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1 Introduction

Despite similar market betas, firms with high book-to-market equity (value firms) earn higher

average stock returns than firms with low book-to-market equity (growth firms). This stylized

fact is commonly referred to as the value premium puzzle. In particular, in the U.S. sample from

July 1963 to June 2014, the average return of the high-minus-low book-to-market decile (the value

premium) is 0.51% per month (t = 2.75). However, its market beta is only 0.01 (t = 0.07), giving

rise to an alpha of 0.51% (t = 2.26) in the Capital Asset Pricing Model (CAPM). However, this

evidence is specific to the post-1963 sample, and the CAPM captures the value premium in the long

sample (Ang and Chen 2007). From July 1926 to June 2014, the value premium is on average 0.52%

per month (t = 2.60), its CAPM alpha is 0.23% (t = 1.18), and its market beta is 0.45 (t = 3.52).

We ask whether incorporating rare disasters helps explain the value premium puzzle. To this

end, we embed disasters into a standard investment-based asset pricing model. The resulting model

features three key ingredients, including rare but severe declines in aggregate consumption and pro-

ductivity growth, asymmetric adjustment costs, and recursive preferences. We calibrate the model

parameters to match the disaster moments estimated from a historical, cross-country panel dataset

(Nakamura, Steinsson, Barro and Ursua 2013). We quantify the model’s properties on simulated

samples in which disasters are not realized, as well as on samples in which disasters are realized.

We report two new insights. First, the investment model with disasters succeeds in explaining

the failure of the CAPM in capturing the value premium in finite samples in which disasters are

not materialized, as well as its relative success in samples in which disasters are materialized. Intu-

itively, with asymmetric adjustment costs, when a disaster hits, value firms are burdened with more

unproductive capital, and find it more difficult to reduce capital than growth firms. As such, value

firms are more exposed to the disaster risk than growth firms. Combined with higher marginal

utilities of the representative household in disasters, the model implies a sizeable value premium.

More important, the disaster risk induces strong nonlinearity in the pricing kernel, making the
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linear CAPM a poor empirical proxy for the pricing kernel. When disasters are not realized in a

finite sample, estimated market betas only measure the weak covariation of the value-minus-growth

returns with market excess returns during normal times. However, the value premium is primarily

driven by the higher exposures of value stocks to disasters than growth stocks. Consequently, the

CAPM fails to explain the value premium in normal times. In contrast, when disasters are real-

ized, the estimated market betas provide an adequate account for the large covariation between

the value-minus-growth returns and the pricing kernel. As such, the CAPM captures the value

premium in finite samples with disasters. In all, disasters explain the value premium puzzle.

Second, the investment model with disasters is also consistent with the beta anomaly that the

empirical relation between market betas and average returns is too flat to be consistent with the

CAPM. We confirm this flat relation in both the post-1963 sample and the long sample. More impor-

tant, we show that the investment model explains the beta “anomaly.” In simulated samples both

with and without disasters, sorting on pre-ranking market betas yields average return spreads that

are small and insignificant, post-ranking beta spreads that are economically large and significantly

positive, and CAPM alpha spreads that are economically large and often significantly negative.

The crux is that estimated market betas are a poor proxy for true betas. Intuitively, based

on prior 60-month rolling windows, pre-ranking betas are average betas over the prior five years.

In contrast, true betas accurately reflect changes in aggregate and firm-specific conditions. In

simulations, true betas often mean-revert within a given rolling window, giving rise to negative cor-

relations with rolling betas, especially in samples without disasters. However, while the realizations

of disasters make rolling betas more aligned with true betas, the beta anomaly persists even in the

disaster samples, a testimony to the importance of beta measurement errors in asset pricing tests.

Early investment studies explain the value premium within models with only one aggregate

shock. Zhang (2005) shows that asymmetric adjustment costs cause assets in place harder to reduce,

and therefore riskier than growth options, especially in bad times. Cooper (2006) accounts for the
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value premium within a real options model with nonconvex adjustment costs and investment irre-

versibility. Tuzel (2010) constructs a two-capital model with real estate and other capital, and shows

that firms with higher real estate are riskier because real estate depreciates more slowly.1 Alas, a

limitation of these models is that the CAPM roughly holds in that the CAPM alpha of the value-

minus-growth decile is too small relative to that in the post-1963 sample. Several recent studies try

to break the tight link between the pricing kernel and the market portfolio by introducing multiple

aggregate shocks. Although successful in explaining the failure of the CAPM in the post-1963 sam-

ple, these models seem at odds with the long-sample evidence. We contribute to the investment

literature by failing the CAPM via disaster-induced nonlinearity within a single-shock structure.

We also contribute to the disaster literature, which relies on disasters to explain the equity pre-

mium puzzle, so far mostly in endowment economies.2 An important exception is Gourio (2012),

who embeds disasters into a production economy to jointly explain the equity premium and busi-

ness cycles. We differ by studying the impact of disasters on the cross section of expected returns.

In particular, we integrate the disaster literature with investment-based asset pricing, and show

how incorporating disasters enables the investment model to explain the failure of the CAPM.

Finally, we emphasize that beta measurement errors have a long history in empirical finance.

For instance, Miller and Scholes (1972) simulate random returns from the CAPM, and find that

test results on simulated data are consistent with those from the real data.3 We add to this body of

evidence by quantifying the importance of measurement errors in the context of the beta anomaly.

The rest of the paper is organized as follows. Section 2 presents the stylized facts. Section 3

1Jones and Tuzel (2013) show that a similar two-capital model also explains the inventory-return relation.
2Barro (2006, 2009) revives the idea of Rietz (1988), by calibrating the disaster model to a long, cross-country

panel dataset. Gabaix (2012) uses time-varying exposures of cash flow to disasters, and Wachter (2013) uses
time-varying disaster probability to explain time-varying risk premiums. In an endowment economy with multiple
assets, Martin (2013) shows that return correlations arise endogenously and spike at times of disaster.

3Miller and Scholes (1972) conclude: “We have shown that much of the seeming conflict between [the empirical]
results and the almost exactly contrary predictions of the underlying economic theory may simply be artifacts of the
testing procedures used. The variable that measures the systematic covariance risk of a particular share is obtained
from a first-pass regression of the individual company returns on a market index. Hence it can be regarded at best as
an approximation to the perceived systematic risk, subject to the margin of error inevitable in any sampling process,
if to nothing else. The presence of such errors of approximation will inevitably weaken the apparent association
between mean returns and measured systematic risk in the critical second-pass tests.”

3



constructs the model. Section 4 reports the quantitative results. Finally, Section 5 concludes.

2 Stylized Facts

Section 2.1 presents the evidence on the CAPM performance, and Section 2.2 on the beta anomaly.

2.1 The CAPM Performance

Table 1 reports the monthly CAPM regressions for the ten book-to-market deciles and the value-

minus-growth decile in the U.S. data. The monthly returns data for the deciles, the value-weighted

market portfolio, and the one-month Treasury bill rate are from Kenneth French’s data library.

Panel A shows that the CAPM fails to explain the value premium in the sample after July

1963, consistent with Fama and French (1992, 1993). Moving from the growth decile to the value

decile, the average excess return rises from 0.42% per month to 0.93%, and the average return

spread (the value premium) is 0.51% (t = 2.75). Despite the nearly monotonic relation between

book-to-market and average excess returns, the market beta is largely flat across the deciles. The

value-minus-growth decile has only a tiny market beta of 0.01 (t = 0.07). Accordingly, its CAPM

alpha is 0.51% (t = 2.26), which is identical in magnitude to the average value premium.

However, Panel B shows that the CAPM captures the value premium in the long sample from

July 1926 to June 2014, consistent with Ang and Chen (2007). The average excess returns vary from

0.57% per month for the growth decile to 1.09% for the value decile. The value premium is on av-

erage 0.52% (t = 2.60), which is close to that in the post-1963 sample. More important, the CAPM

captures the average value premium, with an insignificant alpha of 0.23% (t = 1.18) and a significant

market beta of 0.45 (t = 3.52). From Panel C, the CAPM also performs well from July 1926 to June

1963. The average value premium is still 0.52% per month, albeit insignificant (t = 1.31). The mar-

ket beta is large, 0.74 (t = 5.33). As such, the CAPM alpha becomes negative, −0.11% (t = −0.34).

To shed light on the differences across the post-1963 sample and the long sample, Table 2 re-

ports large market swings with market excess returns below 1.5 and above 98.5 percentiles of the
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empirical distribution, as well as the corresponding months and the value-minus-growth returns.

There are in total 32 such observations, 24 of which are from the Great Depression. When market

excess returns are low, the value-minus-growth returns tend to be low, and when market excess

returns are high, the value-minus-growth returns tend to be high. Their correlation is 0.73 across

these observations. In particular, the lowest value premium is −22.67% in March 1938, which

comes with an abysmally low market excess return of −23.80%. The highest value premium is

69.99% in August 1932, which comes with an exuberantly high market excess return of 36.41%.

More recently, following the bankruptcy of Lehman Brothers, the market excess return is −17.23%

in October 2008, in which the value-minus-growth return is −11.93%.

Figure 1 presents the scatter plots and fitted market regression lines for the value-minus-growth

returns for the long sample (Panel A) and the post-1963 sample (Panel B). In Panel A, we highlight

in red the observations with monthly market excess returns below 1.5 and above 98.5 percentiles

of the empirical distribution. These observations clearly contribute to the market beta of 0.45

(t = 3.52) for the value-minus-growth decile in the long sample. In contrast, Panel B shows that

large swings in the stock market are scarce in the post-1963 sample, giving rise to a flat regression

line. In all, the CAPM does a good job in explaining the value premium in the long sample that

includes the Great Depression, but that the CAPM fails in the short post-1963 sample.

While large swings in the stock market have a large impact on the performance of the CAPM,

its relative success in the long sample is robust to extreme observations. Table 3 evaluates the ro-

bustness of the long-term performance of the CAPM to extreme observations. From Panel A, even

after we remove the observations with extreme 3% of market excess returns, the CAPM continues

to do well with an alpha of 0.17% per month (t = 0.81) and a market beta of 0.20 (t = 2.54) for

the value-minus-growth decile. However, its average return, 0.30%, is only marginally significant.

Removing extreme 10% observations of market excess returns, we obtain an average value premium

of 0.43% (t = 2.72), an insignificant alpha of 0.28%, and a significant beta of 0.20.4

4Somewhat surprisingly, only after we remove 50% of market excess returns, do we observe a significant alpha
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2.2 The Beta Anomaly

Fama and French (2006) refute the Ang and Chen (2007) evidence that the CAPM captures the

value premium in the long sample, and argue that the CAPM’s problem is that cross-sectional

variation in the market beta goes unrewarded. This flat relation between market betas and average

returns, known as the beta anomaly, has a long tradition in empirical finance (Fama and MacBeth

(1973); Fama and French (1992, 1993); Frazzini and Pedersen 2014). Table 4 presents the evidence.

At the end of June of each year t, we sort all stocks into deciles based on the NYSE breakpoints

of pre-ranking betas, which are estimated from rolling-window regressions of firm-level excess re-

turns on the market excess returns in the prior 60 months (24 months minimum). We calculate

value-weighted decile returns, and the deciles are rebalanced in June. Table 4 reports the average

returns and the CAPM regressions for the market beta deciles. The sample starts in July 1928

because we use the data from the first two years to estimate the pre-ranking betas in June of 1928.

Panel A shows that, contradicting the CAPM, the relation between market betas and average

returns in the post-1963 sample is largely flat. Moving from the low to high beta decile, the aver-

age excess return rises from 0.51% per month to 0.63%, and the spread of only 0.12% is within 0.5

standard errors from zero. More important, the pre-ranking beta sorts yield a large spread in the

post-ranking beta, 1.04 (t = 11.41), across the extreme deciles. As a result, the CAPM alpha for

the high-minus-low decile is large and negative, −0.40%, albeit insignificant (t = −1.48).

Panel B reports the evidence from the long sample. The average excess return rises from 0.57%

per month for the low beta decile to only 0.81% for the high beta decile. The average return spread

of 0.24% is within one standard error from zero. More important, the post-ranking beta moves

from 0.57 to 1.70, and the spread of 1.12 is more than 18 standard errors from zero. As a result,

the CAPM alpha for the high-minus-low beta decile is significantly negative, −0.47% (t = −2.40).

of 0.56% per month (t = 2.18) for the value-minus-growth decile. The average return is 0.63% (t = 3.33), and
the market beta is 0.07 (t = 0.53). As such, the CAPM performs well in the long sample, and the risk related to
the Great Depression is priced in the value-minus-growth decile, even after the extreme observations are removed
(perhaps because of investor expectations of the disaster risk).
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Panel C reports largely similar evidence for the pre-1963 sample. The average return for the high-

minus-low beta decile is 0.40% (t = 0.88), and its post-ranking beta is 1.18 (t = 16.04). The CAPM

alpha is large, −0.56%, albeit only marginally significant (t = −1.94).

3 An Investment Model with Disasters

We construct our model by combining elements from the investment model of Zhang (2005) and

Cooper (2006) and the disaster model of Rietz (1988) and Barro (2006, 2009).

3.1 Environment

The economy consists of a representative agent with the Epstein-Zin (1989) utility and heteroge-

nous firms. The firms take the representative agent’s intertemporal rate of substitution as given

when determining their optimal policies. The production technology is subject to both aggregate

and firm-specific shocks. The aggregate shock contains a disaster state as well as a recovery state.

3.1.1 The Pricing Kernel

The representative agent has the recursive utility, Ut, defined over aggregate consumption, Ct:

Ut =

[
(1− ι)C

1− 1
ψ

t + ι
(
Et

[
U1−γ
t+1

]) 1−1/ψ
1−γ

] 1
1−1/ψ

, (1)

in which ι is the time discount factor, ψ is the intertemporal elasticity of substitution, and γ is the

relative risk aversion. The pricing kernel is given by:

Mt+1 = ι

(
Ct+1

Ct

)− 1
ψ

 U1−γ
t+1

Et

[
U1−γ
t+1

]


1/ψ−γ
1−γ

. (2)

3.1.2 Consumption Dynamics

The log consumption growth, denoted gct ≡ log(Ct/Ct−1) is specified as:

gct = g + gt, (3)
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in which gt follows a first-order autoregressive process per Mehra and Prescott (1985). Specifically,

gt+1 = ρggt + σgεt+1, (4)

in which εt+1 is a standard normal shock, and the unconditional mean of gt is zero.

After calibrating the parameter values of ρg (0.6) and σg (0.0025) to the consumption growth

data in normal times (Section 4.1), we use the Rouwenhorst (1995) procedure to discretize gt into a

grid with five values {g1, g2, g3, g4, g5}. A low value of 0.6 for ρg means that the five-point grid pro-

vides an accurate approximation for the continuous process in equation (4) (Tauchen and Hussey

1991; Kopecky and Suen 2010). The discretization also produces a transition matrix, P?, given by:

P? =


p11 p12 . . . p15

p21 p22 . . . p25
...

...
. . .

...

p51 p52 . . . p55

 , (5)

in which pij , for i, j = 1, . . . , 5, is the probability of gt+1 = gj conditional on gt = gi.

To incorporate disaster risk into the model, we modify directly the discretized gt grid and its

transition matrix, following Danthine and Donaldson (1999). In particular, we insert into the gt

grid a disaster state, g0 = λD, in which λD < 0 is the disaster size, as well as a recovery state,

g6 = λR, in which λR > 0 is the recovery size. Accordingly, we form the transition matrix, P , by

modifying P? to incorporate the disaster and recovery states as follows:

P =



θ 0 0 . . . 0 1− θ
η p11 − η p12 . . . p15 0

η p21 p22 − η . . . p25 0
...

...
...

. . .
...

...

η p51 p52 . . . p55 − η 0

0 (1− ν)/5 (1− ν)/5 . . . (1− ν)/5 ν


. (6)

In the modified transition matrix, η is the probability of entering the disaster state from any of

the normal states, and θ is the probability of remaining in the disaster state next period conditional
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on the economy being in the disaster state in the current period. As such, θ is the persistence of

the disaster state. Similarly, ν is the persistence of the recovery state. In addition, in constructing

the transition matrix, we have implicitly assumed that the economy can only enter the recovery

state following a disaster. Once in the recovery state, the economy can enter any of the normal

states with an equal probability, (1−ν)/5, but cannot fall immediately back into the disaster state.

Finally, we emphasize that our model retains only one aggregate state, gt, in the economy.

3.1.3 Production

Firms produce output with capital, and are subject to both aggregate and firm-specific shocks.

Operating profits, Πit ≡ Π(Kit, Zit, Xt), for firm i are given by:

Πit = (XtZit)
1−ξKξ

it − fKit, (7)

in which ξ > 0 is the curvature parameter, Xt is the aggregate productivity, Zit is the firm-specific

productivity, and Kit is capital. The fixed costs of production are fKit, with f > 0, and are scaled

by capital to ensure that these costs do not become trivially small along the balanced growth path.

The aggregate productivity growth, gxt ≡ log(Xt/Xt−1), is linked to the consumption growth:

gxt = g + φgt, (8)

in which φ > 0. The firm-specific productivity for firm i, Zit, has a transition function given by:

zit+1 = (1− ρz)z + ρzzit + σzeit+1, (9)

in which zit ≡ logZit, z is the unconditional mean of zit common to all firms, and eit+1 is an

independently and identically distributed standard normal shock. We assume that eit+1 and ejt+1

are uncorrelated for any i 6= j, and εt+1 and eit+1 are uncorrelated for all i.

Our modeling of disasters as large drops in consumption, output, and total factor productiv-

ity is motivated by Barro (2006), Barro and Ursua (2008), and Nakamura, Steinsson, Barro and
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Ursua (2013), who document direct evidence on consumption and output disasters in a historical,

cross-country panel. Cole and Ohanian (1999, 2007) show that negative shocks to total factor pro-

ductivity can account for over half of the 1929–1933 downturn in the Great Depression in the United

States. More generally, the studies collected in Kehoe and Prescott (2007) show that productivity

shocks play an important role during economic disasters for different countries around the world.

3.1.4 Adjustment Costs

Let Iit denote firm i’s investment at time t. Capital accumulates as follows:

Kit+1 = Iit + (1− δ)Kit, (10)

in which δ is the rate of depreciation. Capital investment entails asymmetric adjustment costs:

Φit ≡ Φ(Iit,Kit) =


a+Kit + c+

2

(
Iit
Kit

)2
Kit for Iit > 0

0 for Iit = 0

a−Kit + c−

2

(
Iit
Kit

)2
Kit for Iit < 0

, (11)

in which a− > a+ > 0 and c− > c+ > 0 capture nonconvex adjustment costs (Cooper 2006).

3.1.5 Value Maximization, Entry and Exit

Upon observing current period productivity levels Xt and Zit, firm i makes optimal investment

decision, Iit, and optimal exit decision, χit, to maximize its market value of equity. Let Dit ≡

Πit − Iit −Φ(Iit,Kit) denote dividends. The cum-dividend market value of equity, Vit, is given by:

Vit ≡ V (Kit, Zit, Xt) = max
{χit}

(
max
{Iit}

Dit + Et [Mt+1V (Kit+1, Xt+1, Zit+1)] , sKit

)
, (12)

in which s > 0 is the liquidation value parameter, subject to the capital accumulation equation (10).

When Vit ≥ sKit, which is the exit threshold, firm i stays in the economy, i.e., χit = 0. For all

the incumbent firms, evaluating the value function at the optimum yields Vit = Dit+Et[Mt+1Vit+1].

Equivalently, Et[Mt+1Rit+1] = 1, in which Rit+1 ≡ Vit+1/(Vit − Dit) is the stock return,
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and Et[Rit+1] = rft + βMit λMt, in which rft ≡ 1/Et[Mt+1] is the real interest rate, βMi ≡

−Covt[r
S
it+1,Mt+1]/Vart[Mt+1] is the true beta, and λMt ≡ Vart[Mt+1]/Et[Mt+1] is the price of risk.

When Vit < sKit, firm i exits from the economy at the beginning of time t, i.e., χit = 1. We set

its stock return from the beginning of period t−1 to the beginning of t, Rit, to be a predetermined

delisting return. Shumway (1997) shows that the average delisting return is −30% for stocks on

New York Stock Exchange and American Stock Exchange. Shumway and Warther (1999) show

that the average delisting return is −55% for stocks on National Association of Securities Dealers

Automated Quotations. We set the delisting return to be −42.5%, which is the average estimate.

In any event, the delisting return has little impact on our quantitative results (Section 4.4.4).

When firm i exits from the economy at the beginning of time t, we assume that it enters an

immediate reorganization process. The current shareholders of the firm receive sKit as the liquida-

tion value and leaves, and the old firm ceases to exit. New shareholders take over the remainder of

the firm’s capital, (1− s− κ)Kit, in which κ ∈ (0, 1− s) is the reorganization cost parameter. For

computational tractability, we assume that the reorganization process occurs instantaneously. At

the beginning of t, the old firm is replaced by a new firm with an initial capital of (1 − s − κ)Kit

owned by new shareholders. The new firm draws a firm-specific log productivity, zit, from its uncon-

ditional distribution, which is normal with a mean of zero and a standard deviation of σz/
√

1− ρ2z.

Our modeling of entry and exit keeps the number of firms constant in the economy.

Our model is partial equilibrium in nature in that we do not impose the aggregate resource con-

straint that consumption equals aggregate profits minus aggregate investment minus aggregate ad-

justment costs. Closing the economy per general equilibrium would increase the computational bur-

den exponentially because the cross-sectional distribution of firms becomes an infinite-dimensional

state variable. In addition, closing the economy would require us to confront the equity premium

puzzle in a production economy with disasters.5 Our objective is more modest. Building on studies

5While making important progress in a production economy with one representative firm, Gourio (2012) assumes
exogenous leverage to produce volatile and procyclical dividends to match the equity premium and its volatility.
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on disasters in endowment economies, we specify exogenous consumption dynamics to fit the eq-

uity premium. Taking the aggregate risk premium as given, we focus on examining the endogenous

behavior of the cross section of expected returns.

3.2 Computation

Because the model features a balanced growth path, we first detrend the model before solving for its

stationary equilibrium. We define the following stationary variables: Ût ≡ Ut/Ct, Π̂it ≡ Πit/Xt−1,

V̂it ≡ Vit/Xt−1, K̂it ≡ Kit/Xt−1, Îit ≡ Iit/Xt−1, Φ̂it ≡ Φit/Xt−1, and D̂it ≡ Dit/Xt−1. We then

rewrite the model’s key equations in terms of the detrended, stationary variables:

• The utility-to-consumption ratio: Ût =

[
(1− ι) + ι

(
Et

[
Û1−γ
t+1 (Ct+1/Ct)

1−γ
]) 1−1/ψ

1−γ

] 1
1−1/ψ

.

• The pricing kernel:

Mt+1 = ι

(
Ct+1

Ct

)− 1
ψ

 Û1−γ
t+1 (Ct+1/Ct)

1−γ

Et

[
Û1−γ
t+1 (Ct+1/Ct)1−γ

]


1/ψ−γ
1−γ

. (13)

• Profits: Π̂it ≡ (Xt/Xt−1)
1−ξ Z1−ξ

it K̂ξ
it − fK̂it.

• Capital accumulation: K̂it+1 (Xt/Xt−1) = (1− δ)K̂it + Îit.

• The adjustment costs function:

Φ̂it =


a+K̂it + c+

2

(
Îit
K̂it

)2
K̂it for Îit > 0

0 for Îit = 0

a−K̂it + c−

2

(
Îit
K̂it

)2
K̂it for Îit < 0

. (14)

• Dividends: D̂it ≡ Π̂it − Îit − Φ̂it.

• The value function, V̂it ≡ V̂
(
K̂it, Zit, Xt/Xt−1

)
:

V̂it = max
{χit}

[
max
{Îit}

D̂it + Et

[
Mt+1V̂

(
K̂it+1,

Xt+1

Xt
, Zit+1

)](
Xt

Xt−1

)
, sK̂it

]
. (15)
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• The stock return for an incumbent firm: Rit+1 ≡ V̂it+1 (Xt/Xt−1)/(V̂it − D̂it).

To solve for the pricing kernel, we iterate on the log utility-to-consumption ratio, ût ≡ log(Ût):

exp(ût) =

[
(1− ι) + ιEt [exp [(1− γ)(ût+1 + ḡ + gt+1)]]

1−1/ψ
1−γ

] 1
1−1/ψ

, (16)

as a function of gt. The pricing kernel can then be rewritten as:

Mt+1 ≡M(gt, gt+1) = ι exp

(
− 1

ψ
(ḡ + gt+1)

)(
exp [(1− γ)(ût+1 + ḡ + gt+1)]

Et [exp [(1− γ)(ût+1 + ḡ + gt+1)]]

) 1/ψ−γ
1−γ

. (17)

We iterate on the following recursion to compute the value and policy functions:6

V̂ (K̂it, Zit, gt) = max
{χit}

[
max
{Îit}

D̂it + Et

[
Mt+1V̂ (K̂it+1, Zit+1, gt+1)

]
exp(g + φgt), sK̂it

]
. (18)

4 Quantitative Results

Section 4.1 calibrates the model. Section 4.2 presents the CAPM regressions in the model’s simu-

lations. Section 4.3 discusses the key intuition. Section 4.4 conducts comparative statics. Finally,

Section 4.5 examines the model’s implications on the beta anomaly.

4.1 Calibration

We calibrate the model in monthly frequency. Table 5 reports the parameter values for the bench-

mark calibration. For the preference parameters, we set the intertemporal elasticity of substitution,

ψ, to be 1.5 as in Bansal and Yaron (2004). The relative risk aversion, γ, is five. The time discount

factor, ι, is set to be 0.99035 to generate an average risk free rate about 1.8% per annum.

6We discretize the state space using 100 grid points for K̂it, 13 points for zit, and seven grid points for gt. We
specify the lower bound of the capital grid to be 0.01 and the upper bound to be 25. We construct the capital grid
recursively, following McGrattan (1999), i.e., K̂n = K̂n−1 + c1 exp(c2(n − 2)), in which n = 2, ..., 100 is the index
of grid points, and c1 and c2 are two constant parameters chosen to provide the desired number of grid points and
the upper bound of the capital grid, given a predetermined lower bound of K̂1 = 0.01. We use the piecewise linear
interpolation to obtain firm value, investment, and expected returns that do not lie directly on the grid points.
We use a global search routine in maximizing the right-hand side of equation (18). We solve for the value function

sequentially. We first compute the objective function on a grid of K̂it+1 between 0.01 and 25 with 12,000 points,
and take the maximum. We then use the solution as the initial condition in the next stage of maximization with a
finer grid of K̂it+1. The final results are computed from a K̂it+1 grid with 120,000 points.
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For the parameters that govern the consumption dynamics in normal times, we set the average

growth rate, g, to be 0.019/12, the persistence ρg = 0.6, and the conditional volatility σg = 0.0025 to

be consistent with the data of per capita real consumption (nondurables and services) growth from

1947 to 2013. The quarterly and annual consumption data are from National Income and Product

Accounts (NIPA) Table 7.1. The implied consumption growth volatility is 1.43% per annum in

simulated quarterly data, and is not far from 1.02% in the real data. In simulated annual data, the

consumption growth volatility is 1.7%, which is not far from 1.25% in the real data.7 The first-order

autocorrelation is 0.49 in simulated quarterly data and 0.26 in simulated annual data. While the for-

mer is higher than 0.30 in the real quarterly data, the latter is lower than 0.49 in the real annual data.

For the parameters that govern the disaster dynamics, we set the disaster persistence, θ = 0.97,

which is the probability that the economy remains in the disaster state in the next month con-

ditional on it being in the disaster state in the current month. This monthly persistence accords

with the quarterly persistence of 0.973 = 0.914 in Gourio (2012). As such, the average duration of

disasters is 1/(1−0.97) = 33 months (roughly three years), consistent with Barro and Ursua (2008).

We set the disaster probability η to be 0.028/12, which implies an annual disaster probability of

2.8% estimated in Nakamura, Steinsson, Barro and Ursua (2013). Gourio uses a quarterly disaster

probability of 0.72%, also consistent with an annual probability of 2.8%.

We still have three disaster parameters remaining, including the disaster size, λD, the recovery

size, λR, and the recovery persistence, ν. We experiment with different values so that the impulse

response of log consumption to a disaster shock in the model mimics that in the data as in Naka-

mura, Steinsson, Barro and Ursua (2013). This procedure yields λD = −0.0275, λR = 0.0325, and

ν = 0.95. Figure 2 reports that the model’s impulse response is largely comparable with that in

the data. The maximum short-term effect of disasters in the model is a fall of about 23% in log

consumption, which is somewhat smaller than 29% in the data reported by Nakamura et al. (Table

7We have also experimented with an alternative estimation, in which the consumption growth volatility is 1.8%
per annum from 1947 to 2013 in the real data. In this calculation, we scale nondurables and services from NIPA Table
1.1.5 by the consumer price index from Bureau of Labor Statistics and then by population from NIPA Table 7.1.
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2). The long-term negative effect is 15% fall in log consumption, which is close to 14% in the data.

The remaining parameters govern the various technologies in the economy. We set the curvature

parameter in the production function, ξ = 0.65, which is close to the estimate of Hennessy and

Whited (2007). The monthly depreciation rate, δ, is 0.01, which implies an annual rate of 12% as

estimated by Cooper and Haltiwanger (2006). The persistence, ρz, and conditional volatility, σz, of

the firm-specific productivity are set to be 0.985 and 0.5, respectively, which are somewhat larger

than the corresponding values in Zhang (2005) after adjusting for the curvature parameter ξ. We

do so to enlarge the cross-sectional dispersion of firms. The long-run mean of log firm-specific pro-

ductivity, z̄, is −9.75, so that the long-run average detrended capital is around unity in simulations.

We set the liquidation parameter, s = 0, meaning that shareholders receive nothing in the event

of bankruptcy. The reorganizational cost parameter, κ, is 0.25. The leverage for the aggregate pro-

ductivity, φ, is set to be unity to generate an annual output growth volatility of 2.43% in normal

times. This volatility is close to 2.30% in the data, in which output is the per capita real gross

domestic product from 1947 to 2013 (NIPA Table 7.1). Finally, we set the adjustment cost param-

eters a+ = 0.035, a− = 0.05, c+ = 75, c− = 150, and the fixed costs parameter, f = 0.005. Because

of the lack of direct evidence on their values, we calibrate these parameters to match the properties

of the book-to-market deciles. Section 4.4 contains extensive comparative statics to evaluate the

quantitative impact of these parameter values on our key results.

4.2 Explaining the Performance of the CAPM

We simulate 2,000 artificial samples from the model, each with 5,000 firms and 1, 500 months. We

start each simulation by setting the initial capital stocks of all firms at unity and by drawing their

firm-specific productivity from the unconditional distribution of Zit. We drop the first 444 months

to neutralize the impact of the initial condition. The remaining 1, 056 months of simulated data are

treated as those from the economy’s stationary distribution. The sample size is comparable to the

period from July 1926 to June 2014 in the real data (Table 1). We calculate the model moments
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on each artificial sample and report cross-simulation averaged results.

Table 6 reports the key results under the benchmark calibration. Panel A shows the CAPM

regressions for ten book-to-market deciles in the samples with at least one disaster episode (1,847

out of 2,000 samples). The average returns of the deciles increase with book-to-market from 0.74%

per month for the growth decile to 1.19% for the value decile. The average value-minus-growth

return is 0.45% per month, which is not far from 0.52% in the data (Table 1, Panel A). However,

despite the lower value premium in the model, its t-statistic is 5.83, which is more than twice as

large as 2.60 in the data. As such, the volatility of the value-minus-growth returns in the model

is less than one half of that in the data. Similarly, the t-statistics for the individual deciles in the

model are more than three times larger than those in the data. As such, stock return volatilities in

the model are lower than those in the data, in line with the aggregate results in Barro (2006, 2009).8

The CAPM captures the value premium in the model’s artificial samples with disasters. The

value-minus-growth alpha is −0.21% (t = −1.72), and its 95% confidence interval across simulations

spans from −0.46% to 0.06%. Accordingly, the market beta is estimated to be 0.82 (t = 6.82). The

beta also aligns monotonically with book-to-market, rising from 0.82 for the growth decile to 1.64 for

the value decile. Panel B reports the CAPM regressions for the book-to-market deciles in the sam-

ples without disasters (153 out of 2,000 samples). The average returns continue to align monotoni-

cally with book-to-market, going from 0.77% per month to 1.21%. The average return of the value-

minus-growth decile, 0.45% per month, is identical to that from the disaster samples. More impor-

tant, Panel B shows that the CAPM fails badly in the no-disaster samples. The CAPM regression

of the value-minus-growth decile yields an alpha of 0.47% (t = 3.71). The 95% confidence interval

for the alpha spans from 0.22% to 0.75%. In addition, the market beta for the value-minus-growth

decile is insignificantly negative, −0.03 (t = −0.24). Finally, the R2 is in effect zero. In all, the quan-

8Introducing time-varying disaster probabilities per Gourio (2012) and Wachter (2013) can increase the volatilities
in the model. Alas, doing so would add one more aggregate state and increase the computational burden. More
important, introducing an extra aggregate state would most likely strengthen the model’s ability to explain the failure
of the CAPM, which is our focus. We opt to achieve this objective with the most parsimonious model possible.
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titative results in Table 6 on the CAPM regressions are largely aligned with the evidence in Table 1.

4.3 Inspecting the Mechanism

What is the driving force behind the quantitative results in Table 6? To shed light on this impor-

tant issue, we first show that value stocks are more exposed to disaster risk than growth stocks. We

then illustrate how the disaster risk is reflected in the CAPM regressions of the value-minus-growth

returns. Finally, we examine how the disaster risk induces strong nonlinearity in the pricing kernel.

4.3.1 The Impact of Disaster Risk on Firm-level Risk and Risk Premiums

We characterize the impact of disaster risk using the model’s solution and impulse responses. First,

we use the model’s solution on the K̂it-gt-zit grid to plot the true beta, βMit , and the expected risk

premium, Et[Rit+1]− rft, against the detrended capital, K̂it, and the log firm-specific productivity,

zit. To examine the impact of disaster risk, we make the plots for two values of the detrended

consumption growth, gt, including the disaster state, λD, and the mean of normal states (zero).

Panel A in Figure 3 shows that in disasters, low-z firms, which tend to be value firms, are

substantially riskier than high-z firms, which tend to be growth firms. Accordingly, Panel B shows

that low-z firms earn substantially higher risk premiums than high-z firms in the disaster state. In

contrast, Panels C and D show that risk and risk premiums are largely flat across firms in the normal

states. Also, in each panel, only a portion of the K̂it-zit grid is plotted. This missing region is where

firms exit the economy. Naturally, low-z firms are more likely to exit than high-z firms. In addition,

because the fixed costs of production are proportional to capital, high-K̂ firms are more likely to exit

than low-K̂ firms. In simulations, value firms tend to have lower z but higher K̂ than growth firms.

We also quantify the impact of disaster via impulse responses. We simulate the economy for

150,000 months, a period that contains slightly more than 300 disaster episodes. An episode starts

with the economy switching from a normal state to the disaster state, and ends with it switching

from the recovery state to a normal state. We trace the responses in risk and risk premiums for 25
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years after an initial disaster shock, and calculate the average responses across the disaster episodes.

Figure 4 reports the mean responses for the value decile, the growth decile, and the averages

across all ten book-to-market deciles. From Panel A, the true value beta jumps up by 0.37, and the

true growth beta up by almost 0.20, in response to a disaster shock. To get a sense of the magnitude,

the long-term average is around 0.04 for the value beta and 0.02 for the growth beta. As such,

disasters cause an enormous jump in risk, more so for value than for growth firms. Accordingly,

Panel B shows that in response to a disaster shock, the expected risk premium of the value decile

jumps up by more than 400% over the subsequent two years, and that of the growth decile up by

almost 100% over the same period. Again, to get a sense of the magnitude, the long-term average is

about 15% per annum for the value decile and 9% for the growth decile. In all, consistent with the

evidence in Section 2, value stocks are more exposed to disaster risk than growth stocks in our model.

Intuitively, the economic mechanism is similar qualitatively to, but more powerful quantitatively

than that in Zhang (2005) and Cooper (2006). Because of asymmetric adjustment costs, value firms

are burdened with more unproductive capital, finding it more difficult to downsize than growth

firms. As such, value firms are riskier than growth firms in bad times. In contrast, in normal times,

even value firms do not have strong incentives to disinvest. As such, the asymmetry mechanism

fails to take strong effect, giving rise to weak spreads in risk and risk premiums across firms. While

prior studies describe the working of this mechanism in recessions, we extend it to rare disasters.

The working of the asymmetry mechanism is related to our modeling of disasters as large drops

in consumption, output, and total factor productivity. In addition to productivity disasters, Gourio

(2012) also models disasters via capital destruction, which would seem to weaken the asymmetry

mechanism illustrated in Figures 3 and 4. However, while capital destruction is realistic for wars, it

seems less obvious for economic disasters. Because we aim to explain the stylized facts (Section 2)

that feature the important impact of the Great Depression, which is an economic disaster, we opt

to not model capital destruction. Perhaps more important, Gourio motivates capital destruction
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in disasters as large, negative shocks on the “quality” of capital: “Perhaps it is not the physical

capital but the intangible capital (customer and employee value) that is destroyed during prolonged

economic depressions (p. 2740).” The accumulation of a large quantity of capital with deteriorating

quality in disasters would instead work to strengthen our asymmetry mechanism.

4.3.2 Nonlinearity in the CAPM Regressions

The disaster risk has important implications on the CAPM regressions. Figure 5 reports the scat-

ter plots for the CAPM regressions of the value-minus-growth decile. Panel A is the scatter plot

from stacking the simulated data for all the 1,847 out of 2,000 artificial samples (the same samples

used in Table 6) with at least one disaster episode. Panel B is the scatter plot from stacking the

simulated data for the remaining 153 samples without disasters.

The basic patterns mimic those in Figure 1 based on the long U.S. sample. From Panel A of

Figure 5, the value premium covaries strongly with market excess returns in the disaster samples.

Both returns are large and negative in disasters, and large and positive in the subsequent recover-

ies. As a result, the market beta for the value-minus-growth decile is 0.86, which is a population

moment because of the large number of simulations. However, the CAPM alpha is −0.24% per

month, meaning that the CAPM does not hold exactly in our dynamic single-factor model, even

though the CAPM alpha is insignificant in finite samples (Table 6, Panel A).9

In contrast, Panel B of Figure 5 shows that the value premium does not covary at all with

market excess returns in artificial samples with no disasters. Without the large swings in the same

direction in the value premium and market excess returns in disasters as well as in subsequent

recoveries, the CAPM regression line of the value premium is flat. As population moments, the

market beta is in effect zero, and the CAPM alpha is 0.45% per month. This simulation result

9The scatter plot in Panel A of Figure 5 shows three blocks, which, moving from left to right, represent disasters,
normal times, and recoveries. The discreteness in blocks is due to the fact that we simulate directly from the discrete
Markov chain with the transition probability matrix in equation (6). If we instead use a large number of grid points for
normal states, the discreteness in blocks would disappear. However, as noted, because the persistence in consumption
growth, ρg, is low, 0.6, a five-point grid is sufficient to ensure accuracy for simulated moments from the model.

19



reproduces the U.S. evidence from 1963 to 2014 (Figure 1, Panel B).

4.3.3 Nonlinearity in the Pricing Kernel

The disaster risk induces strong nonlinearity in the pricing kernel, nonlinearity which in turn implies

that the CAPM is a poor proxy of the pricing kernel. If the CAPM holds exactly, the pricing kernel

can be expressed as a linear function of the market excess return, RMt+1, i.e., Mt+1 = l0+ l1RMt+1,

in which l0 and l1 are constants (Cochrane 2005). Panels C and D of Figure 5 show that the pricing

kernel in the model is far from a linear function of the market excess returns.

Panel C reports the scatter plot for regressing the pricing kernel on the market excess returns

based on the disaster samples. The regression yields a slope of −0.35 but an R2 of only 25%, despite

the model’s single-factor structure. The linear CAPM fits poorly the observations from the disaster

state, with very high realizations of the pricing kernel (marginal utilities), and the observations from

the recovery state, with very low realizations of the pricing kernel. Despite the poor fit, the CAPM

still manages to largely explain the value premium in time series regressions on the disaster samples.

More important, Panel D shows that the CAPM is an even worse proxy for the pricing kernel in

the no-disaster samples. The slope from regressing the pricing kernel on the market excess return is

only −0.03, falling in magnitude from −0.35 from the disaster samples. The R2 drops from 25% to

11%. As a result, the CAPM fails badly in explaining the value premium in the no-disaster samples.

4.4 Comparative Statics

To gain further insights into the working of the key mechanism, we conduct comparative static

experiments on a wide array of parameters. We group the parameters into three categories: (i)

disaster dynamics: the disaster size, λD, the disaster persistence, θ, the disaster probability, η, the

recovery persistence, ν, and the recovery size, ν; (ii) technology: the adjustment costs parameters,

a+, a−, c+, and c−, the curvature in production, ξ, the fixed costs parameter, f , the productivity

growth leverage, φ, the liquidation value parameter, s, the reorganizational costs parameter, κ, and
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the delisting return, R̃; as well as (iii) preferences: the risk aversion, γ, and the intertemporal elastic-

ity of substitution, ψ. In each experiment, we only vary one parameter, while keeping all the others

unchanged from the benchmark calibration. The only exception is that, when necessary, we adjust

the time discount factor, ι, to pin the average interest rate at around 1.8% per annum. Finally, for

each parameter, we consider two values, with one above and the other below the benchmark value.

4.4.1 Disaster Dynamics

From the first four columns in the upper panel of Table 7, increasing the disaster size and persistence

raises the value premium, and worsens the failure of the CAPM in samples without disasters. Intu-

itively, a higher magnitude for λD and θ strengthens the nonlinear disaster dynamics, making the

linear CAPM an even poorer proxy for the pricing kernel, especially in normal times. The effect of

raising the disaster probability, η, goes in the same direction, but its quantitative impact is minimal.

Intuitively, η mainly determines the percentage of samples with at least one disaster episode out of

2,000 simulations. This percentage is 92% in the benchmark calibration with η = 0.23%, and 74%

with η = 0.13% and 97% with η = 0.33%. However, conditional on at least one disaster appearing

in a given sample, the nonlinear dynamics are mostly governed by the disaster size and persistence.

The recovery size and persistence have little impact on the magnitude of the value premium

and the performance of the CAPM. Intuitively, risk and risk premiums are mostly determined by

the model’s dynamics in bad times, particularly rare disasters, in which the representative agent’s

marginal utilities are the highest. In contrast, in the recovery state, in which marginal utilities are

at their lowest level, the risk and risk premium spreads between value and growth firms are tiny.

4.4.2 Technology: Adjustment Costs

The last eight columns in the upper panel of Table 7 report the comparative statics with the four

adjustment costs parameters. The upward nonconvex costs parameter, a+, and its downward coun-

terpart, a−, work in the opposite direction. While increasing a+ reduces the value premium and its

CAPM alpha in normal times, increasing a− does the opposite. The a− effect works through the
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asymmetry mechanism. A high value of a− means that value firms face a higher hurdle in reducing

their unproductive capital, giving rise to higher risk and risk premiums.

Why does the upward nonconvex costs parameter, a+, work differently? Intuitively, firms dis-

invest very infrequently. In a typical simulation, only 0.5% of the firm-month observations have

negative investment. Such a low disinvestment frequency means that a+ is the main parameter that

determines the magnitude of nonconvex costs of adjustment, a+Kit. A lower value of a+ means

that firms would in general have higher capital, including value firms. When a disaster hits, value

firms would be burdened with more unproductive capital, reinforcing the asymmetry mechanism.

As such, a lower a+ value increases the value premium and its CAPM alpha in no-disaster samples.

The upward convex costs parameter, c+, works in the same direction as its downward counter-

part, c−. A higher value of c− restricts the flexibility of value firms in reducing their unproductive

capital. Although applying to positive investment, c+ also limits value firms in adjusting their cap-

ital. However, the c+ effect works in the opposite direction as the a+ effect. The crux is that c+ in-

volves quadratic adjustment costs, which do not reduce capital as directly as a+ in nonconvex costs.

4.4.3 Technology: Production

From the first two columns in the lower panel of Table 7, decreasing the curvature in the produc-

tion function by increasing ξ from 0.6 to 0.7 raises the value premium and the market beta of the

value-minus-growth decile, especially in disaster samples. Intuitively, the sensitivity of profits to

the aggregate productivity is ∂Πit/∂Xt = (1 − ξ)Z1−ξ
it Kξ

itX
−ξ
t . In general, the relation between

this sensitivity and ξ is ambiguous. However, the relation tends to be positive for value firms with

high Kit and low Zit, but negative for growth firms with low Kit and high Zit. Also, the relation

is more likely to be positive when Xt is particularly low, as in disasters.

The next two columns in the lower panel show that reducing the fixed costs parameter, f ,

increases the value premium and its CAPM alpha in the no-disaster samples. At first glance, this

result seems to contradict prior studies that show higher fixed costs tend to imply a higher value
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premium. The crux is that the fixed costs are proportional to capital in our economy with balanced

growth, whereas the fixed costs are constant, independent of capital, in prior studies. While the

constant fixed costs work as operating leverage in prior studies, the fixed costs work in a similar

way as the upward nonconvex costs of adjustment, a+, in our model.

Increasing the productivity growth leverage, φ, raises the value premium and its CAPM alpha

in normal times. Intuitively, a higher φ implies a proportionally larger aggregate shock, including in

the disaster state. More severe disasters in aggregate productivity increases the value premium, and

strengthens the disaster dynamics, giving rise to a higher CAPM alpha in the no-disaster samples.

4.4.4 Technology: Liquidation

The next three technological parameters involve entry and exit, including the liquidation value pa-

rameter, s, the reorganizational costs parameter, κ, and the delisting return, R̃. Increasing s reduces

the value premium and its CAPM alpha in no-disaster samples. Intuitively, in the event of exit, ex-

isting shareholders extract a higher liquidation value of sKit, which is in effect a free abandonment

option, acting as an insurance hedge against the disaster risk. The abandonment option is especially

attractive for shareholders of value firms, which tend to have more unproductive capital than growth

firms. Consequently, instead of facing asymmetric adjustment costs in disasters, the shareholders

opt to exit, thereby reducing the risk for value firms relative to growth firms. In contrast to the

strong s effect, the impact of the reorganizational costs parameter and the delisting return is quan-

titatively negligible. With s = 0, the percentage of exit firms is only about 0.09% in simulations.

4.4.5 Preferences

The last four columns in the lower panel report the results for the risk aversion, γ, and the intertem-

poral elasticity of substitution, ψ. Not surprisingly, increasing either parameter strengthens the

nonlinear disaster dynamics, raising the value premium and its CAPM alpha in no-disaster samples.
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4.5 Explaining the Beta Anomaly

Our model is also largely consistent with the flat beta-return relation.

4.5.1 Quantitative Results

Mimicking the empirical procedure in Table 4, we sort stocks in simulated panels at the end of

each June based on pre-ranking market betas from prior 60-month rolling windows. We calculate

value-weighted decile returns, and rebalance the deciles in June. Panel A of Table 8 shows that in

artificial samples with disasters, the average excess return rises from 0.76% per month for the low

rolling beta decile only to 0.79% for the high decile, and the spread of 0.04% is within 0.5 standard

errors from zero. The pre-ranking market beta sorts also yield a spread in the post-ranking betas,

although its magnitude, 0.30 (t = 2.49), is smaller than that in the data. The CAPM alpha of the

high-minus-low decile is −0.21%, albeit insignificant (t = −1.73).

From Panel B, results on the beta anomaly from the no-disaster samples are even stronger.

The low-beta decile earns on average 0.80% per month, which is even higher than 0.74% for the

high-beta decile, although the small spread of −0.06% is insignificant (t = −0.93). Relative to

the disaster samples, sorting on pre-ranking betas in the no-disaster samples yields an even larger

spread in post-ranking betas, 0.47, which is almost 3.5 standard errors from zero. As a result, the

CAPM alpha for the high-minus-low beta decile is significantly negative, −0.44% (t = −3.49).

4.5.2 The Importance of Measurement Errors

It is perhaps surprising that our risk-based model can reproduce the flat beta-return relation in

simulations. The crux is that the rolling market beta contains a great deal of measurement errors,

and is, consequently, a poor proxy for the true market beta. Because of our single-factor structure,

all aggregate variables are conditionally perfectly correlated, including the pricing kernel and the

expected market risk premium, Et[RMt+1] − rft. As such, the conditional CAPM holds in the-

ory (but not the unconditional CAPM), meaning that the true market beta can be backed out as
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(Et[Rit+1]− rft)/(Et[RMt+1]− rft). It should be noted that the true market beta differs from the

true beta with respect to the pricing kernel, βMit , which is calculated as (Et[Rit+1]− rft)/λMt.

Panels C and D in Table 8 show that, not surprisingly, sorting on true market betas yields

large average return spreads, over 1.2% per month, across extreme deciles in the model. The static

CAPM fails to price these deciles both in the disaster and no-disaster samples. In the disaster

samples (Panel C), the post-ranking rolling betas overshoot, giving rise to a negative CAPM alpha

of −0.73% (t = −1.98). In the no-disaster samples (Panel D), the rolling betas move in the opposite

direction as the true market betas, with a spread of −1.23 (t = −11.21). Accordingly, the CAPM

alpha is 2.23% (t = 21.52), which is substantially higher than the average return spread of 1.22%.

To illustrate measurement errors in rolling market betas, Figure 6 presents the scatter plots of

true market betas against their corresponding rolling betas, using deciles formed on rolling market

betas as the testing portfolios. In both the disaster and no-disaster samples, these deciles show

substantial variations in rolling betas, but only small variations in true market betas. The correla-

tion between the true and rolling market betas is weakly negative, −0.03, in the disaster samples,

but strongly negative, −0.35, in the no-disaster samples. Panels C and D present the scatter plots

using deciles formed on true market betas as the testing portfolios. Rolling market betas remain a

poor proxy for true market betas. Their correlation is weakly positive, 0.08, in the disaster samples,

but reliably negative, −0.20, in the no-disaster samples. It is surprising how poor the estimated

rolling betas are as a proxy for true market betas, especially in the no-disaster samples.

Intuitively, based on 60-month rolling windows, the estimated rolling betas are basically prior

five-year averaged betas. In contrast, true market betas accurately and immediately reflect changes

in aggregate and firm-specific conditions. Within a given rolling window, true market betas can

even mean-revert, giving rise to opposite rankings in rolling betas. Our quantitative results in the

context of the beta anomaly add to a substantial body of simulation evidence on the importance of

beta measurement errors in asset pricing tests.10 In all, we suggest that the evidence on the beta

10In addition to Miller and Scholes (1972), Carlson, Fisher, and Giammarino (2004) show that how size and
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anomaly in the real data should be interpreted with extreme caution.

5 Conclusion

Rare disasters can explain the value premium puzzle that value stocks earn higher average returns

than growth stocks, despite their similar market betas. In an investment model with disasters, we

show that value stocks are more exposed to disaster risk than growth stocks. More important, the

disaster risk induces strong nonlinearity in the pricing kernel. In finite samples, in which disasters

are materialized, the CAPM does an adequate job in accounting for the value premium. More

important, in finite samples without disasters, estimated market betas fail to measure the higher

exposures of value stocks to disasters than growth stocks. This nonlinearity allows the model to

replicate the failure of the CAPM in the post-1963 sample. In addition, due to severe measurement

errors in rolling betas, the relation between pre-ranking market betas and average returns is flat in

the model’s simulations, despite a strong positive relation between true betas and expected returns.

As such, the model is also consistent with the beta anomaly.
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Table 1 : The Market Regressions for the Book-to-market Deciles, July 1926–June 2014

For each report the average excess return (m), the CAPM alpha, the market beta, their t-statistics adjusted

for heteroscedasticity and autocorrelations, and the R2. “V−G” is the value-minus-growth decile.

Growth 2 3 4 5 6 7 8 9 Value V−G

Panel A: July 1963 to June 2014

m 0.42 0.52 0.55 0.55 0.54 0.59 0.68 0.71 0.79 0.93 0.51
tm 2.00 2.72 2.95 2.89 2.97 3.25 3.81 3.88 4.07 3.91 2.75
α −0.12 0.01 0.06 0.06 0.08 0.13 0.24 0.27 0.32 0.39 0.51
tα −1.28 0.15 0.92 0.57 0.83 1.45 2.27 2.28 2.92 2.50 2.26
β 1.06 1.01 0.98 0.99 0.91 0.93 0.88 0.88 0.94 1.07 0.01
tβ 40.79 46.28 34.55 29.35 27.50 28.34 22.89 17.53 20.85 15.44 0.07
R2 0.86 0.92 0.90 0.87 0.83 0.85 0.78 0.76 0.76 0.66 0.00

Panel B: July 1926 to June 2014

m 0.57 0.68 0.68 0.68 0.73 0.76 0.77 0.92 1.03 1.09 0.52
tm 3.24 4.09 4.05 3.67 4.12 4.04 3.86 4.43 4.36 3.82 2.60
α −0.09 0.06 0.05 −0.01 0.08 0.07 0.05 0.18 0.21 0.14 0.23
tα −1.27 1.20 0.89 −0.13 1.02 0.93 0.58 1.93 1.83 0.94 1.18
β 1.00 0.95 0.97 1.06 1.00 1.05 1.09 1.14 1.27 1.45 0.45
tβ 47.76 28.52 59.63 20.06 27.74 16.04 16.14 15.40 13.46 13.38 3.52
R2 0.90 0.92 0.92 0.90 0.89 0.87 0.84 0.82 0.79 0.72 0.14

Panel C: July 1926 to June 1963

m 0.78 0.90 0.86 0.85 0.99 0.99 0.88 1.21 1.36 1.30 0.52
tm 2.56 3.06 2.81 2.42 2.93 2.68 2.18 2.84 2.74 2.20 1.31
α −0.04 0.11 0.03 −0.09 0.08 0.02 −0.18 0.09 0.09 −0.15 −0.11
tα −0.48 1.56 0.36 −1.07 0.80 0.15 −1.28 0.74 0.43 −0.55 −0.34
β 0.96 0.92 0.97 1.10 1.06 1.13 1.24 1.30 1.48 1.70 0.74
tβ 42.94 20.05 50.80 14.68 26.14 12.58 16.54 16.82 14.50 14.24 5.33
R2 0.94 0.92 0.94 0.92 0.93 0.89 0.89 0.88 0.84 0.77 0.32
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Table 2 : Large Swings in the Stock Market and the Corresponding Value-minus-growth
Returns, July 1926–June 2014

This table reports market excess returns, MKT, that are below 1.5 and above 98.5 percentiles in the long

U.S. sample. V−G is the value premium. Both MKT and V−G are in monthly percent.

Month MKT V−G Month MKT V−G

November 1928 11.79 −0.41 August 1933 12.03 4.92
October 1929 −20.07 7.57 January 1934 12.63 34.10
June 1930 −16.25 −3.54 September 1937 −13.57 −10.90
May 1931 −13.16 −3.09 March 1938 −23.80 −22.67
June 1931 13.75 14.80 April 1938 14.49 8.76
September 1931 −29.07 −5.03 June 1938 23.77 15.22
December 1931 −13.42 −16.73 September 1939 16.94 56.61
April 1932 −17.98 −2.85 May 1940 −21.93 −15.49
May 1932 −20.44 3.61 October 1974 16.10 −13.58
July 1932 33.47 45.73 January 1975 13.66 19.70
August 1932 36.41 69.99 January 1976 12.16 15.04
October 1932 −13.09 −12.97 March 1980 −12.90 −9.02
February 1933 −15.06 −7.45 January 1987 12.47 −2.98
April 1933 37.93 22.41 October 1987 −23.24 −1.21
May 1933 21.36 45.01 August 1998 −16.08 6.33
June 1933 13.05 10.29 October 2008 −17.23 −11.93
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Table 3 : The Performance of the CAPM, July 1926–June 2014, Sensitivity Analysis

In Panel A, we delete monthly observations with market excess returns below 1.5 and 98.5 percentiles of the

empirical distribution. As such, we remove in total 3% of extreme observations for market excess returns.

The procedures in other panels are defined analogously.

Growth 2 3 4 5 6 7 8 9 Value V−G [t]

Panel A: 3%

m 0.60 0.71 0.69 0.65 0.70 0.73 0.67 0.82 0.88 0.90 0.30 1.85
α −0.08 0.06 0.06 0.00 0.09 0.10 0.03 0.15 0.15 0.09 0.17 0.81
β 1.04 1.00 0.97 0.98 0.93 0.96 0.99 1.01 1.11 1.23 0.20 2.54
R2 0.86 0.90 0.89 0.86 0.83 0.82 0.78 0.76 0.73 0.63 0.03

Panel B: 5%

m 0.62 0.74 0.72 0.67 0.72 0.74 0.70 0.83 0.91 0.93 0.31 1.99
α −0.09 0.06 0.06 0.00 0.08 0.09 0.03 0.15 0.16 0.10 0.19 0.97
β 1.03 1.00 0.97 0.98 0.94 0.95 0.99 1.01 1.10 1.22 0.18 2.48
R2 0.85 0.89 0.88 0.85 0.81 0.81 0.76 0.75 0.72 0.60 0.02

Panel C: 10%

m 0.64 0.78 0.76 0.76 0.80 0.83 0.80 0.90 1.00 1.07 0.43 2.72
α −0.13 0.04 0.04 0.03 0.11 0.11 0.08 0.17 0.20 0.15 0.28 1.42
β 1.03 1.00 0.97 0.98 0.93 0.97 0.98 0.99 1.09 1.24 0.20 2.61
R2 0.82 0.87 0.86 0.83 0.79 0.79 0.73 0.72 0.68 0.57 0.02

Panel D: 20%

m 0.74 0.85 0.83 0.82 0.85 0.88 0.83 0.97 1.10 1.19 0.45 2.81
α −0.12 0.02 0.00 0.01 0.09 0.12 0.02 0.13 0.22 0.17 0.29 1.47
β 1.04 1.01 1.01 0.99 0.93 0.92 0.98 1.01 1.07 1.23 0.19 2.29
R2 0.77 0.82 0.82 0.77 0.73 0.72 0.68 0.67 0.61 0.48 0.01

Panel E: 30%

m 0.81 0.90 0.90 0.86 0.85 0.92 0.87 1.00 1.15 1.22 0.41 2.46
α −0.11 0.03 0.01 −0.01 0.03 0.10 0.01 0.09 0.23 0.16 0.27 1.30
β 1.05 0.99 1.02 0.99 0.93 0.92 0.98 1.03 1.06 1.22 0.17 1.72
R2 0.71 0.76 0.77 0.71 0.66 0.66 0.59 0.60 0.52 0.40 0.01

Panel F: 40%

m 0.82 0.89 0.93 0.88 0.87 0.94 0.97 1.09 1.24 1.34 0.52 2.98
α −0.16 −0.03 0.03 0.01 0.03 0.12 0.10 0.17 0.28 0.20 0.36 1.65
β 1.08 1.01 0.99 0.96 0.92 0.90 0.96 1.01 1.05 1.25 0.18 1.63
R2 0.65 0.70 0.69 0.63 0.60 0.57 0.52 0.51 0.45 0.34 0.01

Panel G: 50%

m 0.83 0.90 0.94 0.91 0.89 0.98 1.01 1.14 1.34 1.46 0.63 3.33
α −0.23 −0.09 −0.00 0.00 0.07 0.14 0.15 0.26 0.41 0.34 0.56 2.18
β 1.12 1.06 1.00 0.97 0.87 0.90 0.92 0.93 0.99 1.19 0.07 0.53
R2 0.59 0.64 0.59 0.54 0.49 0.48 0.40 0.36 0.32 0.24 0.00
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Table 4 : The CAPM Regressions for the Market Beta Deciles, July 1928–June 2014

For each market beta decile, we report the average return (m), the CAPM alpha, the post-ranking market

beta, their t-statistics adjusted for heteroscedasticity and autocorrelations, and the R2. “H” is the highest

pre-ranking market beta decile, “L” the lowest decile, and “H−L” the high-minus-low decile.

L 2 3 4 5 6 7 8 9 H H−L

Panel A: July 1963 to June 2014

m 0.51 0.52 0.52 0.56 0.66 0.54 0.68 0.53 0.62 0.63 0.12
tm 3.64 3.46 3.11 3.15 3.46 2.67 3.06 2.25 2.33 1.92 0.43
α 0.22 0.17 0.11 0.12 0.17 0.02 0.10 −0.08 −0.06 −0.18 −0.40
tα 2.03 1.75 1.32 1.39 1.89 0.22 1.17 −0.83 −0.47 −0.90 −1.48
β 0.57 0.68 0.81 0.87 0.98 1.03 1.14 1.22 1.35 1.61 1.04
tβ 12.29 16.79 19.13 20.74 27.23 30.22 46.72 41.42 34.60 30.04 11.41
R2 0.54 0.68 0.77 0.79 0.86 0.86 0.88 0.86 0.84 0.78 0.43

Panel B: July 1928 to June 2014

m 0.57 0.63 0.64 0.73 0.82 0.71 0.80 0.72 0.82 0.81 0.24
tm 4.80 4.51 4.23 4.33 4.36 3.55 3.69 2.99 3.04 2.59 0.94
α 0.21 0.17 0.12 0.14 0.16 0.01 0.04 −0.13 −0.11 −0.26 −0.47
tα 2.68 2.18 2.04 2.37 2.29 0.11 0.54 −1.53 −1.09 −1.80 −2.40
β 0.57 0.74 0.82 0.93 1.05 1.12 1.22 1.36 1.49 1.70 1.12
tβ 22.94 29.62 35.56 40.62 41.07 40.12 46.51 36.08 26.55 40.59 18.46
R2 0.67 0.81 0.85 0.88 0.90 0.90 0.91 0.90 0.88 0.85 0.58

Panel C: July 1928 to June 1963

m 0.66 0.79 0.81 0.98 1.05 0.96 0.99 1.00 1.11 1.06 0.40
tm 3.15 3.00 2.91 3.02 2.85 2.44 2.32 2.07 2.06 1.76 0.88
α 0.19 0.16 0.14 0.19 0.16 0.01 −0.04 −0.17 −0.17 −0.36 −0.56
tα 1.73 1.53 1.72 2.41 1.70 0.09 −0.42 −1.14 −0.91 −1.68 −1.94
β 0.58 0.77 0.83 0.98 1.10 1.17 1.28 1.45 1.58 1.76 1.18
tβ 20.61 28.37 30.76 50.20 30.53 29.28 31.99 34.52 21.46 34.34 16.04
R2 0.79 0.90 0.92 0.94 0.93 0.93 0.93 0.93 0.90 0.89 0.72
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Table 5 : Parameter Values in the Monthly Benchmark Calibration

Parameters Value Description

Panel A: Preferences

ι 0.99035 The subjective discount factor
γ 5 The relative risk aversion
ψ 1.5 The elasticity of intertemporal substitution

Panel B: Consumption dynamics

ḡ 0.019/12 The average consumption growth
ρg 0.6 The persistence of consumption growth
σg 0.0025 The conditional volatility of consumption growth
η 0.028/12 The disaster probability
λD −0.0275 The disaster size
θ 0.9141/3 The disaster persistence
λR 0.0325 The recovery size
ν 0.95 The recovery persistence

Panel C: Technology

ξ 0.65 The curvature parameter in the production function
δ 0.01 The capital depreciation rate
f 0.005 Fixed costs of production
z −9.75 The long-run mean of log firm-specific productivity
ρz 0.985 The persistence of log firm-specific productivity
σz 0.5 The conditional volatility of log firm-specific productivity
φ 1 The leverage of productivity growth
a+ 0.035 Upward nonconvex adjustment costs
a− 0.05 Downward nonconvex adjustment costs
c+ 75 Upward convex adjustment costs
c− 150 Downward convex adjustment costs
s 0 The liquidation value parameter
κ 0.25 The reorganizational cost parameter

R̃ −0.425 The delisting return
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Table 6 : The CAPM Regressions for the Book-to-market Deciles in the Model

Results are averaged across 2,000 simulated economies. The mean excess returns, denoted m, and the CAPM

alphas are in monthly percent. We also report the 2.5 and 97.5 percentiles for the alphas and betas. The

t-statistics are adjusted for heteroscedasticity and autocorrelations.

Growth 2 3 4 5 6 7 8 9 Value V−G

Panel A: Samples with disasters

m 0.74 0.74 0.73 0.74 0.75 0.77 0.81 0.86 0.96 1.19 0.45
tm 13.83 13.61 13.43 13.24 13.15 13.07 13.10 13.07 13.17 13.61 5.83
α 0.08 0.06 0.04 0.01 −0.00 −0.03 −0.05 −0.09 −0.13 −0.13 −0.21
tα 1.38 1.09 0.76 0.32 −0.08 −0.53 −0.82 −1.15 −1.40 −1.38 −1.72
α, 2.5% −0.04 −0.05 −0.06 −0.08 −0.11 −0.15 −0.20 −0.25 −0.32 −0.34 −0.46
α, 97.5% 0.20 0.17 0.14 0.12 0.10 0.08 0.07 0.07 0.07 0.11 0.06
β 0.82 0.85 0.87 0.90 0.94 1.00 1.08 1.19 1.37 1.64 0.82
tβ 18.82 23.74 28.64 33.03 33.72 30.60 26.47 20.63 16.00 18.05 6.82
β, 2.5% 0.64 0.73 0.79 0.83 0.86 0.89 0.93 0.99 1.07 1.38 0.47
β, 97.5% 0.98 0.97 0.97 1.00 1.07 1.19 1.32 1.48 1.69 1.87 1.10
R2 0.45 0.47 0.49 0.50 0.52 0.55 0.57 0.60 0.64 0.65 0.24

Panel B: Samples without disasters

m 0.77 0.76 0.75 0.75 0.75 0.77 0.80 0.85 0.95 1.21 0.45
tm 18.58 18.43 18.09 17.98 18.11 18.57 19.32 20.52 22.55 24.99 7.10
α −0.01 −0.02 −0.06 −0.11 −0.10 −0.08 −0.02 0.08 0.23 0.46 0.47
tα −0.07 −0.24 −0.73 −1.26 −1.24 −0.95 −0.18 0.99 2.83 5.02 3.71
α, 2.5% −0.23 −0.16 −0.23 −0.25 −0.26 −0.24 −0.19 −0.11 0.04 0.27 0.22
α, 97.5% 0.15 0.14 0.10 0.03 0.04 0.07 0.15 0.23 0.39 0.67 0.75
β 0.95 0.96 1.00 1.05 1.05 1.05 1.00 0.95 0.89 0.92 −0.03
tβ 11.07 10.87 11.32 11.98 11.89 11.88 11.47 10.95 9.85 9.00 −0.24
β, 2.5% 0.79 0.79 0.83 0.89 0.87 0.88 0.84 0.77 0.68 0.71 −0.29
β, 97.5% 1.15 1.13 1.19 1.21 1.23 1.25 1.15 1.12 1.07 1.11 0.24
R2 0.11 0.12 0.12 0.14 0.14 0.13 0.13 0.11 0.10 0.08 0.00
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Table 8 : The CAPM Regressions for Deciles Formed on Rolling Market Betas and True
Market Betas in the Model

Results are based on 2,000 simulations.

L 2 3 4 5 6 7 8 9 H H−L

Panel A: Rolling market betas, samples with disasters

m 0.76 0.78 0.81 0.83 0.85 0.86 0.86 0.85 0.83 0.79 0.04
tm 13.72 14.09 14.04 13.89 13.55 13.41 13.08 12.65 11.79 11.50 0.53
α 0.04 0.06 0.06 0.04 0.01 −0.01 −0.04 −0.08 −0.16 −0.17 −0.21
tα 0.69 1.29 1.17 0.82 0.29 −0.05 −0.49 −0.89 −1.45 −2.10 −1.73
α, 2.5% −0.09 −0.05 −0.04 −0.07 −0.10 −0.13 −0.19 −0.27 −0.44 −0.41 −0.55
α, 97.5% 0.17 0.18 0.17 0.17 0.13 0.13 0.11 0.11 0.06 0.01 0.06
β 0.90 0.90 0.95 0.99 1.04 1.08 1.12 1.16 1.23 1.20 0.30
tβ 19.75 25.57 33.62 34.40 31.60 25.92 21.23 18.56 15.11 17.35 2.49
β, 2.5% 0.77 0.80 0.85 0.88 0.92 0.91 0.93 0.93 0.95 0.99 −0.03
β, 97.5% 1.08 1.03 1.04 1.08 1.14 1.21 1.28 1.38 1.56 1.47 0.67
R2 0.53 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.06

Panel B: Rolling market betas, samples without disasters

m 0.80 0.82 0.84 0.85 0.85 0.86 0.84 0.82 0.79 0.74 −0.06
tm 20.12 20.36 20.48 20.45 19.82 20.00 19.58 18.98 18.24 16.65 −0.93
α 0.01 0.12 0.17 0.19 0.15 0.16 0.11 0.03 −0.09 −0.42 −0.44
tα 0.16 1.55 2.15 2.28 1.75 1.88 1.30 0.39 −1.06 −4.98 −3.49
α, 2.5% −0.12 −0.02 0.02 0.04 −0.03 0.01 −0.06 −0.11 −0.24 −0.58 −0.68
α, 97.5% 0.14 0.26 0.31 0.33 0.31 0.31 0.27 0.18 0.05 −0.24 −0.19
β 0.97 0.86 0.82 0.82 0.86 0.86 0.90 0.97 1.08 1.43 0.47
tβ 11.79 10.20 9.50 9.27 9.30 9.15 9.72 10.37 11.67 15.74 3.49
β, 2.5% 0.80 0.68 0.63 0.65 0.69 0.64 0.72 0.79 0.92 1.26 0.24
β, 97.5% 1.13 1.04 0.98 1.00 1.05 1.04 1.09 1.15 1.23 1.61 0.76
R2 0.13 0.10 0.09 0.09 0.09 0.09 0.10 0.11 0.14 0.23 0.01

Panel C: True market betas, samples with disasters

m 0.54 0.74 0.87 0.92 1.03 1.08 1.18 1.26 1.40 1.80 1.26
tm 13.68 16.17 16.52 16.09 16.50 15.66 15.41 14.44 13.35 11.43 8.98
α −0.04 0.07 0.07 0.05 0.04 −0.00 −0.04 −0.13 −0.28 −0.77 −0.73
tα −0.29 2.04 1.48 0.87 0.47 −0.23 −0.69 −1.29 −1.70 −2.30 −1.98
α, 2.5% −0.16 0.00 −0.01 −0.03 −0.06 −0.13 −0.19 −0.35 −0.74 −1.87 −1.93
α, 97.5% 0.07 0.15 0.20 0.17 0.18 0.15 0.14 0.11 0.08 −0.07 0.07
β 0.72 0.83 0.99 1.09 1.23 1.36 1.53 1.74 2.12 3.23 2.51
tβ 11.79 38.88 26.53 25.90 21.97 18.91 16.06 13.68 10.68 8.40 5.54
β, 2.5% 0.60 0.69 0.85 0.96 1.10 1.17 1.29 1.45 1.63 2.20 1.38
β, 97.5% 0.87 0.90 1.08 1.17 1.33 1.51 1.76 2.09 2.83 4.99 4.31
R2 0.68 0.69 0.73 0.74 0.78 0.77 0.79 0.78 0.77 0.76 0.58

Panel D: True market betas, samples without disasters

m 0.56 0.75 0.88 0.94 1.05 1.09 1.18 1.26 1.39 1.78 1.22
tm 18.51 29.08 36.15 35.03 45.87 40.65 45.68 42.68 39.49 38.96 22.70
α −0.89 0.25 0.56 0.58 0.80 0.80 0.93 0.99 1.06 1.34 2.23
tα −28.60 5.15 11.73 11.23 17.85 15.17 18.11 17.01 15.39 14.81 21.52
α, 2.5% −0.96 0.14 0.41 0.45 0.64 0.62 0.78 0.80 0.82 1.05 1.75
α, 97.5% −0.71 0.34 0.65 0.70 0.89 0.92 1.03 1.11 1.21 1.54 2.44
β 1.77 0.62 0.40 0.43 0.30 0.36 0.31 0.33 0.41 0.54 −1.23
tβ 54.41 12.05 7.60 7.57 6.03 6.19 5.39 5.14 5.38 5.43 −11.21
β, 2.5% 1.56 0.51 0.28 0.33 0.20 0.23 0.20 0.20 0.24 0.34 −1.49
β, 97.5% 1.85 0.75 0.57 0.61 0.50 0.59 0.55 0.61 0.71 0.93 −0.63
R2 0.76 0.13 0.06 0.06 0.04 0.04 0.03 0.03 0.03 0.03 0.12
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Figure 1 : The CAPM Regressions for the Value-minus-growth Decile, July 1926–June 2014

The figure presents the scatter plot and the fitted line for the market regression of the value-minus-growth

decile. For the long sample in Panel A, the scatter points with the monthly market excess returns below the

1.5 and above 98.5 percentiles are dated in red.

Panel A: July 1926–June 2014 Panel B: July 1963–June 2014
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Figure 2 : The Impulse Response of Log Consumption to a Disaster Shock in the Model

In simulated data, when the economy enters the disaster state, we calculate the cumulative drop in log

consumption for 25 years after the impulse. Consumption is time-aggregated from the monthly to annual

frequency. The impulse response is averaged across more than 20,000 disaster episodes.
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Figure 3 : The Impact of Disaster on Firm-level Risk and Risk Premiums in the Model

Results are based on the model’s solution. The detrended consumption growth (gt) is in the disaster state

(λD) in Panels A and B, and is the mean of the normal states (zero) in Panels C and D. In each panel,

capital is the detrended capital, K̂it, and z is the log firm-specific productivity.
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Figure 4 : The Impulse Responses for the Value and Growth Portfolios to a Disaster Shock
in the Model’s Simulations

Results are based on 300 simulations of a disaster shock in year one, and we trace the responses for 25 years

afterward. The solid blue lines are for the value decile, the broken red lines the growth deciles, and the black

dotted lines are the average responses across ten book-to-market deciles.
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Figure 5 : The CAPM Regressions of the Value Premium and the Pricing Kernel in Artificial
Samples with and without Disasters

Based on 2,000 simulations, the figure presents the scatter plots and fitted lines for the CAPM regression of

the value premium (Panels A and B) and the pricing kernel (Panels C and D) in the model.

Panel A: The value premium, disaster samples Panel B: The value premium, normal times
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Figure 6 : True Market Betas and Rolling Market Betas in Artificial Samples with and
without Disasters in the Model

The figure presents the scatter plots and fitted lines from regressing true market betas against rolling market

betas in the model. The testing deciles are formed on rolling market betas in Panels A and B, and on true

market betas in Panels C and D.
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