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Summary

In this paper we develop a conditional likelihood based approach for estimating
the equilibrium price and shares in markets with differentiated products and
oligopoly supply. We model market demand using a discrete choice model with
random coefficients and random utility. For most applications the likelihood
function of equilibrium prices and shares is intractable and cannot be directly
analyzed. To overcome this, we develop a Markov Chain Monte Carlo simula-
tion strategy to estimate parameters and distributions based. To illustrate our
methodology, we generate a dataset of prices and quantities simulated from
a differentiated goods oligopoly across a number of markets. We apply our
methodology to this dataset to demonstrate its attractive features as well as
its accuracy and validity.
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1 Introduction

In this paper, we develop a likelihood based method for estimating market equilibrium
prices and shares for differentiated products produced by oligopolists. Our methodology
extends the literature on estimating differentiated goods demand and market equilibrium
by bringing together three existing approaches. One is the likelihood based estimation
of equilibrium price and quantity in markets with differentiated goods as in Bresna-
han (1981, 1987). His approach differs from ours in that the demand for differentiated
products is based upon a simplified discrete choice model where products are ordered
along one dimension, there are no random coefficients and there are no unobserved de-
mand characteristics. In the second approach, researchers use likelihood based simulation
methodologies to estimate random utility, random coefficient demand as in McFadden
(1974), Rossi et al (1996), Nevo (2000, 2001), Petrin (2002), Geweke and Keane (2002),
Athey and Imbens (2007), Romeo (2007), Burda et al (2008), Jiang et al (2009) and
Osborne (2011). In the third approach, researchers combine supply information with
random coefficient, random utility demand and estimate equilibrium outcomes as in
Berry, Levinsohn and Pakes (1995). In this paper, we develop a likelihood based estima-
tion methodology for these models that uses a random utility, random coefficient demand
model, oligopoly supply, and allows for unobserved demand and supply characteristics.

In general, the likelihood functions for the set of equilibrium prices and market
shares arising from random coefficient demand with oligopoly supply results are compu-
tationally intractable. We propose an alternative solution to this problem by simulating
the equilibrium posterior distribution of tastes and parameters from two conditional like-
lihoods, one based upon prices and the other upon shares. Our estimation methodology
then simulates the equilibrium posterior distribution of tastes given the joint distribution
of prices and shares. Basing estimation on these conditional likelihoods allows us to sim-
ulate the posterior distribution of parameters whose joint likelihood cannot be directly
computed. We demonstrate the equivalence of these two methods in the simplified case
of linear supply and demand where both the likelihood and the conditional likelihoods
can be computed. Further, we estimate equilibrium prices and shares using our approach
on a simulated dataset to illustrate the accuracy of the methodology. Our simulation
approach uses Markov Chain Monte Carlo (MCMC henceforth) techniques, which are
also used in the likelihood based estimation of random coefficient demand. Our specifi-
cation relies on a logit-based demand system rather than the probit based structure used
in demand-only likelihood approaches because the probit leads to an intractable market
equilibrium system without individual level data.

Our likelihood based estimation methodology has a number of attractive features.
It does not impose parametric assumptions upon the estimated distribution of consumer
tastes. While the researcher does specify prior distributions for consumer tastes, the
simulation methodology combines this prior information with the data and yields an
estimated distribution of tastes from the simulation. Thus the prior might be normal,
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but the estimated distribution could be, for example, multi-modal. This is an attractive
feature when consumers may be segmented by their preferences for certain features, such
as brand, but the researcher specifies a unimodal distribution.2 Another attractive feature
is that standard errors can be calculated directly from the estimation data, whereas
estimators using Generalized Methods of Moment require the researcher to calculate
the appropriate weighting matrix to obtain standard errors. Theoretical convergence
properties for our MCMC simulation are easily established (for example, Roberts and
Smith, 1993) and simulation errors are well specified (Tierney, 1994). Functions of the
estimated parameters of interest to researchers such as such as elasticities and variances
are relatively straightforward to calculate. Another important difference between our
approach and existing strategies for such estimation is that this technique can incorporate
additional information in a flexible way. Researchers can use the model priors to combine
information from other sources and to put more or less emphasis on this information.

The rest of the paper proceeds as follows. Section 2 describes the demand and sup-
ply models that compose the market equilibrium. Section 3 discusses the issues involved
with a likelihood based approach to estimating these models. We propose a method that
is based on directly simulating the posterior distribution of tastes and parameters and
show its equivalence to analysis of the likelihood in a simple linear equilibrium model.
Section 4 discusses the specifics of implementing the likelihood approach. In section 5
we apply our estimation algorithm to a simulated dataset of differentiated goods and
oligopoly supply. Our estimation algorithm provides reasonable estimates with signif-
icant improvement in precision over a simple logit-based demand approach. Section 6
concludes.

2 Random Utility-Random Coefficient Demand and

Oligopoly Supply

Our demand model is based upon a random utility, random coefficient specification now
commonplace in the analysis of differentiated goods demand. This model derives from
the work of McFadden (1974) and can be applied to discrete choice problems and to
differentiated products (see Anderson, De Palma and Thisse (1992), and Besanko, Perry
and Spady (1990)).3

The demand structure arises from heterogeneous consumers choosing the product
that maximizes their utility. Utility is a function of product attributes and disposable
income. Goods’ characteristics are both observable and unobservable to the econome-

2Besanko, Dube, and Gupta (2002) present an alternative method of incorporating multiple segments
using a Generalized Method of Moments Estimator. Unlike their approach, our methodology does not
require the researcher to specify the number of segments.

3Berry (1994) provides a summary of different models and their attributes and Nevo (2000) gives a
brief summary of recent applications.
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trician. Consumers differ in their marginal utility of product attributes and in their
idiosyncratic tastes for a particular product. Thus utility to consumer i from product j
is:

uij = α log(y − pj) + xjβ + ξj + εij

where y−pj is disposable income, xj are observable product characteristics, ξj are unob-
servable product characteristics and εij is an individual-product specific unobservable.4

We assume that consumer tastes for characteristics, β, come from a distribution we de-
note as p(β) with a mean of β̄ and variance-covariance matrix Σβ = σβσ

′
β. The marginal

utility of income, α, is also random with a mean of ᾱ and variance σ2
α. ξj is a normal

random variable with mean zero and variance σ2
ξ . The model relies on a logit demand

structure, so the individual product-specific unobservable, εij is drawn from a Type-1
extreme value distribution. Our specification includes income, y, which is generally not
observable for market level data. In our data example this is constant, however it can be
drawn from a distribution based upon population characteristics. For applications where
income effects are negligible income is usually omitted.

Consumers purchase the good that gives them the highest utility. Let Di denote
consumers i’s choice, then Di = l if uil > uik for all products k 6= l. Using the ex-
treme value distribution of εij the probability that a given individual purchases good l
conditional on the parameters is multinomial logit (McFadden, 1974):

p (Di = l|X,α, β, y, ξ) =
exp (x′lβ + α log(y − pl) + ξl)∑J

j=0 exp(x′jβ + α log(y − pj) + ξj)
. (1)

Since we will analyze markets in which individual transaction data are not available,
we relate this probability to aggregate market shares. To do so we first note that the
fraction of similar individuals in a large market (many consumers) who purchase good l
will converge to the probability that a given individual in that market purchases good l,
and assume that the probability of a tie in the utility ranking is zero. The market share
of product l, denoted by sl, is then determined by integrating over the distribution of
tastes in the population and the distribution of unobserved characteristics over the set
of products:

sl(p, x) =
∫

α,β,ξ

exp (x′lβ + α log(y − pl) + ξl)∑J
j=0 exp(x′jβ + α log(y − pj) + ξj)

p(α, β, ξ)dαdβdξ (2)

where p(α, β, ξ) is the probability density function for (α, β, ξ). Equation (2) describes
aggregate market demand for good l.

The supply side of the market is composed of a small number of multiproduct
firms. A firm, f , offers a particular product j if j is a member of the set of products

4While data will generally include observations across markets differentiated by time or by geography,
for now we suppress the market subscript for clarity.
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offered by f which we denote as Ωf . Firm f ’s profit is then:

πf = L
∑

j∈Ωf

(pj −mcj)sj(p, x)

where mcj is the marginal cost of product j, L is total market size and sj(p, x) is market
share of the product from consumers’ demand. We specify marginal cost of product j as
a function of an M -vector of observed cost characteristics, wj, and unobserved (to the
econometrician) factors, ηj:

mcj = exp(wjγ + ηj)

We assume that, from the econometrician’s perspective, ηj is a normal random variable
with mean zero and variance σ2

η. The M -column vector of parameters γ represent the
contribution of each characteristic to marginal cost.

We assume that firms choose product prices to maximize profit, thus the first-order
condition for product j is:

sj(p, x) + (pj −mcj)
∂sj(p, x)

∂pj

+
∑

k∈Ωf ,k 6=j

(pk −mck)
∂sk(p, x)

∂pj

= 0 (3)

where the derivatives are of (2) with respect to price. For the pricing derivative, we
assume that the marginal utility of income, α, is constant.

The first-order condition can be transformed into:

(y − pj)− α(pj −mcj)(1− sj) + α
∑

k∈Ωf ,k 6=j

(pk −mck)sk = 0.

Stacking the first-order conditions across products and rearranging we get:

Λ−1(s)(p−mc) = −α−1(y − p)

where

Λ−1(s) =


(s1 − 1) H12s2 . . . H1JsJ

H21s1 (s2 − 1) . . . H2JsJ

. . . . . . . . . . . .
HJ1s1 . . . HJJ−1sJ−1 (sJ − 1)



p =

 p1

. . .
pJ

 , mc =

 mc1
. . .
mcJ

 , y − p =

 y − p1

. . .
y − pJ

 .

This formulation separates the demand derivatives into a function of parameter α and a
matrix, Λt(st), which is independent of unknown parameters. Ht is an indicator variable
which defines the association of products offered by each firm: Hjlt = 1 if products j and
l are produced by the same firm and zero otherwise.
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This equation can be re-written to isolate marginal cost. This yields:

p+ α−1Λ(s)(y − p) = mc

or, after taking logarithms and substituting for marginal cost,

log
(
p+ α−1Λ(s)(y − p)

)
= wγ + η (4)

where

w =

 w′
1

. . .
w′

J

 , η =

 η1

. . .
ηJ

 .

We now turn to our likelihood based estimation procedure.

3 Likelihood Based Estimation

Ideally we would like to be able to derive an exact joint likelihood function for the
parameters given shares and prices upon which to base our estimation. In theory we
could determine the Jacobian implicitly defined by the joint system of (4)- the pricing
equation- and an aggregate demand specification based upon (1) given a joint probability
model for the unobserved characteristics. We could then determine the joint likelihood
function for the parameters given shares and prices, L(s, p|Θ) where Θ = (α, β, γ). Next,
we could combine the joint likelihood with the prior distribution of the parameters via
Bayes’ rule and directly generate the parameters of the system given the data.

Rather than analyze the joint likelihood we analyze a model implicitly defined by
the two conditional distributions based upon our demand and supply specifications. We
will refer to this as the conditional likelihood system. For technical results on existence
of a joint model from a conditionally specified models, see Gelman and Speed (1993),
Arnold et al (1999) and Wang and Ip (1998). Zellner et al (2014) provides an alternative
direct Monte Carlo approach for Bayesian inference with instrumental variables and also
highlights the difficulties involved in calculation of typically highly non-normal posterior
distributions that arise in these contexts. Other estimation procedures such as the sim-
ulated method of moments (see e.g. Hajivassiliou and McFadden, 1998) can be used in
this context.

One can use the conditional likelihood system to simulate the posterior distribu-
tion of the parameters given the joint distribution of prices and shares. For the simple
case of a linear system where we can also compute the actual likelihood, we show that
the conditional likelihood system is equivalent to the actual likelihood discuss condi-
tions under which the conditional likelihood will be closer to the actual likelihood for
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more general supply and demand systems.5 Finally, we discuss the implementation of
instrumental variables in our conditional likelihood system.

Our problem is to find the distribution of tastes that would result in the observed
market shares given random coefficient-random utility demand and oligopoly supply.
Since we are developing a likelihood based approach, we do not use the aggregate, ex-
pected market share defined in (2) as the basis for estimation since this is a number and
not a random variable. Instead, we use the share conditional on the parameters which is
also the probability of purchase conditional on the parameters defined in (1) as a basis
for our demand likelihood. As the share conditional on the parameters is the probability
of purchase conditional on the parameters we have:

(sl|α, β, ξ) ≈ p (Di = l|α, β, ξ) =
exp (x′lβ + α log(y − pl) + ξl)∑J

j=0 exp(x′jβ + α log(y − pj) + ξj)
.

Using (1) as the basis for the likelihood is discussed in Chamberlain (1999) and Rossi,
McCulloch and Allenby (1996) with individual level data. We transform this expression
into one that is linear in the utility terms by taking logs and subtracting the expected
share of the outside good, applying the argument made in Berry (1994). Thus we have
the probability of observing sl conditional on the parameters, p(sl|α, β, ξ) as:

p(sl|α, β, ξ) = log(sl|α, β, ξ) = log(s0) + x′lβ + α log(y − pl) + ξl. (5)

This is also the probability that an individual with characteristics α and β will purchase
a product with features xl and ξl. We combine this with our priors about the distribution
of tastes in order to generate our demand estimation. Our demand estimation essentially
simulates “individuals” based upon the prior distribution of tastes, the prior distribution
of the marginal utility of income and the data and then integrates them to generate a
market share. Thus our demand estimation will calculate:

p(sl) =
∫

α,β
p(sl|α, β)p(α, β)dαdβ (6)

and share is no longer conditional on ξ since ξ is the error term in our estimation. We
deal with the endogeneity of ξ by employing instrumental variables in Section 3.3.

We now return to the problem of generating and estimating the likelihood associ-
ated with (4), the pricing equation, and (5), the demand equation. Since our estimation
integrates over α and β we effectively estimate (4) and (6). Let p(ξ, η|Θ) be the joint
probability distribution for the unobserved characteristics and let J (s, p : Θ,Λ) be the
Jacobian associated with (4) and (6). The joint likelihood function is:

L(s, p|Θ,Λ) = p(ξ(s, p), η(s, p)|Θ,Λ)|J (s, p : Θ,Λ)|.
5To evaluate the validity of our approach in a more general setting in practice, we apply our method-

ology to a panel of simulated market equilibria in section 5.
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As we noted earlier, only very restrictive conditions such as linearity lead to a likelihood
that has a closed-form solution. Thus solving directly for the joint likelihood is not pos-
sible in most situations. Moreover, the joint likelihood is generally not in a form where
simulation techniques can be applied. Thus, we analyze the alternative model implicitly
defined by the two conditional distributions based upon equations (4) and (5). This alter-
native approach is equivalent to analyzing the joint likelihood directly if it were available
in the sense that the posterior distribution of the simulated parameters is the equilibrium
distribution of the parameters given the joint distribution of the prices and shares. Sub-
ject to mild regularity conditions, these conditional distributions define a unique joint
distribution p (s, p|Θ) by the Hammersley-Clifford Theorem (Besag, 1974). Arnold et al
(2001, Theorem 1) provides a recent result on compatible conditional specifying a joint
probability model. The conditional likelihoods allow us to analyze nonlinear simulta-
neous systems and to incorporate additional error from ψ and η. The unique posterior
distribution of the parameters will then be determined by Bayes’ Rule via application of
MCMC. In the case of a linear system, we can demonstrate the equivalence of these two
approaches directly in Section 3.2.

3.1 Joint Model Specification

Given the equilibrium conditions specified by (4) and (5) we have a conditional
likelihood specification given by:

log(s/s0)|p,Θ ∼ N
(
Xβ + α log (y − p) + ξ, σ2

ξIJ
)

(7)

log
(
p+ α−1Λ(s)(y − p)

)
|s,Λ,Θ ∼ N

(
wγ, σ2

ηIJ
)

(8)

where we have stacked the variables here as:

X =

 x′1
. . .
x′J

 , y − p =

 y − p1

. . .
y − pJ

 , ξ =

 ξ1
. . .
ξJ

 .

The demand-side conditional likelihood is then proportional to:

(
σ2

ξ

)−JT
2 exp

(
− 1

2σ2
ξ

|| log(s)− g(p, y, α, β)||2
)

where g (p, y, α, β) = log (s0) +Xβ + α log (y − p) + ξ.

The supply-side conditional likelihood is proportional to:

(
σ2

η

)−JT
2 exp

(
− 1

2σ2
η

||h(p, s, y, α)− wγ||2
)
.

where h (p, s, y, α) = log (p+ α−1Λ(s)(y − p)) and ||x||2 = x′x and T is the number of
markets served.
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Due to the invertibility of h (p, s, y, α) = log (p+ α−1Λ(s)(y − p)) in p given s and
y, we can write the model specification directly in terms of the conditional distributions of
shares and prices: denoted by (s|p,Θ) and (p|s,Θ,Λ). We have conditional distributions
where Z1 ∼ N (0, IJ) and Z2 ∼ N (0, IJ) given by

(s|p,Θ) ∼ eg(p,y,α,β)+σξZ1 (9)

(p|s,Θ,Λ) ∼ (1− α−1Λ(s))−1
(
ewγ+σηZ2 − α−1Λ(s)y

)
(10)

The distribution of shares given prices is log-normal and that of prices given shares
a shifted log-normal. Therefore, given parameters, Θ, and the competition matrix, Λ,
we know the distribution of shares given prices and vice-versa the distribution of prices
given shares. We now show that this is sufficient to define a joint probability distribution
for shares and prices given parameters and form of competition.

The Clifford-Hammersley-Besag formula allows us to write, suppressing the con-
ditioning on Θ and Λ, for any pair (s(0), p(0)) the joint density p(s, p) as a product of
conditional densities

p(s, p)

p(s(0), p(0))
=

p(p|s)p(s)
p(s(0)|p(0))p(p(0))

=
p(s|p(0))p(p|s)

p(s(0)|p(0))p(p(0)|s)

There is a mild positivity condition which requires that for each point in the sample
space, p(s, p) and the marginals p(s) and p(p) have positive mass. Given our log-normal
specification this holds for our conditional specification. Hence we have a well defined
joint likelihood, L(s, p|Θ,Λ), which can be computed as:

L(s, p|Θ,Λ) =
∫

ξ,η
p(s, p|Θ,Λ, ξ, η)p(ξ, η)dξdη.

The prior p(Θ,Λ) is well-defined and, by construction, so is the posterior. We simply
combine the likelihood L(s, p|Θ,Λ) with the random effects distribution of the parame-
ters, p(Θ,Λ). Bayes’ rule to yield the posterior distribution of the parameters given the
data:

p(Θ,Λ|s, p) ∝ L(s, p|Θ,Λ)p(Θ,Λ).

It is this posterior distribution that MCMC simulates to perform likelihood based infer-
ence. In our case, we can proceed as if the distribution of log(s) conditional on p and
parameters is a JT dimensional multivariate normal, with a mean of g(p, y, α, β) and
variance-covariance matrix σ2

ξI; and the distribution of h(p, s, y, α) is a JT dimensional
multivariate normal with mean of wγ and variance-covariance matrix σ2

ηI. We can then
simulate the equilibrium distribution.

Our problem, however, is one of inverse probability: given shares and prices in a
market equilibrium can calculate the posterior distribution the parameters and the type
of competition (e.g. Bertrand or Cournot) given shares and prices? MCMC methods
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provide a natural approach to solving this system. These methods break the problem up
into a number of simpler problems. The inputs to develop an MCMC algorithm are the
conditional likelihood functions and the distribution of tastes. Using these we calculate
the distribution of each parameter conditional on the data and the other parameters,
which we refer to as the parameter’s conditional posterior distribution. We specify a
sampling algorithm based upon combining two techniques known as the Gibbs sampler
and the Metropolis-Hastings algorithm (Hastings, 1970). Our estimation process sim-
ulates iteratively from the conditional posterior distributions to define a Markov chain
whose equilibrium distribution is the full joint posterior distribution. We then sample
from the joint posterior distribution and estimate functions of interest by Monte Carlo
averaging. Section 4 provides the details.

3.2 Illustrative Example: A Linear System

To demonstrate the equivalence of the conditional likelihood system to the actual
likelihood, we now consider a simple, linear system. This stylized example of our general
approach allows us to solve the likelihood L(s, p|Θ) analytically and compare that to the
joint likelihood L̃(s, p|Θ̃) derived from the conditional distributions. The linear equilib-

rium model has demand specified as s = pβi + ξ with βi ∼ N
(
β̄, σ2

β

)
, ξ ∼ N(0, σ2

ξ ).

Supply is given by p = sγl + η and γl ∼ N (γ̄, σ2
γ) with η ∼ N (0, σ2

η).
6

This system is equivalent to:

s = pβ̄ + εs and p = sγ̄ + εp

where εs ∼ N (0, σ2
s), εp ∼ N (0, σ2

p) σ
2
s = σ2

βpp
′ + σ2

ξ and σ2
p = σ2

γss
′ + σ2

η. Solving this
equilibrium leads to a joint distribution for shares and prices which defines L(s, p|Θ)
where Θ = {β̄, γ̄, σ2

β, σ
2
γ}. More specifically,

s, p|Θ ∼ N
(

0,

(
σ̄2

s ρσ̄sσ̄p

ρσ̄sσ̄p σ̄2
p

))

where σ̄2
s = 1

1−β̄γ̄
[σ2

ξ + β̄2σ2
η], σ̄

2
p = 1

1−β̄γ̄
[γ̄2σ2

ξ + σ2
η] and ρσ̄sσ̄p = 1

1−β̄γ̄
[γ̄σ2

ξ + β̄σ2
η]. The

corresponding conditional distributions are given by:

s|p,Θ ∼ N
(
ρσ̄s

σ̄p

p, σ̄2
s(1− ρ2)

)
and p|s,Θ ∼ N

(
ρσ̄p

σ̄s

s, σ̄2
p(1− ρ2)

)
.

Under our methodology, the corresponding likelihood L̃(s, p|Θ̃) is defined by the condi-
tional distributions:

s|p, Θ̃ ∼ N
(
β̃p, σ̃2

s

)
and p|s, Θ̃ ∼ N

(
γ̃s, σ̃2

p

)
6For illustrative purposes the parameters in the supply equation are random coefficients as well. Our

equivalence result also holds when the supply does not have random coefficients.
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where Θ̃ = {β̃, γ̃, σ̃2
ξ , σ̃

2
η}. Therefore, the likelihood from the market equilibrium based on

conditional densities, L̃(s, p|Θ̃) can be related to L(s, p|Θ) by matching β̃ = ρσ̄s

σ̄p
, γ̃ = ρσ̄p

σ̄s
,

σ̃2
s = σ̄s

2(1 − ρ2) and σ̃2
p = σ̄p

2(1 − ρ2). This relationship holds as long as the original
model is identified (i.e. β̄γ̄ 6= 1).

For a nonlinear system this line of reasoning does not directly apply. However, if
the errors σ2

ξ and σ2
η are small, the system approximates a linear system locally (near the

equilibrium) and the above argument applies.

In practice, identification of the system usually requires the use of instrumental
variables beyond the identification provided by distributional and functional form as-
sumptions. While we discuss instrumental variables in Section 3.4, we mention them
here to note how their use relates to the equivalence argument. It is typical to assume
that there are instruments z, v which satisfy the moment restrictions E[zξ] = 0 and
E[vη] = 0 and therefore the error variances σ2

ξzz
′ and σ2

ηvv
′ are extremely small. In

practice then, we apply our methodology on the instrumented system with small σ2
ξ and

σ2
η. We also perform a sensitivity analysis of the resulting posterior distribution to the

size of these errors.

3.3 Application to Random Coefficient Demand and Oligopoly Supply

Assume, for now, that the unobserved product characteristic, ξ, is normally dis-
tributed with mean zero and variance σ2

ξ . Since β and ξ are independent normals, the
vector of implied shares given by (5) can be rewritten as:

log(st) = α log(yt − pt) +Xtβ̄ + eD
t (11)

where

eD
t =

 eD
1t

. . .
eD

Jt

 ,

eD
t ∼ N (0, XtΣβX

′
t + σ2

ξI) and we have re-introduced the time subscripts. We have now
subsumed the effect of the outside good in the intercept term and the (1, 1) element of
Σβ is x0tΣβx

′
0t.

7 So the observed vector of market shares is a vector of random variables
from the perspective of the econometrician by virtue of the unobservables and random
coefficients.

7As written here the first β coefficient is time-dependent. In our simulation in the next section we
do not allow the characteristics of the outside good to vary across time periods and we use the same
distribution of income in each time period so that there is no time variation in this coefficient. In
an application with real data these assumptions would not hold and one would need to include time
dummies in xjt.
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Similarly, the observed vector of prices of products in time period t, pt, is a vector
of random variables implicitly defined by:8

log[pt + α−1Λt(st)(yt − pt)] = wtγ + eS
t (12)

where

eS
t =

 eS
1t

. . .
eS

Jt


and eS

t ∼ N (0, σ2
η). Λt is a function of the observed shares and the demand side identifies

these observed shares as a function of the random variables. Similarly, shares are a
function of observed prices in the demand equation and the supply side identifies these
as a function of the random variables. This is the simultaneity in the system. As written,
it appears that prices (defined by the supply side) are not functions of β̄. However, they
are because the shares defined by the logit demands are part of the Λ matrix. This
can be most easily seen by referring back to our linear example. There it was clear
that the supply-side depended on the demand-side parameters - they entered through
the Jacobian. Similarly, in this nonlinear case, the supply side depends on the demand-
side parameters through the Jacobian implied by the joint system. We now turn to the
problem of incorporating instrumental variables.

3.4 Incorporating Instrumental Variables

Up to this point we have included no additional information to help identify
the unobserved characteristics, ξ and η. In many cases the researcher has additional
variables which may be used to help identify ξ and η. Suppose that the researcher has an
R column-vector of demand-side instrumental variables, zjt, and a Q column-vector of
supply-side instrumental variables, vjt, for each product j and time period t that can be
used to identify the unobserved characteristics. The instruments satisfy the conditions
E[zjtξj] = 0 and E[vjtηt] = 0. We impose these latter conditions through distributional
assumptions: ztξ ∼ N (0, σ2

ξztz
′
t) and vtη ∼ N (0, σ2

ηvtv
′
t) where we set the variances to be

very small and perform sensitivity analysis of the posterior to these variances. We can
then instrument the system (11) and (12) by multiplying the demand side through by
zt = [z1t . . . zJt] and the supply-side by vt = [v1t . . . vJt] to get:

zt log(st) = αzt log(yt − pt) + ztXtβ̄ + zte
D
t

vt log[pt + α−1Λt(st)(yt − pt)] = vtwtγ + vte
S
t .

8Note that implicit in this representation is our assumption that α in the supply equation is not
random, otherwise the variance component would contain a term depending on the variance of α.
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The problem now is to solve the simultaneous equilibrium of supply and demand specified
by these two equations. These equations can be interpreted as conditional likelihood
functions:

zt log(st)|vt log(At), α, β̄,Σβ, yt ∼ N (αzt log(yt − pt) + ztXtβ̄,ΣD) (13)

vt log(At)|zt log(st), α, γ, yt ∼ N (vtwtγ,ΣS)

where ΣD = (ztXt)Σβ(ztXt)
′+σ2

ξztz
′
t, ΣS = σ2

ηvtv
′
t andAt(pt,Λt(st), α) = [pt+α

−1Λt(st)(yt−
pt)]. We now turn to MCMC implementation.

4 MCMC Implementation

In order to estimate a model using our MCMC algorithm the researcher must first de-
velop the conditional likelihood distributions for the equations of the simultaneous system
model as we have done in Section 3. Next the researcher needs to determine which param-
eters can be grouped together for estimation and choose appropriate prior distributions.
We do this in Section 4.1. Given the first two steps, one can then calculate the conditional
posterior distributions using the conditional likelihood distributions and the prior distri-
butions. This may require using latent variables for some parameters. Next, one applies
the relevant simulation technique for each block of parameters, determines starting values
and specifies the level of the “error” in the estimated system. The conditional posterior
distributions, appropriate simulation methods, and starting values for our application
are described in Section 4.2. These steps comprise the setup and the actual estimation
procedure. Finally, the researcher will want to evaluate the estimation results by com-
puting parameter estimates, taste distributions, and functions of the parameters such
as elasticities and by evaluating the sensitivity of the estimates to particular estimation
choices such as the level of “error.” These issues are covered in section 4.3.

4.1 Specification of the Distribution of Tastes

We now discuss the issues in blocking the parameters and choosing prior distribu-
tions for the parameters. The distributional forms and blocks for parameters are chosen
to balance analytical convenience, speed of the simulator and generality of the implied
assumptions. MCMC simulators draw much faster from recognizable distributions (due
to the lower rejection rate) so we emphasize choosing priors which lead to recognizable
posterior conditional distributions. We also block together parameters that can be jointly
drawn from the same recognizable posterior conditional distribution to speed up conver-
gence. Blocking parameters involves balancing realistic priors for the parameters with
the increased speed of the simulator that comes from reducing the number of blocks to
be drawn. For example, variance parameters require a prior with only positive support
while linear parameters can often be drawn from distributions whose support is the real
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line. We provide for generality in our priors primarily by employing diffuse priors so that
prior information has little influence on the posteriors. Here it is convenient to block the
parameters in as large groups as possible and simulate them together as described in Liu,
Wong and Kong (1994).

We divide our parameters Θ into five blocks: β̄, Σβ, γ, α and σ2
α and assume

independent priors so that:

p(Θ) = p(β̄)p(Σβ)p(γ)p(α)p(σ2
α).

Our reasoning is as follows. The first three parameter blocks can all be drawn
from recognizable posterior distributions as shown below. No pair of these blocks can
be combined without sacrificing this recognizability. The linear parameters from the
demand side cannot be combined with those from the supply side since they come from
different conditional likelihoods. The variance and linear parameters from the demand-
side cannot be combined because the priors for the former require positive support while
those for the latter allow any real value. The two α blocks cannot be combined with
other priors because these parameters enter in a nonlinear fashion and must be drawn
from an unrecognizable distribution.

We specify the following prior distributions for each of the parameter blocks:

α ∼ N (a0, A
−1
0 )Iα>0 σ2

α ∼ W(a2, A
−1
2 )

β̄ ∼ N (b0, B
−1
0 ) Σβ ∼ W(b2, B

−1
2 )

γ ∼ N (g0, G
−1
0 )

where W denotes the inverted Wishart distribution.9 We use diffuse prior distributions
for all the distributions as described below in our simulation results.

An alternative way to write our model is to use a three-stage hierarchical model
which specifies the likelihood function in the first stage, the distributions of the param-
eters in the second stage and the priors in the third stage:

zt log(st)|pt,Θ ∼ N (αzt log(yt − pt) + ztxtβ, ztz
′
tσ

2
ξ )

β ∼ N (β̄,Σβ) α ∼ N (ᾱ, σ2
α)Iα>0

β̄ ∼ N (b0, B
−1
0 ) Σβ ∼ W(b2, B

−1
2 ) σ2

α ∼ W(a2, A
−1
2 ).

9The inverted Wishart distribution is particularly convenient for specifying precision matrices because
its posterior is positive-definite and also Wishart. The first parameter is the degrees of freedom and the
second parameter is the variance-covariance matrix. Higher degrees of freedom place more mass of the
distribution near zero while lower degrees of freedom spread the mass over the positive real line.
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The model for the supply-side contains only two stages since the coefficients are fixed. If
the supply-side included random coefficients the second stage of the supply-side would
specify the distributions for the coefficients:

vt log[pt + α−1Λt(st)(yt − pt)]|st,Θ ∼ N (vtwtγ, vtv
′
tσ

2
η)

γ ∼ N (g0, G
−1
0 ).

We now turn to the MCMC algorithm for simulating from the posterior distribution.

4.2 Conditional Posterior Distributions

Before we derive the conditional posterior distributions for the parameters, it is
necessary to discuss how we treat the parameters ᾱ, σ2

α and Σβ. Due to the nonlinearity
in the system, these distributions cannot be marginalized out directly. Hence we have to
use latent variables or a Metropolis-Hastings step in our algorithm.

The likelihood for the parameters Θ = (ᾱ, β̄, σ2
α,Σβ, γ) from the full panel is:10

L(s, p|Θ) =
T∏

t=1

p(log(st)|pt,Θ)p(pt|Θ). (14)

To compute the likelihood we introduce vectors of latent parameters α = (α1, . . . , αT )
and β = (β1, . . . , βT ) where αt ∼ N (ᾱ, σ2

α)Iαt>0 and βt ∼ N (β̄,Σβ). This allows us to
write the likelihood defined by (14) above as the marginal:

L(s, p|Θ) =
∫

αt,βt

T∏
t=1

p(log(st)|αt, βt, pt)p(pt|αt, βt)p(αt, βt|Θ)dαtdβt.

Bayes rule allows us to write the posterior p(Θ|s, p) as a marginal from the joint pos-
terior p(Θ, α, β|s, p). Hence we need only create a Markov chain that provides samples

from the joint distribution {Θ(g)}G
g=1. We now describe how to draw from the posterior

conditional distributions to obtain draws from the joint posterior distribution. We divide
the procedure into steps by the blocks described in the previous section.

1. Simulate from α|Θ, s, p. As the αt’s are conditionally independent we can do this
component-by-component and generate αt|Θ, st, pt using a Metropolis algorithm.
For notational simplicity let π(αt) = p(αt|Θ, st, pt). Now:

π(αt) ∝ p(log(st)|β̄,Σβ, αt, pt)p(pt|γ, αt)p(αt|ᾱ, σ2
α)

10We make a simplifying assumption here: p∗(Θ) = p(pt|Θ)/p(pt|log(st),Θ) ∝ 1. Specifically, we only
have to assume that p∗(α) is flat in the region where the data is most informative about α as in the
principle of stable estimation (Edwards, Lindman and Savage, 1963). We can then proceed as if the
distribution p∗(α) is diffuse and close to uniform. We then have: p(log(st), pt|Θ) = p(log(st)|pt)p(pt|Θ).
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and p(αt|ᾱ, σ2
α) ∼ N (ᾱ, σ2

α)Iα∈A where A = {αt:αt > max(ψt)} where ψt is defined
below. Due to the normality and linearity in αt of the demand side equation we
have that p(log(st)|β̄,Σβ, αt, pt) ∝ N (aD, AD) where:

AD = (zt log(yt − pt))
′ (ΣD)−1 (zt log(yt − pt))

aD = A−1
D [(zt log(yt − pt))

′ (ΣD)−1 (zt log(st)− ztxtβ̄)].

The supply side does not simplify due to the nonlinearity in α. For the Metropo-
lis blanket we use an expansion of log(At) and use the approximation log(At) ≈
log(pt)+α−1

t ψt where ψt = Λt(st)(yt−pt)/pt with element-by-element division. For
the supply-side we have that p(log(pt)|γ, αt) ∝ N (aS, AS) where:

ĀS = (vtψt)
′(ΣS)−1(vtψt)

aS = [Ā−1
S [(vtψt)

′(ΣS)−1(vtwtγ − vt log(pt))]]
−1

AS = ĀSa
−4
S .

We combine this with the demand-side normal and prior to find a Metropolis blan-
ket Q(αt) for generating the new αt. Note that we attempt to make our blanket
approximate the posterior distribution as closely as possible so that candidate draws
are concentrated in the mass of the distribution thereby increasing the acceptance
rate and speed of convergence. Then, the Metropolis acceptance probability is used
to correct the approximation so we finally have a draw from the correct equilibrium
distribution. Hence our Metropolis blanket Q(αt) combines these three normal dis-
tributions and is given by Q(αt) ∼ N (a3, A3) where:

A3 = AS + AD + σ2
α

a3 = A−1
3 (ADaD + ASaS + σ2

αᾱ).

If the current value of αt in our algorithm is given by α
(g)
t and the next candidate

draw is given by α
(g+1)
t drawn from Q(α

(g+1)
t ) then we accept this new draw with

probability given by:

min

π(α
(g+1)
t )/Q(α

(g+1)
t )

π(α
(g)
t )/Q(α

(g)
t )


where π(αt) is defined above.

2. Simulate from the conditional posteriors ᾱ|α, σ2
α, s, p and σ2

α|α, ᾱ, s, p. Standard
conjugate theory (see DeGroot, 1970) implies:

ᾱ|α, σ2
α, s, p ∼ N (a1, A

−1
1 )

where
A1 = Tσ2

α + A0
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a1 = A−1
1

(
σ2

α

T∑
t=1

αt + A0a0

)
and

σ2
α|α, ᾱ, s, p ∼ Ga

(
T

2
+ a2, (A

−1
2 +

1

2

T∑
t=1

(αt − ᾱ)2)−1

)
where Ga denotes a Gamma distribution.

3. Simulate the latent variables β|β̄,Σβ, α, s, p. As the elements of the vector β are
conditionally independent we can generate them component-by-component. The
conditional posterior of βt is given by:

βt|β̄,Σβ, α, s, p ∼ N (b3, B
−1
3 )

where
B3 = (ztxt)

′ΣD(ztxt)

b̂3 = B−1
3 (ztxt)

′B−1
3

(
zt log(st)− αtzt log(yt − pt − ztxtβ̄)

)
and

b3 = (B3 + Σβ)−1
(
B3b̂3 + Σββ̄

)
.

4. Simulate from the conditional posteriors β̄|Σβ, α, s, p and Σβ|β̄, β, α, s, p. From
standard conjugate theory:

β̄|Σβ, α, s, p ∼ N (b1, B
−1
1 )

where
B1 = (zx)′R−1

β (zx) +B0

b1 = B−1
1

(
(zx)′R−1

β (z log(S)− αz log(Y − P )) +B0b0
)

and

Rβ = σ2
ξdiag[z1z

′
1, . . . , zT z

′
T ] + diag[(z1x1)Σ

−1
β (z1x1)

′, ..., (zTxT )Σβ(zTxT )′]

zx =

 z1x1

. . .
zTxT

 , z log(Y − P ) =

 z1 log(yi1 − p1)
. . .

zT log(yT − pT )

 , z log(S) =

 z1 log(s1)
. . .

zT log(sT )

 .
We restrict the taste parameters to be uncorrelated but allow for heteroskedasticity.
The posterior conditional distribution of Σβ is therefore given by:

σ2
β,k|β, β̄ ∼ Ga

(
T

2
+ b2,k, B

−1
2,k +

1

2

T∑
t=1

(βt,k − β̄k)
2

)

where σ2
β,k is the (k, k) component of Σβ, b2,k is the kth component of the prior

mean, B2,k is the (k, k) component of the prior variance, βt,k is the kth component
of the latent variable and β̄k is the kth element of β̄.
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5. Simulate γ|α, s, p. The posterior conditional distribution follows from standard
conjugate theory:

γ|α, s, p ∼ N (g,G)

where
G = (vw)′R′

γ(vw) +G0 and g = G−1[(vw)′R′
γv log(A) +G0g0]

with
Rγ = σ2

ηdiag (v1v
′
1, . . . , vTv

′
T )

and

vw =

 v1w1

. . .
vTwT

 , v log(A) =

 v1 log(A1)
. . .

vT log(AT )

 .

These five conditional distributions specify our algorithm.

Given initial starting values for the parameters, we iterate through these steps and
produce a sequence of G draws after discarding a burn-in period to reduce the dependence
on the initial starting values. There are a number of convergence issues. First, a natural
candidate for the initial starting point is just a logit regression for the demand side and
a supply side regression given the α estimated from the logit regression. Of course these
estimates are incorrect but they serve as a reasonable starting point. Mengersen and
Robert (1998) provide a review of the general methodologies for assessing convergence
from the MCMC output. From a theoretical perspective, as steps 2-5 are Gibbs draws for
a random effects hierarchical model our algorithm inherits the fast convergence properties
of these models (see Polson (1996)). Since α appears in both the demand and supply
equations in a nonlinear fashion, convergence is more difficult to assess. Only general
results on Metropolis convergence apply (see Roberts and Smith (1993)) and from a
practical viewpoint it is sensible to check that the acceptance probability for αt is at
least 10− 20%. This maintains a proper trade-off between a tighter variance on σ2

ξ and
σ2

η required for accurate estimation and the speed of convergence of the αt draws.

4.3 Taste Distributions, Parameter Estimates and Elasticities

One of the main advantages of our methodology is that it estimates the distri-
bution of tastes in the market (not just the parameters of a fixed distribution) and also
provides parameter and elasticity estimates with little effort. Our model assumes that
the distribution of consumer tastes is a mixture of normals of the form:

p(β) =
∫
N (β̄,Σβ)p(β̄,Σβ)dβ̄dΣβ

The hyperparameters (β̄,Σβ) are learned from the data via Bayes rule and we obtain
a posterior distribution p(β̄,Σβ|s, p) for them. Our MCMC algorithm provides draws
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{β̄(g), (Σβ)(g)}G
g=1 from this posterior distribution. These draws allow us to estimate the

distribution of tastes given the data by:

p(β|s, p) =
∫
N (β̄,Σβ)p(β̄,Σβ|s, p)dβ̄dΣβ

which has density estimate:

p̂(β̄|s, p) ≈ 1

G

G∑
g=1

N
(
β̄(g), (Σβ)(g)

)
.

Since γ has no variance, we compute the marginal posterior distribution p(γ|s, p) and
use the posterior mean to provide an estimate, namely γ̂ ≈ 1

G

∑G
g=1 γ

(g).

Finally, we turn to the problem of computing elasticities from the simulation
output. One of the key features of our MCMC approach is that the posterior distribution
of any nonlinear function like an elasticity can be calculated directly from the simulated
draws of our algorithm and Monte Carlo standard errors for these estimates can be
computed easily. We illustrate this in the context of elasticities although it applies to
any nonlinear function, such as willingness to pay. The own-price elasticity is obtained
by integrating over the distribution of consumer tastes (see Nevo (2000)):

∂ log(sjt)

∂ log(pjt)
=
pjt

sjt

∫
α
sjt(Θ) (sjt(Θ)− 1)

yt − pjt

p(Θ)dΘ (15)

where p(Θ) denotes the probability density function for the parameters. A similar com-
putation for the cross-price elasticity leads to:

∂ log(sjt)

∂ log(prt)
=
prt

sjt

∫
α
srt(Θ)sjt(Θ)

yt − prt

p(Θ)dΘ

In order to determine the own-price elasticities we use the following MCMC estimator:

pjt

sjt

1

G

G∑
g=1

α(g)
sjt(Θ

(g))
(
sjt(Θ

(g))− 1)
)

yt − pjt

where (Θ(g)) are our MCMC draws. Suppose that:
∫
αpt(α|st, pt)dα < ∞. Then using

the ergodic averaging result of Tierney (1994) it is straightforward to show that this
estimator converges to the desired elasticities for almost all starting points of the chain.
We now apply our methodology to a simulated data example.

5 Estimation Results

5.1. Simulated Data
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In this section we examine the performance of our algorithm on a simulated data
set. We generate the data based on the underlying assumptions of consumer behavior
and firm profit maximization. Specifically, consumers choose the product offering the
greatest utility and firms choose prices in a Bertrand-Nash equilibrium. This procedure
eliminates the possibility that we are “reverse-engineering” our data to work with our
algorithm. The simulation incorporates product-specific effects in both the consumers’
utility function and in the marginal cost function. These are observed by consumers
and firms but are unobserved characteristics from the econometrician’s perspective. This
introduces a simultaneity bias if the equations are estimated singly without instruments.

We simulate one-hundred market equilibria based upon consumers facing the
choice of two products plus an outside alternative. Products are characterized by three
characteristics, x2, x3 and the quality measure ξ. There are four cost components, w1,
w2, w3 and η. To generate market observations, we draw one-hundred observations for
each characteristic for each firm. Table 1 summarizes the characteristics and cost factors
for each product.

Table 1: Summary Statistics for Demand and Cost Characteristics

Characteristic Value Characteristic Value
w1,1 -0.945

(0.0902)
x2,1 2.6135 w2,1 0.8654

(0.3855) (0.1001)
x3,1 2.3212 w3,1 0.6479

(0.3922) (0.0772)
w1,2 -0.9833

(0.0979)
x2,2 2.0982 w2,2 0.5162

(0.4287) (0.1138)
x3,2 1.4026 w3,2 0.4077

(0.3827) (0.1055)
ξ1 -0.0206 η1 -0.0018

(0.5453) (0.0285)
ξ2 -0.0537 η2 -0.0003

(0.4963) (0.0269)

In each period, consumers maximize

uij = α log(2− pj) + x2jβ2 + x3jβ3 + ξj + εij

where β2 ∼ N (1.8, 0.4), β3 ∼ N (2.5, 0.6), and α ∼ N (8, 0.25). The price and all charac-
teristics of the outside good are normalized to zero. Our set of consumers is generated
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with 10,000 draws from the consumer specific, extreme value errors and from the nor-
mally distributed taste parameters. We then construct a grid of prices for firm A (the
rows) and firm B (the columns) that range from zero to the level of income. For each
pair of prices, or cell of the grid, we calculate which of the two goods or the outside good
provides the highest utility for each consumer. The shares associated with a set of prices
for a given time period are then the proportion of the total number of consumers who
choose a product. We construct a grid of prices and shares for each period.

Firms maximize profits in Bertrand-Nash competition, with marginal costs spec-
ified by:

mcj = exp(1w1j + 0.7w2j + 1.2w3j + ηj).

To find the equilibrium price and shares, we combine the cost information with the share
information to calculate the profits of each product for any cell in the grid. We then
solve for the Nash equilibrium in prices by finding the cell in the grid in which firm B’s
choice over columns and firm A’s choice over rows coincides (or where this is closest).
In order to save computing time, the program solves a coarser grid first and then moves
to increasingly finer grids. We stop computing at a grid size of 0.01. This procedure
is repeated to find the equilibrium shares and prices for each of the one-hundred time
periods. Table 2 reports the mean prices and market shares across time periods of the
two products in the simulated data.

Table 2: Summary Statistics for Equilibrium Prices and Shares

Mean St.Dev
p1t 1.614 0.0993
p2t 1.165 0.0930
s1t 0.0782 0.1087
s2t 0.489 0.1715

Since the grid used for finding equilibrium prices has a fineness of 0.01, they have
an average simulation error equal to the standard deviation of a U(0, 0.01) distribution
or 0.00288. This is the added “error,” σ2

η. Since we use an income of 2 and the average
price of the products is about 1.3895, log-shares will have an average simulation error of
approximately 0.0377 based on a first-order Taylor-series approximation of log(st). This
is the added “error,” σ2

ξ .

For estimation, we use the cost characteristics as instruments for the demand
equation and the demand characteristics as instruments for the supply relationship. We
normalize the product shares by the share of the outside good (i.e. compute the demand
intercept) as the estimation routine expects it so that β1 ∼ N (−6.4646, 0.4269). We use
the results from a standard instrumented logit regression as starting values for our MCMC
algorithm on the demand-side. On the supply-side we use an instrumented regression

21



after substituting the α obtained from the demand-side. For our MCMC estimation, we
simulate 5, 000 draws after running our algorithm for a burn-in period of 5, 000 draws.
Table 3 presents the estimation results from both methods as well as the true parameter
values.

Table 3: Estimation Results

True Logit MCMC
Parameter Values Results Results
β1 -6.4646 5.8893 6.7943

(0.727) (0.122)
β2 1.800 1.524 1.786

(0.680) (0.092)
β3 2.500 2.117 2.662

(0.733) (0.097)
α 8.000 6.56 7.733

(1.08) (0.107)
γ1 1.000 0.978 0.867

(0.425) (0.050)
γ2 0.700 0.750 0.684

(0.625) (0.081)
γ3 1.200 1.096 1.026

(0.893) (0.113)
σ2

β1
0.4269 N/A 0.303

(0.030)
σ2

β2
0.400 N/A 0.426

(0.056)
σ2

β3
0.600 N/A 0.418

(0.062)
σ2

α 0.250 N/A 0.200
(0.014)

σ2
ξ 0.00288 N/A 0.000106

(0.0000239)
σ2

η 0.03774 N/A 0.0334
(0.00640)

Our MCMC estimates are generally closer to the true parameters and more pre-
cisely estimated than the logit estimates, with the exception of two of the cost parameters.
The MCMC estimates are within two standard deviations of the true parameters with the
exception of α which is within 2.5 standard deviations, γ1 which is within 2.66, β1 which
is within 2.7, σ2

β1
which is within 4.1 and σ2

β3
which is within 2.9. Note that the accuracy

of our results depend on how good our instruments are. The instruments are effective
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to the extent that they are uncorrelated with the unobserved product-specific error we
are instrumenting and correlated with the endogenous variables. For the demand-side
instruments, z1 has a correlation of 0.0026 with ξj and -0.744 with log(y − p) and for z2

the correlations are -0.0122 and -0.493. For the supply-side instruments, v1 has a corre-
lation of -0.069 with ηj and -0.177 with log(s) and for v2 the correlations are 0.0597 and
-0.458. Since these are far from perfect instruments and there is simulation error in our
created data, we do not expect our results to match exactly. Note that the supply-side
instruments are not nearly as good as the demand-side instruments which accounts for
the lower performance in estimating the supply-side parameters.

Tables 4 and 5 provide further information for comparison. Table 4 presents
predicted and actual prices and shares based on period one values of the demand and
cost characteristics. As with our parameter estimates, they are generally quite close
to the true values. Table 5 displays the true elasticities based upon our simulations as
well as the implied own and cross price elasticities from the logit estimation and MCMC
estimation. The MCMC estimates are quite close to the true values.

Table 4: Period One Predicted Values (Medians)

Predicted True
p11 1.610 1.694

(0.0946)
p21 1.168 1.264

(0.0824)
s11 0.0751 0.0023

(0.0619)
s21 0.228 0.624

(.0513)

Table 5: Period One Elasticities (Medians)

True Logit MCMC
Value Estimate Estimate

∂ log(s11)
∂ log(p11) -19.312 -36.183 -19.487
∂ log(s21)
∂ log(p21) -3.944 -4.238 -2.706
∂ log(s11)
∂ log(p21) 0.0231 7.027 0.0155
∂ log(s21)
∂ log(p11) 1.9501 0.0834 1.307
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The model can easily be extended to incorporate demographic data as used in
many current applications of random coefficient demand systems. To do this, we would
consider a model of the form:

uijt = x′jtβ + α log(yt − pjt) + ξjt + εijt

β = β̄ + πdlt + v

where v ∼ NK(0,Σβ) ξjt ∼ N
(
ξ0t, σ

2
ξt

)
and α ∼ N (ᾱ, σ2

α)Iα>0. Here βi is the marginal

utility obtained by sample demographic consumer i from the demand characteristics, β̄
is the mean marginal utility across all consumers, dit is an R × 1 vector of demographic
characteristics for sample demographic consumer i in period t and π is a K × R matrix
of parameters measuring the contribution of each demographic characteristic to marginal
utility. As before, the error term v represents the heterogeneity across all consumers in
their taste for the characteristics.

Substituting into the utility function and letting qjt denote all interactions between
the K demand characteristics and the R demographic characteristics we obtain

uijt = x′jtβ + qjtπ + α log(yt − pjt) + ξjt + εijt

where π is an RK × 1 vector created by stacking the transpose of the rows of π. Note
that the analyst can reduce the dimensionality of qjt and therefore π by eliminating
combinations of characteristics and demographics a priori.

Viewing this as a hierarchical model we have:

uijt = x′jtβ + qjtπ + α log(yjt − pjt) + ξjt + εijt

π ∼ NRK(π̄,Σπ) , β ∼ N (β̄,Σβ) , α ∼ N (ᾱ, σ2
α)Iα>0

This model is easy to incorporate into our existing algorithm with the addition of
two Gibbs sampling steps to the algorithm: one to draw the parameters π and another
to draw a set of data from the demographic distribution. With the straightforward
adjustments to the conditional posteriors for β, γ and α to include qjtπ in the demand-
side likelihood, the estimation algorithm proceeds as before and our convergence theorems
apply.

5.2 U.S. Automobile Market Equilibrium Data

We use our methodology to estimate demand and supply equilibrium in a bal-
anced panel of 58 automobile models over the five year period, 1988-1992.11 This sample

11Car manufacturers often sell multiple versions of each car model. Our analysis considers the most
basic four-door version of each car. If the particular model is not sold in a four door version, such as some
sports cars, we instead look at the two door version. We confine our sample to that set of nameplates
for which there are observations in all the years.

24



represents between 77% and 64% of the total market quantity.12 We assume that con-
sumers and producers consider different prices in their respective decisions. Since a car
is a durable, capital good, consumers consider the annual flow cost when making the
purchase decision. Producers, on the other hand, are producing a capital good and are
setting the price of the stock. We also allow the value of the outside alternative to differ
over time. In our application it is obvious why we do this; furthermore, the value of the
alternative good likely differs across time and markets in other applications as well. Even
if we included all car models and light trucks produced over the period, the increased use
of fleet sales and leasing arrangements has altered the market for used cars, an important
alternative good. For other consumer products, one can readily imagine that consumers
in different regional markets may place different value on the outside good.13 Finally, we
allow the marginal utility of income to be a random variable as well.

Our estimation data includes automobile characteristics, list prices, quantities,
factor costs and car loan information to transform the list price into an annual flow cost.
List prices, quantities and characteristics such as air-conditioning, horsepower, weight,
size, and miles per gallon come from Automotive News: Market Data Book.14 For our
demand estimation, we follow existing specifications and include horsepower divided by
weight HP/WT, miles per dollar MPD, air conditioning Air and size (length×width) Size.
To allow for a changing value of the outside good, we include time indicator variables Dt

in our demand side estimation. This results in the following demand-side specification
(before instrumenting):

ln sjt = α ln(yt − pjt) +
T∑

t=1

β0tDt + β1Airjt + β2MPDjt + β3Sizejt + β4HP/WTjt + ψjt + eS
jt

Our pricing equation differs somewhat from other specifications in the recent automobile
literature in that we combine automobile characteristic and factor price information in
our marginal cost specification. Following the past literature, we include Air, log(HP/WT)
and log(Weight). We also include a time trend Trend to pick up technical change during
the period. In addition to model characteristics, we include a cost factor, Cost, which
represents a value-weighted index of the labor costs associated with a particular model.
In particular, we specify:

Costjt = %USContentjtrelwUS,t + (1−%USContentjt) relwF,t

where F indexes the country of origin for non-US based manufacturers, % US Content
is the US value-added as reported in the annual reports of the Foreign Trade Zones

12We use the balanced panel for programming purposes, the estimation programming is more direct
with the balanced panel but can be extended to include unbalanced panels as well. Note also that we
adjust our estimation to account for the fact the value of the outside good changes over time, which
would be the case even if we had an unbalanced panel.

13For example, consider breakfast cereals with the alternatives being toast, muffins or big breakfasts.
You can imagine regional tastes and customs may make some of these more attractive, or alternatively,
the value of cereal versus other breakfast choices may be different in different areas.

14We thank Jim Levinsohn for generously sharing these data with us.
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Board 15 and relw is an index of relative manufacturing wage rates for the US or for
the manufacturer’s country of origin taken from the Bureau of Labor Statistics Monthly
Bulletin. For a given set of characteristics, a change in factor prices will increase or
decrease marginal cost.16 Therefore our marginal cost specification is:

mcjt = Costjt
γ1Trendt

γ2HP/WTjt
γ3Weightjt

γ4 exp (γ0 + γ5Airjt + ηjt) .

Our price measures are based on list prices rather than transaction prices, like
other recent work in this area.17 Our approach differs from these others in that we
specify both a consumer price, PC and a producer price PP . In the case of a capital good
such as a car, a consumer will base the purchase decision on the flow cost of “consuming”
the services from the car. This price measure is also a more appropriate comparison for
our income measure which is the annual income flow. In terms of the purchase price, we
can approximate that flow cost, denoted PC , by calculating the annual loan payments a
buyer would have to make given current automobile loan interest rates, r, loan duration,
n, and list price, PP . We construct this flow cost with loan rate data from the Federal

Reserve Board of Governors as: PC =
(
1− (1 + r)−n

)−1
rPP where r is the relevant loan

rate. An automobile manufacturer, on the other hand, is producing a capital good and
sets a price for the automobile itself. Therefore we use the list price for the producer
price. This difference between producer and consumer prices results in an additional
adjustment to the pricing equation. All price and cost measures are deflated to 1988 real
prices using the consumer price index deflater.

For the full system we also take into consideration a dealer mark-up. The manu-
facturer sells the automobile to the dealer at a wholesale price, PP , who then sells it to
the consumer at a retail price, PR. If dj denotes the dealer mark-up for good j, taking
account of the dealer mark-up we will estimate:

ln
(
(IJ − α−1Λt(st))PR,t + α−1k−1(1 + dj)

−1Λt(st)Yt

)
= Wtγ + ηt + eP

t

where k−1 =
(
1− (1 + r)−n

)
r−1.

We also need to specify instruments for prices and shares, as noted in the previous
sections. As in other specifications, we exploit the panel nature of the data and our
assumptions that the observed characteristics are exogenous. Therefore, functions of
characteristics of other products are instruments for price and share. For model j we use

15US and foreign automobile makers who assemble automobiles in the US do so in a designated
Foreign Trade Zone (FTZ). Operations within a FTZ receive more favorable tariff treatment on imported
intermediate inputs. For additional information on FTZ’s and this cost measure, see Gron and Swenson
(2000).

16We focus on labor costs because labor is the primary input which is location specific.
17While transactions level prices would be preferred, they are typically not available when individual

transactions are not observed. Our list price variable is the same price variable as that used in studies
conducted by Berry, Levinsohn and Pakes (1995), Fershtman and Gandal (1998), Petrin (2002) and
Verboven (1996).
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the characteristics themselves and the counts and sums of the characteristics of two groups
of products as our instruments: other products produced by the same manufacturer and
products produced by all other manufacturers.

The dimensionality of our variance-covariance matrix equals the number of in-
struments and with only five time periods requires that we impose some structure on the
demand and supply covariance matrices. We impose structure by using a shrinkage prior
distribution that shrinks to a heteroskedastic matrix σ2

SZ
′Z for demand and σ2

PV
′V for

supply.18

In our estimation we ran three specifications, in increasing order of generality, to
determine the influence of the model choice on the results. Table 1 presents estimated
demand parameters from these three models. Model I, the Logit Model, corresponds to
a discrete choice demand system with unobserved product characteristics but without
random coefficients. It is estimated using GLS. Since it is based on a logit demand
model, the usual consequences of the IIA assumption follow. The inclusion of unobserved
product characteristics, however, somewhat reduces the dependency on the logit error
term. Model II, the Demand-Only Model, introduces two differences relative to the logit
model. First, the demand coefficients are random allowing for more sensible own- and
cross- price elasticities. Second, it imposes the restriction E(Z ′ψ) = 0 through our prior
specification19. Model III, the Full-System Model, is our random coefficient model with
both demand and supply equations jointly estimated and E(Z ′ψ) = E(V ′η) = 0 . All
models include time dummies to allow the value of the outside good to vary over time.

As Table 6 shows, the parameter estimates are relatively unchanged in moving
from Model I to II. For the random coefficient demand and supply models we report
posterior means and standard deviations as the underlying posteriors for the parame-
ters are nearly normal.20 However, the elasticities generated by the two models differ
dramatically. The own price elasticities from the Demand-Only model are larger in mag-
nitude than those from the Logit model (see Table 7). The cross-price elasticities from
the Demand-Only model are not the same for all models with respect to a given model’s
price, a well-known flaw of the logit (see Table 8). The cross-price elasticities from the
Demand-Only model vary somewhat more reasonably with car pairings.

18In our estimation of the U.S. auto market we set σ2
S = .05 and σ2

P = .07 which are small relative to
the mean log-share of -6.27 and mean price of $14,231. Prior distributions on all other parameters were
set to be highly diffuse.

19This is accomplished by setting the appropriate elements of b0 to zero.
20Our simulation period consisted of 5, 000 iterations after a burn-in period of 5, 000 iterations. As

is typical with MCMC procedures, a number of parameters in the algorithm can influence the mixing
of the Markov Chain. For example, the variance of our candidate distribution will affect the accep-
tance probability of the chain. Too low a probability will lead to poor convergence. We tried different
starting values to check the sensitivity of the algorithm to initial conditions. Consumer prices were
used throughout. The characteristics variables MPD, Size, HP/WT and Weight are normalized by their
standard deviation. The demand equation includes indicator variables by year and the supply equation
includes a time trend. Logit regression uses the average income.
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Table 6: Demand Side Posterior Estimates: Models I, II, III

Model I Logit II Demand-Only III Full-System
Demand Mean S.E. Mean S.E. Mean S.E.

Air 0.353 0.338 0.259 0.328 1.114 0.304
MPD -0.156 0.163 -0.148 0.160 -0.454 0.154
Size 0.743 0.110 0.810 0.101 0.453 0.087

HP/WT -0.136 0.110 -0.108 0.100 -0.183 0.100
ln(y-p) 3.247 1.855 3.660 1.458 13.409 0.270
Const -43.205 17.818 -47.986 13.960 - 140.371 3.066

Table 7: Own-Price Elasticities

Model I II III
Logit Demand Only Full System

Ford Tempo -0.3521 -0.9872 -5.0806
Ford Taurus -0.4763 -0.7313 -3.1579

Toyota Camry -0.4319 -0.2761 -1.0539
Toyota Celica -0.4650 -0.8719 -1.6662

Nissan Maxima -0.7257 -1.4060 -11.7942
Acura Legend -0.9756 -0.9020 -3.8154

Mazda 323 -0.2351 -1.6361 -7.0011
Mercedes-Benz 300D -2.2225 -2.1340 -2.7384

BMW 733/35/40i -3.2696 -7.5206 -10.5790

Comparing Models II and III illustrates the benefits of combining demand and
supply information in a likelihood based analysis. As shown in Table 6, the marginal
utility of income, α, estimated by the Full-System model is greater than that from the
Demand-Only model. In addition, the coefficient on Air moves from being insignifi-
cant to being significant and of the expected sign, while Size remains significant and of
the expected sign. The coefficient on HP/WT remains of the unexpected sign but only
marginally significant. Table 9 provides parameter estimates for the supply equation un-
der the Full-System model. Air is significant and of the expected sign. Cost, log(HP/WT)
and log(Weight) are of the expected sign but are not significant.

The effects on elasticities in moving from Model II to Model III are dramatic.
Table 7 reveals a vast improvement in own-price elasticity estimation from including the
supply-side information. Many own-price elasticities move from being inelastic to elastic
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Table 8: Cross Price Elasticities for Model II Demand-Only

Model Ford Ford Toyota Toyota Nissan Acura Mazda MB BMW
Tempo Taurus Camry Celica Maxima Legend 323 300 733/5i

Ford Tempo -0.9872 0.0304 0.0095 0.0254 0.0556 0.0244 0.0625 0.0651 0.2522
Ford Taurus 0.0327 -0.7313 0.0071 0.0213 0.0371 0.0211 0.0396 0.0453 0.1838

Toyota Camry 0.0102 0.0071 -0.2761 0.0069 0.0129 0.0068 0.0146 0.0158 0.0595
Toyota Celica 0.0071 0.0055 0.0018 -0.8719 0.0115 0.0061 0.0122 0.0136 0.0507

Nissan Maxima 0.0127 0.0079 0.0027 0.0095 -1.4060 0.0083 0.0213 0.0205 0.0694
Acura Legend 0.0022 0.0018 0.0006 0.0020 0.0034 -0.9020 0.0035 0.0045 0.0172

Mazda 323 0.0100 0.0059 0.0022 0.0070 0.0149 0.0062 -1.6361 0.0154 0.0561
Mercedes-Benz 300 0.0012 0.0008 0.0003 0.0009 0.0017 0.0009 0.0018 -2.1340 0.0091
BMW 733/35/40i 0.0014 0.0010 0.0003 0.0010 0.0017 0.0011 0.0020 0.0027 -7.5206

Table 9: Supply Side Posterior Estimates: Model III Full-System

Model III Full-System
Supply Mean S.E.

Air 0.819 0.336
ln(HP/WT) 0.210 0.147

ln(Cost) 0.079 0.120
ln(Weight) 0.074 0.096

Const 5.856 5.450
Trend -0.073 0.039

as we would expect under an assumption of profit-maximizing firms.

The logit elasticities are less elastic than those from the random coefficient full
system. Using the full system estimates, the magnitude of the own-price elasticity of
demand tends to be increasing in the price of the car. Goldberg (1995) reports similar
findings in estimation using transaction level data and buyer characteristics.21 One ex-
planation is that lower priced cars are closer to “necessities” and therefore have lower
elasticity of substitution while higher priced cars behave as luxuries. While we expect
a $1000 change in the price to have less impact on demand for a luxury car, we would
not necessarily expect a higher priced car to have a lower own-price elasticity of demand.
Another explanation is that our result is mainly due to assumptions about the income

21Goldberg (1995) also reports average own-price elasticities by automobile category. These average
elasticities are increasing in price for car classes with the exception of luxury and sports and speciality
models. These classes are dealt with somewhat differently in her estimation.
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distributions. Own-price elasticity is defined as α(s − 1)p/(y − p). For high priced cars
s− 1 ≈ −1 and the different estimates of α affect the level and not the relative position
of elasticities. Hence the dominant term is (y/p− 1)−1 which clearly depends on the
income distributions and not the particular random utility specification.

Table 10 shows a sample of cross-price elasticities for pairings between 9 car mod-
els. While there are exceptions, cross-price elasticities tend to be greater between pairings
of cars which would be expected to act as good substitutes and lower for those which
are more distant substitutes. Cross-price elasticities can be greatly affected by the ran-
dom coefficient specification used. This is due to the fact that a cross-price elasticity is
given by αsp/(y− p) where the shares s will depend on the estimated distribution of the
characteristics β’s and unobservables ψ’s. The numerator is therefore highly dependent
on the estimates of the β’s and ψ’s and can change dramatically across specifications.
Also the distribution of α can change dramatically shifting the elasticities. To compute
elasticities we take into account the conditioning on the set {yt > pt}.22 We adjust for
this and compute the marginal elasticities using

E

(
∂ ln sjt

∂ ln pjt

)
= E

(
∂ ln sjt

∂ ln pjt

|yt > pt

)
P (yt > pt)

Table 10: Cross Price Elasticities for Model III Full-System

Model Ford Ford Toyota Toyota Nissan Acura Mazda MB BMW
Tempo Taurus Camry Celica Maxima Legend 323 300 733/5i

Ford Tempo -5.0806 0.2106 0.0526 0.0769 0.6672 0.1448 0.3594 0.1069 0.4163
Ford Taurus 0.2257 -3.1579 0.0331 0.0437 0.3486 0.1016 0.2301 0.0783 0.2050

Toyota Camry 0.0527 0.0308 -1.0539 0.0121 0.1212 0.0309 0.0574 0.0206 0.0584
Toyota Celica 0.0219 0.0118 0.0033 -1.6662 0.0451 0.0115 0.0262 0.0134 0.0220

Nissan Maxima 0.1287 0.0621 0.0217 0.0325 -11.7942 0.0666 0.1265 0.0388 0.1224
Acura Legend 0.0116 0.0075 0.0022 0.0034 0.0275 -3.8154 0.0149 0.0051 0.0162

Mazda 323 0.0569 0.0322 0.0092 0.0147 0.1063 0.0295 -7.0011 0.0207 0.1059
Mercedes-Benz 300D 0.0019 0.0010 0.0003 0.0005 0.0034 0.0010 0.0020 -2.7384 0.0032

BMW 733/35/40i 0.0010 0.0006 0.0001 0.0002 0.0023 0.0006 0.0012 0.0003 -10.5790

An advantage of our approach is the ability to obtain distributions for the random
coefficients in the model. Our estimation method is not based on moment matching as
it is likelihood based. Therefore, particularly for the full system, we should not expect
the model to match exactly the observed market shares and prices. However, the fit is
rather close in the full system. The mean-squared error of the logarithm of predicted

22The distribution of income yt is taken from a log-normal distribution with mean $24K and small
standard deviation. We directly simulate the probabilities P (yt > pt) conditional on purchase.
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shares is .000204 compared to an average actual log share of .0036 and for log predicted
prices is .105 relative to 9.42. Our likelihood based approach optimally trades-off the
information in the supply and demand systems when estimating the underlying parameter
distributions. We see that the full system matches the observed prices more closely than
it matches the observed market shares. This is one of the main advantages of a likelihood
based method over a moment matching approach.

6 Conclusion

This paper develops MCMC techniques for estimating likelihood based random coeffi-
cient models of market equilibrium. Random coefficient models are increasingly being
used to estimate market demand and joint demand-supply equilibrium in situations with
differentiated goods where individual level data do not exist. MCMC methodologies pro-
vide an attractive framework for these types of problems because of their computational
simplicity, finite-sample properties, and flexibility. Parameter distributions are a direct
result of the estimation process, and MCMC techniques can easily generate functions of
interest based on parameter distributions such as elasticities. The estimation and data
analysis are based on likelihood functions and provide finite sample properties. While
the researcher provides parametric priors for parameter distributions, the influence of
the parametric priors can be controlled by the researcher and the posterior parameter
distributions are empirically determined.

Our framework can be expanded in several directions. We describe how to include
additional demographic information. Unbalanced panels could also be implemented.
Finally, additional information on parameter values from surveys or from other industry
sources, can be easily incorporated into the model as priors which reflect the degree of
confidence the researcher has in the particular information.
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