008). There
are 50 IRI markets included in the original data set.
Store-level data are available for all 50 markets. How-
ever, household panel data are available for only two
of these markets (i.e., Eau Claire, WI and Pittsfield,
MA). The panelists’ shopping behavior is observed
from January 2001 to December 2006. We chose two
categories–household cleaner and shampoo—to illus-
trate our approach. The descriptive statistics of our
samples are presented in Table 6. In selecting the
households to include in our samples, we first restrict
the panel to households who made at least one gro-
cery trip in each of the six years. Then for each product
category, we restrict the sample to households that are
in the top 95% of the distribution of purchase frequen-
cies within the category. The second criterion results
in differences in sample size across the two categories.

To construct brand choice observations from the
original data sets, we first match the panel choices
with the store sales using the latter to build choice
sets at brand level. We include all top market share
brands that together account for at least 70% of the

Table 6 Descriptive Statistics of the Household Cleaner and
Shampoo Data Sets

Share of
No. of No. of No. of Price Promotion outside

Category observations households brands mean mean option (%)

Household 81415 360 8 1029 0010 20
cleaner

Shampoo 181469 753 7 3050 0030 32

sales within a category and group all other small
share brands (i.e., < 4% each) into a single brand as
the outside option for that category. The price vari-
able in Table 6 refers to the regular list price per unit
size that is provided in the original data. In both cat-
egories, this corresponds to price for a 16 oz. pack.
As is common in brand choice studies, we obtain
brand price as sales-weighted mean of the prices of
the universal product codes (UPCs) belonging to that
brand. We acknowledge, however, that such aggrega-
tion across UPCs can have implications for the mag-
nitude of own- and cross-price elasticities that are
inferred from the data (Song 2010). The promotion
variable in the table refers to the promotion proba-
bility for a brand in a store week. This variable is
obtained by setting promotion equal to 1 for a 5% or
higher temporary price reduction for a UPC and then
computing a sales-weighted average of this variable
across the UPCs of the brand.

We specify the utility of each brand as in Equa-
tion (1). Utility is assumed to be a function of the
brand intercept, the price, and an exogenous promo-
tion variable. Endogeneity concerns arise for the price
variable pjt because it is potentially correlated with
the unobserved demand shock �jt . For example, omit-
ted brand attributes, such as shelf-space allocation,
may affect consumers’ choice process, but researchers
do not observe these variables in the data. Also,
prices may be set strategically based on their poten-
tial impact on demand; hence, the brand prices are
not exogenous. Instruments are therefore needed to
separate the exogenous variation from the endoge-
nous variation in price. We follow (Hausman 1996,
Nevo 2001) and exploit the multimarket nature of
the data sets to select valid instruments. Assuming
that market-specific price variations are independent
across markets, prices in other geographic markets
are valid instruments for prices in any given mar-
ket because prices of the same brand are correlated
because of common production costs. We therefore
use the prices of the same brand in the same week in
other markets that are geographically separated from
a given market as instruments.4 Given the current

4 Details regarding the identities of the markets that are used in
each case are available from the authors upon request. The R
squares in the regression of prices on the instruments are 0.56 for
household cleaner and 0.88 for shampoo.
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Table 7 Estimation Results of the Household Cleaner Category

M1 M2 M3 M4

Parameter Est. Std. Est. Std. Est. Std. Est. Std.

Intercept 1 20561 00346 10894 00373 20541 00337 10770 00324
Intercept 2 10569 00273 00991 00293 10614 00261 00856 00245
Intercept 3 10034 00285 00394 00297 10137 00264 00426 00255
Intercept 4 10389 00321 00659 00358 10410 00296 00646 00285
Intercept 5 10185 00306 00292 00353 10107 00314 00201 00305
Intercept 6 00164 00286 −00645 00331 00160 00307 −00855 00289
Intercept 7 00695 00259 −00036 00298 00875 00247 00122 00260
Intercept 8 00204 00224 −00415 00239 00289 00250 −00571 00218
Price 00414 00058 00311 00056 00395 00053 00288 00055
Promotion 00146 00020 00109 00025 00129 00021 00117 00024
�E — — 390634 30417 — — 670530 50753
No. of components endo. — — 130800 00000 — — 140000 00000
�H — — — — 100573 10626 70814 10614
No. of components het. — — — — 80000 00000 30000 00000
WAIC 10.597 10.456 10.688 10.413
DIC 8.298 8.884 8.486 8.143

Table 8 Estimation Results of the Shampoo Category

M1 M2 M3 M4

Parameter Est. Std. Est. Std. Est. Std. Est. Std.

Intercept 1 00382 00096 00404 00104 00372 00106 00468 00113
Intercept 2 00605 00287 00603 00287 00520 00266 00767 00303
Intercept 3 −00997 00099 −10028 00113 −10006 00108 −00959 00122
Intercept 4 00358 00244 00375 00246 00345 00238 00521 00274
Intercept 5 00505 00274 00479 00281 00437 00275 00618 00321
Intercept 6 00029 00306 00033 00300 −00017 00281 00164 00360
Intercept 7 −10517 00108 −10572 00129 −10539 00122 −10510 00133
Price 00849 00103 00900 00107 00848 00102 00956 00118
Promotion 00266 00015 00272 00017 00253 00016 00257 00017
�E — — 160280 10798 — — 770153 70819
No. of components endo. — — 210275 00447 — — 430000 00000
�H — — — — 170132 10917 80826 10315
No. of components het. — — — — 170000 00000 70000 00000
WAIC 14.842 15.116 14.751 13.756
DIC 9.583 9.453 10.519 9.237

data, however, we cannot rule out the possibility that
common demand shocks, such as nationwide mar-
keting campaigns, may exist across locations, thereby
affecting the validity of the chosen instruments.

4.1. Results
We estimate the four models M1 to M4 on the data
sets. These model specifications mirror those for the
simulation. Parameter estimates and the model com-
parison statistics for the four models in each of the two
product categories are based on 50,000 MCMC draws
after discarding an initial set of 100,000 burn-in draws.

Tables 7 and 8 present the posterior means and the
associated posterior standard deviations for the two
product categories under each of the four model spec-
ifications. One can see from the results that there are
considerable differences in the parameter estimates
between the parametric model M1 and the full model
M4. The brand intercepts are severely impacted by
the distributional assumptions, particularly within the

household cleaner category. The price coefficient also
exhibits greater variation across the four models in
household cleaner than in shampoo. We find consid-
erable variations in the price elasticity estimates as
well,5 thus reinforcing the importance of the nonpara-
metric specification in modeling endogeneity.

Figure 6 shows the posterior predictive distribu-
tions of the endogeneity errors for the eight brands
in the household cleaner category. It is clear from
the figure that the endogeneity errors exhibit vary-
ing degrees of multimodality, skewness, and outlying
observations. Skewness and thick tails are particu-
larly pronounced in the demand shocks, whereas
multimodality is evident in the price shocks. We also
observe a moderate level of nonnormality in the

5 We report the own-price elasticity estimates in Appendix D for
both categories. The cross-price elasticity results are available from
the authors upon request.
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Figure 6 Marginals of the Posterior Predictive Distribution of the Endogeneity Errors in the Household Cleaner Category
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posterior predictive distributions of heterogeneity
errors in the two categories. The WAIC and DIC point
toward the full model M4 in both product categories,
indicating that it is important to accommodate the
above patterns in the demand and price shocks.

In the current model setup, price endogeneity is
generated via the correlations between demand and
price shocks. We can recover such correlations using
the variance matrix V 4Æt � G5 = è∗

G + ì, where è∗
G is

obtained from (6). Note that we allow every demand
shock to be correlated with each other and with all
price shocks; therefore, we end up with a 16-by-16
error variance matrix for the household cleaner data
and a 14-by-14 error variance matrix for the shampoo
data. In the interest of brevity, in Table 9, we show
only the within-brand correlations between demand
and price shocks. (The estimates of the full corre-
lation matrices can be obtained from the authors
upon request.) One can see from the table that there
are moderate and statistically significant correlations

between the demand and price shocks, justifying the
endogeneity concerns in both categories.

The results from the two real data sets indicate that
parameter estimates and price elasticities are sensi-
tive to the choice of distributional forms for endo-
geneity and heterogeneity errors. The results also

Table 9 Within-Brand Correlations Between Demand
and Price Shocks

Household cleaner Shampoo

Est. Std. Est. Std.

Brand 1 −00013 00072 00136 00040
Brand 2 −00179 00050 00106 00037
Brand 3 −00066 00063 00097 00036
Brand 4 00060 00057 00009 00096
Brand 5 −00159 00066 00026 00070
Brand 6 00119 00044 00103 00033
Brand 7 00016 00055 00029 00034
Brand 8 00213 00061 — —
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suggest greater gains from modeling endogeneity
in a flexible manner. Given the uncertainty about
the appropriate form to use in a particular appli-
cation, the CDPM approach allows us to infer non-
parametrically such distributions based on the data.
The extent of the endogeneity effect (i.e., the corre-
lations between demand and price shocks) can also
be obtained automatically from the MCMC scheme as
reported in Table 9.

5. Conclusion
The growing interest in accommodating endogenous
regressors in discrete choice settings has resulted in
a proliferation of methodological approaches. These
methods differ in their robustness and in the effi-
ciency of the parameter estimates they produce.
In this paper we show how misspecification of the
endogeneity and heterogeneity distributions in dis-
crete choice models can impact the recovery of model
parameters and elasticity estimates. This has con-
sequences for managerial actions because these are
typically based on price elasticity estimates. Consid-
ering that the true distributions of random shocks
are unknown in any given situation, we advocate
the use of a flexible and robust approach for infer-
ring such distributions via a semiparametric Bayesian
framework. Our approach relies on centered Dirich-
let process mixtures to accommodate this uncertainty
about distributional forms. This offers a flexible and
robust alternative that does well under a variety of
situations, particularly when data come from multi-
modal, skewed, or heavy-tailed distributions, without
having to specifically build separate models for these
different situations. It is important to note that the
semiparametric approach achieves such robustness
without impacting the efficiency of parameter esti-
mates significantly. Instead, we find that the CDPM
can yield more efficient estimates than a parametric
model with distributional forms that are misspecified.
Moreover, our approach also offers all the traditional
advantages of Bayesian procedures, such as the ability
to incorporate prior information and generate exact
inference in small samples, in tandem with the ben-
efits of numerical stability arising from the use of
MCMC methods.

We apply our framework to both simulated and
scanner panel data sets. The study on the simulated
data offers the benefit of knowing the true data gen-
erating process, and thus we are able to investigate
to what extent true utility parameters and elasticities
are recovered by our approach. Our results clearly
indicate that the estimates for the population mean,
which capture the overall response tendencies in the
population, are impacted significantly by the assump-
tions for the endogeneity distributions. We find that
a model that relies on parametric distributions such

as the normal does a poor job of recovering the
aggregate utility parameters as well as the elasticities
when the true underlying distributions are nonnor-
mal. In contrast, the CDPM based models are able to
recover well the parameters irrespective of the true
underlying distribution for the data. The CDPM does
well in both multimodal and skewed/heavy-tailed
settings, whereas parametric models distort inferences
about the mean as well as the statistical significance
of the parameters in such settings.

We also find that the CDPM performs well in recov-
ering the shape of the underlying distributions and
thereby yields proper qualitative conclusions about
the nature of variability in the population. It is inter-
esting to note that the CDPM is able to recover
well unimodal distributions (as in the case of nor-
mal errors). Moreover, in such cases, the loss in
efficiency that arises from the necessity to accommo-
date the uncertainty about distributional forms in the
CDPM approach is not large and mostly happens on
brand intercepts. Our simulation results show that the
parameter and elasticity estimates exhibit greater sen-
sitivity to the misspecification of the endogeneity dis-
tribution than that of the heterogeneity distribution,
and thus it is crucial to model the endogeneity errors
in a flexible fashion.

In our real data applications, we show that the
parameter and elasticity estimates differ across model
specifications and that the model comparison statistics
support the full model. The posterior predictive dis-
tributions based on the MCMC runs also indicate the
possibilities of multimodality, skewness, and outlying
observations in the data, thus supporting the need
for a semiparametric alternative. Summarizing across
our applications, we can conclude that our Bayesian
semiparametric approach offers a robust alternative to
models that rely on the normal distribution for han-
dling both the endogeneity and heterogeneity errors.
In addition, it is clear from the results that our model
yields more accurate elasticity estimates. To the extent
that managerial action is often closely related to esti-
mates of price elasticities, our approach is superior in
guiding managerial decision making.

Our enquiry can be extended in multiple direc-
tions. We use centered Dirichlet process priors as
the underlying building blocks. The literature on
Bayesian nonparametrics is rapidly evolving and
offers other alternatives. Future researchers could
use probit stick-breaking processes (Rodríguez and
Dunson 2011) or normalized inverse-Gaussian pri-
ors (Lijoi et al. 2005) instead of Dirichlet processes.
In this paper, we assume that the utility errors are
normally distributed to yield a probit model. Our
methods can be modified via a data augmentation
scheme for extreme value distributed utilities to han-
dle the multinomial logit case. We focus on the conse-
quences of misspecified distributional forms. It would
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be interesting to investigate in future research the
robustness of the CDPM in recovering model param-
eters under different equilibrium assumptions of the
supply side (e.g., Bertrand-Nash). Moreover, although
we primarily study the impact of distributional forms
on inferences, the assumption on the price shock
being additive in Equation (2) could be inconsistent
with some marginal cost specification, given a price-
setting process. We leave a detailed exploration of this
issue for future research. Finally, the current analysis
is mainly applied to individual-level choice models.
Researchers can further explore whether our approach
can be used for aggregate data situations. It is unclear,
however, whether aggregate market share data con-
tain enough information to identify nonparametric
distributions.
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Appendix A. MCMC

A.1. Full Conditionals
We now list the full conditionals for the parameters in
model M4 along with their prior distributions. To imple-
ment the stick-breaking process in MCMC, we follow the
truncation approximation as in Ishwaran and Zarepour
(2000) and Ishwaran and James (2001), and we set the trun-
cation points at N E = NH = 150 for both endogeneity and
heterogeneity CDPMs. The wide truncation ensures a close
approximation to the Dirichlet processes.

(1) Ìt : The mean utility for the constrained Dirichlet pro-
cess follows the two equations

Ìt =XtÂ̄− �̄pt +Çt1

pt =ZtÃ+×t 0
(A1)

Because we assume Çt and ×t are distributed as a joint
normal, N4Ít1ì5, the prior for Ìt is a marginal distri-
bution, N4Ì01è05, conditional on ×t , where Ì0 = XtÂ̄ +

4ì��è
−1
w − �̄I5pt + Í�t −ì��è

−1
w 4ZtÃ + Í�t5 and è0 = ì� −

ì��è
−1
w ì′

��. The model for Ìt is

uit −wtËi =Ìt + Åit1 (A2)

so the posterior distribution of Ìt is a multivariate nor-
mal distribution with precision matrix, è−1

0 + ItI, and mean
vector, 4è−1

0 + ItI5−14è−1
0 Ì0 +

∑It
i=14uit − wtËi55, where It is

the number of individuals who made purchases at t.
(2) Ì∗

t : The mean utility for the unconstrained Dirichlet
process differs from Ìjt by a constant:

Ì∗

t =Ìt + 4è−1
0 + ItI5

−1è−1
0 4Ö∗

G1 −ì��è
−1
w Ö∗

G250 (A3)

(3) Â̄, �̄1 and Ãj : Let b and Xt denote the parameters and
the data at the right-hand side of (A1), respectively, and

write Yt = 4Ìt1pt5. Then (A1) is transformed into

Yt −Ít =Xtb+ et1 (A4)

where et ∼ N401ì5. For conjugacy, we assume the prior dis-
tribution for b is N4b01èb5. Define T = max8Ti9, and the
posterior distribution for b is a multivariate normal distri-
bution N4b̂1 è̂b5, where

è̂−1
b =è−1

b +

T
∑

t=1

X′

tì
−1Xt1

b̂= è̂b

(

è−1
b b0 +

T
∑

t=1

X′

tì
−14Yt −Ít5

)

0

(A5)

(4) ì: We assume the prior distribution is an inverse
Wishart distribution, ì∼ IW4�ì1Rì5. From (A4), et = 4Yt −

Ít − Xtb5 ∼ N401ì5, the posterior distribution is also an
inverse Wishart:

IW
(

�ì + T 1Rì +

T
∑

t=1

4Yt −Ít −Xtb54Yt −Ít −Xtb5
′

)

0 (A6)

(5) Ëi: The constrained individual coefficient has a prior
distribution Ëi ∼ N4Úi1å5. From (8), 4uit −Ìt5=wtËi + Åit ,
the posterior distribution is thus a multivariate normal dis-
tribution, N4Ú̂i1 å̂i5, where

å̂−1
i =å−1

+

Ti
∑

t=1

w′

twt1

Ú̂i = å̂i

(

å−1Úi +

Ti
∑

t=1

w′

t4uit −Ìt5

)

0

(A7)

(6) Ë∗
i : The unconstrained individual coefficients differs

from Ëi by a constant, i.e., Ë∗
i =Ëi + å̂iå

−1Ö∗
F .

(7) å: We assume the prior distribution is an inverse
Wishart, IW4�å1Rå5. Because the model is Ëi ∼ N4Úi1å5,
the posterior distribution for å is

IW
(

�å + I1Rå +

I
∑

i=1

4Ëi −Úi54Ëi −Úi5
′

)

0 (A8)

(8) uijt : According to (1), uijt has a prior distribution,
uijt ∼ N44�jt +w′

jtËi5115, for j = 11 0 0 0 1 J , and ui0t ∼ N40115,
for j = 0. An alternative k is chosen if and only if uikt =

maxj8uijt9, for j = 0111 0 0 0 1 J . Therefore, the posterior for
utility uijt is a truncated normal distribution with mean
and variance being the same as the prior, and the trunca-
tion ensures the highest utility corresponds to the observed
choice.

(9) È∗
h: The location parameter È∗

h of the unconstrained
Dirichlet process for endogeneity errors is drawn from the
baseline distribution G0, which we assume to be N401 I5. Let
8K̃11 0 0 0 1 K̃m9 denote the set of current m unique values of all
location indicators 8KE

t 9∀ t , and write Y∗

t = 4Ì∗
t 1pt5. For each

location that is not informed by the data, h ∈ 811 0 0 0 1N E9−

8K̃11 0 0 0 1 K̃m9, the posterior is the same as the prior distri-
bution, i.e., È∗

h ∼ G0. But for each h ∈ 8K̃11 0 0 0 1 K̃m9, the data
provide information through the model, Í∗

t = 4Y∗

t −Xtb5 ∼

N4È∗
h1ì5, ∀ t, s.t. KE

t = K̃k, where k = 11 0 0 0 1m. In this
case, the posterior is a multivariate normal distribution,
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N4È̂h1 è̂�h
5, where

è̂−1
�h

= I+
∑

∀ t2KE
t =K̃h

ì−11

È̂h = è̂�h

(

∑

∀ t2KE
t =K̃h

ì−14Y∗

t −Xtb5
)

0

(A9)

(10) Ù∗
h : The location parameter Ù∗

h of the unconstrained
Dirichlet process for heterogeneity errors is drawn from the
baseline distribution F0, which is assumed to be N401 I5.
Let 8K̆11 0 0 0 1 K̆n9 denote the set of current n unique values
of all location indicators 8KH

i 9
I
i=1. For each location that is

not informed by the data, h ∈ 811 0 0 0 1NH 9− 8K̆11 0 0 0 1 K̆n9, the
posterior is the same as the prior distribution, i.e., Ù∗

h ∼ F0.
But for each h ∈ 8K̆11 0 0 0 1 K̆n9, the data provide information
through the model, Ë∗

i ∼ N4Ù∗
h1å5, ∀ i, s.t. KH

i = K̆k, where
k = 11 0 0 0 1n. In this case, the posterior is a multivariate nor-
mal distribution, N4Ù̂h1 è̂�h

5, where

è̂−1
�h

=I+
∑

∀i2KH
i =K̆h

å−11 Ù̂h =è̂�h

(

∑

∀i2KH
i =K̆h

å−1Ë∗

i

)

0 (A10)

(11) KE
t : The location indicator assigns each Í∗

t to an
appropriate location h in the Dirichlet process for endogene-
ity errors. It follows a discrete distribution, KE

t ∼
∑N E

h=1 �ht�h,
where �ht ∝ �E

h · N4Y∗

t −Xtb � È∗
h1ì5. �E

h is the prior proba-
bility assigned to location h and is given by

�E
1 = V E

1 and �E
h = V E

h

∏

l<h

41 −V E
l 5

for h= 21 0 0 0 1N E 0 (A11)

(12) KH
i : The location indicator assigns each Ú∗

i to an
appropriate location h in the Dirichlet process for het-
erogeneity errors. It follows a discrete distribution, KH

i ∼
∑NH

h=1 �hi�h, where �hi ∝ �H
h · N4Ë∗

i � Ù∗
h1è5. �

H
h is the prior

probability assigned to location h and is given by

�H
1 = V H

1 and �H
h = V H

h

∏

l<h

41 −V H
l 5

for h= 21 0 0 0 1NH 0 (A12)

(13) V E
h : The prior for the stick-breaking probability for

endogeneity errors is V E
h ∼ Beta411�E5. Let ME

h be the num-
ber of KE

t ’s that point to location h, ∀ t. According to Ish-
waran and Zarepour (2000), the posterior distributions for
these stick-breaking probabilities are

V E
N E = 1 and V E

h ∼ Beta
(

1 +ME
h 1�

E
+

N E
∑

l=h+1

ME
l

)

for h= 11 0 0 0 1N E
− 10 (A13)

(14) V H
h : The prior for the stick-breaking probability for

heterogeneity errors is V H
h ∼ Beta411�H 5. Let MH

h be the
number of KH

i ’s that point to location h, ∀ i. Then the pos-
terior distributions are

V H
NH = 1 and V H

h ∼ Beta
(

1 +MH
h 1�H

+

NH
∑

l=h+1

MH
l

)

for h= 11 0 0 0 1NH
− 10 (A14)

(15) �E : A conjugate prior is a gamma distribution, i.e.,
�E ∼ â4dE

1 1d
E
2 5. Then the posterior is �E ∼ â4N E + dE

1 − 11
dE

2 − log4�E
N E 55.

(16) �H : The prior is �H ∼ â4dH
1 1dH

2 5, and the posterior is
�H ∼ â4NH + dH

1 − 11dH
2 − log4�H

NH 55.
(17) Ít : According to the location indicator KE

t ,

Ít = È∗

Kt
−Ö∗

G0 (A15)

(18) Úi: According to the location indicator KH
i ,

Úi =Ù∗

Ki
−Ö∗

F 0 (A16)

A.2. WAIC and DIC
Denote the entire set of unknown parameters as W and each
of the N choice observations as Ck, k = 11 0 0 0 1N. In every
MCMC iteration, we apply the GHK algorithm (Geweke
1989, Hajivassiliou and McFadden 1998, Keane 1994) to
compute the likelihood, �4Ck �W5, for each observed choice
and its associated price vector because the utilities and
prices are a jointly distributed multivariate normal. Let
ƐW6 · 7 be the expected value with respect to the posterior
distribution of W, i.e., averaging across MCMC iterations.
According to Watanabe (2010), the widely applicable infor-
mation criterion (WAIC) is defined as

WAIC =
1
N

N
∑

k=1

{

ƐW64log�4Ck �W5527− ƐW6log�4Ck �W572

− logƐW6�4Ck �W57
}

0 (A17)

We also compare alternative models using deviance infor-
mation criterion (DIC, Spiegelhalter et al. 2002), which is
written by

DIC =
1
N

N
∑

k=1

{

2 log�4Ck � ƐW6W75− 2ƐW6log�4Ck �W57

− logƐW6�4Ck �W57
}

0 (A18)

Appendix B. The Synthetic
Data-Generating Process
Here we report the parameter values we use to simulate the
data sets in §3. For D1, the variance matrices of the endo-
geneity errors and heterogeneity errors are, respectively,

ì=
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The mixture distribution for the endogeneity errors in
D2 and D4 are mixed from seven multivariate normal
components with weights = 8002, 0.1, 0.2, 0.1, 0.1, 0.15, 00159.
The mean vectors of these normal components are
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and the variance matrices are

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The mixture distribution for the heterogeneity
errors in D3 and D4 are mixed from seven multi-
variate normal components with weights = 800210011
002100325100325100110019. The mean vectors of these
normal components are
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We use the same variance matrix as the above è
across the seven components.

Appendix C. Unconstrained DPM Models
We continue the discussion of CDPM by highlighting suc-
cinctly the importance of imposing the centering constraint
on the Dirichlet process mixtures. Table C.1 reports param-
eter estimates for four models on data set D4. The first
model is M4 and the other three are variational forms of M4
obtained by using different combinations of unconstrained
Dirichlet process mixtures (instead of constrained) on the
endogeneity and heterogeneity errors.

As can be seen from the table, models based on the
unconstrained Dirichlet process mixture result in poor
recovery of the parameter estimates because of identifica-
tion problems. In particular, we see that the brand intercepts
are impacted adversely when the endogeneity distribution

Table C.1 Parameter Estimates from Unconstrained DPM Models

M4 M4 M4 M4
(constrained) (uncons. het.) (uncons. endo.) (uncons. both)

Truth Est. Std. Est. Std. Est. Std. Est. Std.

Intercept 1 103 10348 00274 10225 00392 −30061 10593 40233 10197
Intercept 2 008 00783 00267 −00028 00384 −80243 10931 −60720 10364
Promotion 007 00717 00059 20510 00282 00706 00060 00219 00191
Price 101 10082 00042 10172 00041 10056 00039 00999 00058
e11 −00230 −00228 00010 −00227 00010 −00226 00010 −00227 00009
e12 00125 00122 00007 00123 00006 00121 00006 00123 00006
e21 00102 00101 00006 00101 00005 00100 00005 00101 00005
e22 −00608 −00599 00027 −00601 00026 −00597 00026 −00602 00024

is unconstrained. We also see that all parameters are influ-
enced because of using an unconstrained heterogeneity dis-
tribution. It is interesting to note, however, that the elasticity
estimates remain relatively unaffected by this identification
issue. In addition, the constrained specification is preferable
because it offers additional advantages. For instance, it has
better numerical properties because there is less chance of
overflow and underflow errors and it is easier to assess con-
vergence when one works with identifiable parameters.

Appendix D. Own-Price Elasticity Estimates for
Real Data Applications
Here we present the own-price elasticities for the household
cleaner category in Table D.1 and for the shampoo category
in Table D.2. It is clear from the tables that models M1 and
M3 report different elasticities when compared with those
obtained from models M2 and M4. This again supports our
view that the nonparametric specification is crucial in mod-
eling endogeneity.

Table D.1 Own-Price Elasticity Estimates for the Household Cleaner
Category

M1 M2 M3 M4

Parameter Est. Std. Est. Std. Est. Std. Est. Std.

e11 −10519 00214 −10163 00208 −10453 00223 −10039 00216
e22 −10363 00205 −10012 00207 −10322 00201 −00939 00203
e33 −10512 00236 −10130 00226 −10423 00206 −10060 00235
e44 −10405 00234 −10079 00208 −10338 00200 −00981 00229
e55 −20005 00363 −10490 00333 −10912 00361 −10422 00353
e66 −10617 00301 −10219 00294 −10563 00300 −10086 00298
e77 −10584 00278 −10231 00233 −10521 00241 −10109 00276
e88 −20013 00334 −10522 00267 −10918 00333 −10395 00334

Table D.2 Own-Price Elasticity Estimates for the Shampoo Category

M1 M2 M3 M4

Parameter Est. Std. Est. Std. Est. Std. Est. Std.

e11 −00418 00053 −00462 00062 −00434 00064 −00479 00065
e22 −10145 00223 −10339 00247 −10195 00260 −10437 00254
e33 −00507 00078 −00547 00087 −00516 00089 −00577 00089
e44 −10448 00206 −10521 00232 −10360 00243 −10661 00243
e55 −10537 00222 −10628 00251 −10453 00255 −10776 00256
e66 −10511 00294 −10618 00327 −10586 00339 −10817 00317
e77 −00601 00095 −00639 00105 −00565 00104 −00680 00108
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