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1 Introduction

The popular press often blames speculative activity in financial markets for impairing the real econ-

omy. Often times this accusation is accompanied by the suggestion that short horizon speculation

also impacts the real economy. For example, institutional investors have recently begun to add

commodity investments using futures as an alternative asset class. However, little theoretical work

on this issue exists. In this paper, we develop new insights into how the real economy might interact

with financial market activity.

An essential ingredient to generate trade is investor heterogeneity. Otherwise, if all investors are

identical, prices which clear markets will imply no trade. Dumas (1989) models how heterogeneity

in risk aversion affects equilibrium production decisions. To generate trade in our model, we assume

investors have heterogeneous beliefs and time preferences. These sources of heterogeneity allow us

to trace the impacts of short term versus long term speculative motives on the real economy and

asset prices.

A large and growing literature has examined the effects of belief heterogeneity on asset prices.1

in a pure exchange economy. However, these studies have fixed aggregate supply of consumption

in each state and time. Therefore, this existing literature has characterized the effect of belief

heterogeneity on discount rates.

However, the question of how production plans might be altered in response to these changes

in discount rates has been less studied. Some literature on belief heterogeneity which does include

productive decisions uses investors whose preferences are the sum of identically discounted expected

logarithm of consumption at each date, see for example Detemple and Murthy (1994). When

adjustment costs are not present, this is a limitation because these preferences will always choose

the same production plans regardless of their beliefs. So for this special case, belief heterogeneity

does not affect the real productive decisions. Detemple and Murthy (1994), Panageas (2005),

1See, for example, Zapatero (1998), Bhamra and Uppal (2014), Cvitanić, Jouini, Malamud and Napp (2011), Li
(2007), Li (2013), Li and Muzere (2010), Yan (2008), and Loewenstein (2013)
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and Baker, Hollifield and Osambela (2015) study heterogeneous beliefs in a production economy.

However, in these papers, investors disagree about aggregate fundamentals. An important question

then arises: what if investors agree on the aggregate fundamentals but disagree about events which

do not affect fundamentals.

In this paper, we build a tractable model with investors who disagree about productivity growth

or events which might not affect productivity at all, i.e. “sunspots” or some government policy

which does not have any effect on real productivity growth. The model includes costs of capital

adjustment so that as special subcases we can look at production technologies for which adjustment

to the capital stock is irreversible, costless, or impossible.2

Agents are assumed to have the same coefficient of relative risk aversion and possibly hetero-

geneous time discount parameters. The productive technology is a linear production technology as

in the Cox, Ingersoll and Ross (1985) with linear adjustment costs. We examine how heterogeneity

of beliefs affect productive decisions and equilibrium asset prices.

We examine two forms of the financial market, one in which only trade in real risks is allowed

and one in which trade in both types of risks are allowed. Arguably, some financial activity seems to

involve trade in risks which do not directly affect real productivity. For example gold is generally

considered a store of value but does not play much of a role as a productive input. A neutral

monetary policy in which speculators disagree about the rate of money supply growth as in Xiong

and Yan (2010) might also be a source of speculation in risks of this sort. More extreme examples

might be speculation on tulip bulb prices or sports betting. While the issue of trade in extraneous

risk has been analyzed in Basak (2000) and Xiong and Yan (2010), these have been in a pure

exchange setting. How trade in these risks affect real productive decisions has yet to be considered.

Our model shows belief heterogeneity does affect real productive decisions, even when investors

agree on productivity growth but disagree on extraneous events. Belief heterogeneity generally

raises investment in productive technology when speculators have a coefficient of relative risk aver-

2In addition, the last two cases provide two polar extremes for which we can compare the current literature dealing
with fixed aggregate consumption to a model in which productive activity responds to changes in the discount rates.
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sion less than one and lowers investment in the productive technology when speculators have a

coefficient of relative risk aversion greater than one. Trade in extraneous risk further reinforces this

effect. This effect is driven by the response of speculators optimal consumption/investment plans

to their perceived future investment opportunity set. When the coefficient of relative risk aversion

is greater than one, speculators generally increase current consumption when they perceive better

future investment opportunities. Therefore, on aggregate, investment in the productive technology

will decrease. On the other hand, when the coefficient of relative risk aversion is less than one, the

effects are reversed, that is financial market activity will increase aggregate investment in the pro-

ductive technology. For example, our model shows that when the coefficient of relative risk aversion

is greater than one, even though each investor would choose to invest in the productive technology

in autarky, the presence of the financial market can imply that the equilibrium production choice

will involve depleting capital to consume even in the presence of adjustment costs. Trade in ex-

traneous risk makes this more pronounced. In this sense, the financial market can “compete” with

the productive sector. However, when the coefficient of relative risk aversion is less than one, the

effects are reversed and trade in the financial market can raise investment above level which each

speculator would choose if they controlled the firm and there was no trade.

One of the surprising findings of our analysis is that these effects on output can be quite large

even when one type of speculators dominates the wealth distribution. While speculators who have

different beliefs do not have much wealth, their demand for consumption in states the more wealthy

speculators view as more or less unlikely affect state prices. Unlike the pure exchange economy,

where quantities are fixed, optimal production depends on state prices. For example, the coefficient

of relative risk aversion is greater than one, lower prices of future consumption will tend to raise

demand for current consumption. Fixing quantities, this implies the price of current consumption

must go up in order to clear markets. However, when quantities adjust, production will respond to

provide more current consumption.

Our specification of the adjustment costs implies there can be regions of capital depletion, no
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adjustment, and capital accumulation. In the regions of capital accumulation and capital depletion,

we show the optimal consumption is a weighted average of the (possibly infeasible) optimal linear

scale speculators would choose in those regions in autarky plus an adjustment term. This adjust-

ment term is zero when the only source of heterogeneity is in time discount parameters. When

investors have heterogeneous beliefs, the adjustment term is strictly positive when the coefficient

of relative risk aversion is greater than one and strictly negative when the coefficient of relative

risk aversion is less than one. When speculators agree on fundamental risk but disagree about

extraneous risks, they would choose the same linear scale in each region. In this case, the effect of

disagreement is unambiguous.

The behavior of asset prices is dramatically different in the no-adjustment region than in the

other regions. In the no-adjustment region, asset prices look like those in a pure exchange economy

and productive decisions do not respond to changes in these prices. However, the behavior of asset

prices in the capital accumulation and depletion regions differs because the productive decisions

respond to changes in financial markets. In particular, when trade in extraneous risk is allowed, in

the accumulation and depletion regions, the value of aggregate production only reflects fundamental

risk while in the no-adjustment region this value can reflect extraneous risks. The riskless rate in

the capital accumulation and depletion regions is a weighted average of the riskless rates that would

prevail in that region for each speculator in autarky when consumption is given by the choice of

optimal linear scale. In the no-adjustment region, the riskless rate is a weighted average of the

riskless rates for pure exchange economies populated by homogeneous investors plus an adjustment

term. Similarly, we show that in the no-adjustment region, the output-price ratio is a weighted

average of the output-price ratios in pure exchange economies with homogeneous investors plus an

adjustment term. In both cases, the adjustment term is present only when there is disagreement

and has an unambiguous sign depending on whether the coefficient of relative risk aversion is greater

or less than one. In the capital accumulation and depletion regions the output-price ratio is trivially

a weighted average of the output-price ratios in those regions for each speculator in autarky.
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When we consider irreversible investments, when the coefficient of relative risk aversion is less

than one, we find that even though no individual would want to accumulate capital in autarky, in

equilibrium, the firm optimally can choose to accumulate capital despite the irreversibility. Trade

in extraneous risk makes this possibility more likely. This finding provides new insight into how

financial market activity might be associated with the recent boom and bust in the construction

industry.3 Because investors see attractive future investment opportunities, they choose to consume

less and save more. Fixing aggregate supplies, discount rates go down the and price-output ratio

goes up until at some point capital accumulation for future consumption becomes more attractive.

This suggests an important feedback effect between financial market activity—especially purely

speculative activity—and the real economy.

The paper is organized as follows. Section 2 of the paper describes the basic elements of our

model. Section 3 characterizes the optimal production and asset prices in equilibrium. Section

4 provides comparative statics and illustrations of how speculative activity can affect the real

economy, Section 5 applies our model to explain the observed boom-and-bust cycles observed in

the US housing market, and Section 6 concludes. All proofs are in the appendix.

2 The Model

We consider a model of two groups of investors i = 1, 2. Each group has a probability space

(Ω,F , P i) which will be described later. Heterogeneous beliefs are captured by the fact that the

probability measure P i is different across these groups of investors. We also allow for a hetero-

geneous time preference parameter ρi. Investors in our model have preferences over consumption

plans given by

Ei

[

∫ ∞

0
e−ρit

c1−γ
i,t

1− γ
dt

]

, (2.1)

3Cheng, Raina and Xiong (2014) find that beliefs play a major role in the recent housing market boom and bust.
Glaeser (2013) and Burnside, Eichenbaum and Rebelo (2015) use heterogeneous beliefs to explain the booms and
busts in housing markets. The boom-and-bust cycles are also widely observed in other markets, for example the
so-called “tech bubble” of stock market in the late 1990s and commodity price boom/bust in 2008, which is also
attributed to heterogeneous beliefs by Singleton (2014).
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where γ is the coefficient of relative risk aversion. We assume 0 < γ < 1 or γ > 1.

Uncertainty in our model is generated by two independent Brownian motions Bt and B̂t. For

concreteness we assume that these Brownian motions are defined on (Ω,F , P 1) and we take the

filtration to be the filtration generated these Brownian motions augmented by the P 1 null sets.

Given capital stock Kt, the productive technology generates a continuous stream of consumption

good at an annual rate of

αAtKt, (2.2)

where α > 0 is a constant, and At, a conversion factor between capital and consumption good, is

a geometric Brownian motion which follows (under agent 1’s beliefs)

dAt = µAtdt+ σAtdBt. (2.3)

Beliefs for agent 2 are described by the process N , E2[x] = E1[Ntx] for any x ∈ Ft for any finite t,

which evolves as

dNt = −βNtdB̃t, (2.4)

where B̃t = ηBt +
√

1− η2B̂t and this implies d〈B, B̃〉 = ηdt. Then under agent 2’s probability

measure

dAt = (µ− ηβσ)Atdt+ σAtdB
2
t , (2.5)

where B2
t = Bt + ηβt and B̂2

t = B̂t +
√

1− η2βt are independent Brownian motions under agent

2’s probability measure. If η = 1 they disagree only about the drift of productivity. If η = 0, they

disagree on extraneous, or non-fundamental, events but agree on the drift of productivity.4 For

intermediate cases they disagree about both.

4We will see that that when η = 0 and ρ1 = ρ2, and there are no securities traded on this risk then the optimal
production plan will be the same for each agent. Introducing securities which allow trade on the extraneous risk will
change this however.
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The aggregate budget constraint is5

It + ct ≤ αAtKt, (2.6)

where It, measured in the consumption good, is the amount reinvested in capital stock and ct is the

consumption dividend paid to investors. In order to reinvest this consumption good into capital

stock, an linear adjustment cost must be paid. In addition, we make an assumption that the tech-

nology to convert consumption into capital or capital into consumption is linear and proportional

to 1
At
. Therefore, the capital stock evolves according to

dKt =

(

−δKt +
1

At

{

It − aIt1{It>0} + bIt1{It<0}

}

)

dt, (2.7)

where δ > 0 is the capital depreciation rate, a > 0 and b > 0 are marginal adjustment costs

for investment and divestment, respectively. The asymmetric marginal adjustment costs play an

important role in our model, they also help to capture realistic features of adjustment costs for

example, irreversible investment. In this case, our assumptions on the conversion of consumption

into capital implies when At is low, then reinvested consumption goods can produce larger amounts

of capital, while if At is high, then reinvested consumption goods produce less capital goods.

Since It = αAtKt − ct, we have

dAtKt = AtdKt +KtdAt

= At

(

−δKt +
1

At

{

It − aIt1{It>0} + bIt1{It<0}

}

)

dt+Kt (Atµdt+AtσdBt)

=
[

AtKt (µ− δ) + (αAtKt − ct)
(

1− a1{αAtKt>ct} + b1{αAtKt<ct}

)]

dt+AtKtσ dBt. (2.8)

5This allows for free disposal; at an optimum the budget constraint will hold with equality so our further derivations
will assume this holds with equality. Under the assumption of free disposal, the production set is convex.
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2.1 Financial Markets

Individual i is endowed with θi shares in the firm. We assume θ1 + θ2 = 1. They can also

potentially trade two financial securities in zero net supply. There is also locally riskless borrowing

and lending in zero net supply. Prices in our model can be expressed in terms of consumption or

in terms of capital. Using consumption as a numeraire and letting rt be the risk-free rate, one unit

of consumption invested in the locally riskless asset will evolve according to the equation

dRt = rtRtdt+RtdLt, (2.9)

where Lt in a continuous adapted finite variation process, which will play a role in equilibrium

pricing as we explain later. A dollar invested in the financial assets evolves according to the

equation

dF j
t = µjF tF

j
t dt+ F j

t dLt + F j
t σ

j
FdZt (2.10)

for j = 1, 2, where

Zt =







Bt

B̂t






(2.11)

and

σ1
F =

[

σ11F 0

]

, σ2
F =

[

0 σ22F

]

. (2.12)

Let

µFt =







µ1Ft

µ2Ft






, σF =







σ1
F

σ2
F






. (2.13)

We will examine how allowing trade in extraneous risk affects the economy. In this case we

define state prices by letting κt = σ−1
F (µFt − rt1) and

ξt = exp

(∫ t

0

(

−rs −
1

2
||κs||

2

)

ds− Lt −

∫ t

0
κ⊤
s dZs

)

. (2.14)
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As an alternative we will examine when trade in the extraneous risks is not possible. In this

case we define state prices by letting κt =
µ1
Ft−rt

σ1
1F

and

ξt = exp

(∫ t

0

(

−rs −
1

2
κ2s

)

ds− Lt −

∫ t

0
κsdBs

)

. (2.15)

We assume investors can pledge shares of the firm as collateral for their financial transactions6.

Investors must maintain solvency, that is the value of their financial losses cannot exceed the value

of their shares in the firm (valued in the consumption numeraire),

W i
t ≥ −θiSt,

where St is the value of the aggregate dividend paid to the investors, that is

St =
1

ξt
E1

[∫ ∞

t

ξscsds|Ft

]

. (2.16)

Investors trade the two financial securities and the riskless asset, receive the dividend from the firm

and decide how much to consume. The wealth constraint for each investor can be written as

dW i
t =

(

rtW
i
t + φi

t(µFt − rt1) + θict − ci,t

)

dt+W i
t dLt + φi

tσF dZt, (2.17)

where φi
t = [φi1,t φ

i
2,t] is the value invested in each financial security and W i

0 = 0.

Simple calculations give

ξt(W
i
t + θiSt) +

∫ t

0
ξsci,sds (2.18)

is a nonegative local martingale therefore

E1

[∫ ∞

t

ξsci,sds|Ft

]

≤ ξt(W
i
t + θiSt). (2.19)

6Allowing investors to trade their shares in the financial market will not change the equilibrium because the shares
are a redundant asset. In this case we would use a nonnegative wealth constraint.
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The investors problems can now be stated. Our first choice problem allows the investors to

trade in both financial securities.

Choice Problem 2.1 (Choice problem with trade in real and non-fundamental risks). Choose

consumption ci,t and trading strategies, φi
t to maximize

Ei

[

∫ ∞

0
e−ρit

c1−γ
i,t

1− γ
dt

]

subject to the dynamic wealth constraint (2.17) with the initial condition W i
0 = 0, and the solvency

condition

W i
t ≥ −θiSt. (2.20)

Alternatively we examine the case where only the first financial security is traded so there is no

trade in the non-fundamental risk B̂.

Choice Problem 2.2 (Choice problem with trade in only real risk). Choose consumption ci,t and

a trading strategy, φi1,t to maximize

Ei

[

∫ ∞

0
e−ρit

c1−γ
i,t

1− γ
dt

]

subject to the dynamic wealth constraint

dW i
t =

(

rtW
i
t + φi1,t(µ

1
Ft − rt) + θict − ci,t

)

dt+W i
t dLt + φi1,tσ

1
1,FdBt (2.21)

with the initial condition W i
0 = 0, and the solvency condition

W i
t ≥ −θiSt. (2.22)

We can find the solution to the investors’ optimization problems by writing a static maximization

problem with a single linear budget constraint as in Cox and Huang (1989). The next proposition
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summarizes the optimal solutions for the investors for a given production plan.

Proposition 2.1. 1. The optimal solution to Problem 2.1 is given by

c1,t =
(

χ1e
ρ1tξt

)− 1

γ c2,t =

(

χ2e
ρ2t

ξt
Nt

)− 1

γ

, (2.23)

where ξt defined in Equation (2.14) and χi is the solution to

E1

[∫ ∞

0
ξtci,tdt

]

= θiS0. (2.24)

2. Let FB
t be the filtration generated by the real risk Bt, and suppose the production choice

ct ∈ FB
t and the state price density ξt ∈ FB

t . The optimal solution to Problem 2.2 is given by

c1,t =
(

χ1e
ρ1tξt

)− 1

γ c2,t =

(

χ2e
ρ2t

ξt

E1[Nt|FB
t ]

)− 1

γ

, (2.25)

where ξt defined in Equation (2.15) and χi is the solution to

E1

[∫ ∞

0
ξtci,tdt

]

= θiS0. (2.26)

Proposition 2.1 gives important insight into the equilibrium with and without trade in extra-

neous risk. When there is trade in extraneous risk, then we have a standard complete market

optimization problem. When there is no trade in the extraneous risk, while markets are incom-

plete, the resulting optimization problem can be thought of as one where a fictitious market for

trade in the extraneous risk is introduced to complete the market. When the optimal production

plan does not depend on extraneous risk, ξt ∈ FB, and the asset for extraneous risk has no risk

premium, then the investor will not trade the fictitious asset so the complete market solution with

the fictitious market is in fact the solution for the incomplete market problem7. When investors

7See He and Pearson (1991) or Karatzas, Lehoczky, Shreve and Xu (1991) for formal treatments of solving
incomplete market consumption investment problems using this intuition. In our setting, the problem is much
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disagree about extraneous risk it is impossible to introduce this second security with zero risk

premium in both investors’ probability measures so an equilibrium with the second security must

reflect disagreement about the extraneous risk.

2.2 Equilibrium

In this section we provide definitions for equilibrium. Our definitions are straightforward. Given

state prices, investors choose an optimal consumption and financial market trading plans, the

production plan maximizes the value of the output, and given these choices markets clear.

Definition 2.1 (Equilibrium with trade in real and non-fundamental risks). An equilibrium with

trade in real and non-fundamental risks consists of an adapted stochastic process ξt as in Equation

(2.14), feasible consumption and trading strategies ci,t, φ
i
t, and feasible production output ct such

that

1. Given ξt, the consumption processes are optimal solutions to Problem 2.1.

2. The consumption market clears: c1,t + c2,t = ct.

3. The asset markets clear: φ1
t + φ2

t = 0, W 1
t +W 2

t = 0.

4. Production ct is chosen to maximize the value of the firm in Equation (2.27).

Definition 2.2 (Equilibrium with trade in only real risk). An equilibrium with trade in only real

risk consists of an adapted stochastic process ξt as in Equation (2.15), feasible consumption and

trading strategies ci,t, φ
i
1t, and feasible production output ct such that

1. Given ξt, the consumption processes are optimal solutions to Problem 2.2.

2. The consumption market clears: c1,t + c2,t = ct.

3. The asset markets clear: φ1t + φ2t = 0, W 1
t +W 2

t = 0.

simpler so we do not need to employ these techniques.
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4. Production ct is chosen to maximize the value of the firm in Equation (2.27).

Even though investors have different beliefs about the probability of different events, they agree

on prices for payoffs contingent on these events. Therefore, given prices, they agree on the optimal

production policy for the firm regardless of whether there is trade in the non-fundamental risk. To

see this, recall Proposition 2.1 indicates when the extraneous risk is not traded and ξt ∈ FB
t then

investors will choose consumption which does not depend on the extraneous risk. Market clearing

then implies that production cannot depend on extraneous risk as well. But this then implies

ξt ∈ FB
t . This gives the following proposition.

Proposition 2.2. Given prices, in equilibrium both investors agree on the optimal production policy

for the firm if trade is allowed in the second financial security or if trade is not allowed in the second

financial security. The optimal production policy for the firm is to maximize

E1

[∫ ∞

0
ξtct dt

]

, (2.27)

where ξt is given by Equation (2.14) when both financial securities are traded and ξt is given by

Equation (2.15) when only the first financial security is traded.

Importantly, Proposition 2.2 says that when extraneous risk is not traded, then investors will

agree that the optimal production policy should not depend on extraneous risk. Given that the

firm maximizes the expression in Equation (2.27) where ξ is given by Equation (2.15), then the

aggregate output will not depend on extraneous risk. Given this, investors optimal consumption

will not depend on extraneous risk, and given this, investors will agree that the optimal production

should not depend on extraneous risk.
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3 Equilibrium Production

A significant simplification of the problem is to run the production process to maximize a repre-

sentative agent’s utility of the form

E1

[

∫ ∞

0
e−ρ1t

(

λ
c1−γ
1,t

1− γ
+ (1− λ)e(ρ1−ρ2)tNt

c1−γ
2,t

1− γ

)

dt

]

(3.28)

for some λ ∈ [0, 1]. It is convenient to define the state variable Mt = e(ρ1−ρ2)tNt. The dynamics of

the state variable are given by

dMt = (ρ1 − ρ2)Mtdt− βMtdB̃t. (3.29)

We can then write the planner’s problem as follows.

Choice Problem 3.1. Choose feasible production output ct and an allocation c1,t, c2,t with c1,t +

c2,t = ct to maximize

E1

[

∫ ∞

0
e−ρ1t

(

λ
c1−γ
1,t

1− γ
+ (1− λ)Mt

c1−γ
2,t

1− γ

)

dt

]

(3.30)

subject to the dynamics of M (3.29) and

dAtKt =
[

AtKt (µ− δ) + (αAtKt − ct)
(

1− a1{αAtKt>ct} + b1{αAtKt<ct}

)]

dt+AtKtσdBt. (3.31)

Proposition 3.1. Equilibrium production and consumption choices when trade is allowed in both

real and non-fundamental risks can be equivalently described by the solution to the planner prob-

lem 3.1 for λ =
1

χ1
1

χ1
+ 1

χ2

where χ1 and χ2 are as described in Proposition 2.1.

Alternatively, we can examine the case where individuals are not allowed to trade in both risks.

Define FB
t to be the filtration generated by real risk Bt. In this case we have the following result.
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Proposition 3.2. Equilibrium production and consumption choices when trade is allowed in only

real risk can be equivalently described by the solution to the planner problem 3.1 with the additional

constraints c1,t ∈ FB
t and c2,t ∈ FB

t where λ =
1

χ1
1

χ1
+ 1

χ2

where χ1 and χ2 are as described in

Proposition 2.1.

3.1 Model Solution

To characterize the equilibrium production we now solve Problem 3.1 for the case when both risks

are traded in financial markets and for the case where only real risk is traded in the financial

market. We define the value function given the initial conditions of A, K, andM and the dynamics

in equations (3.31) and (3.29) as

V (AK,M) = sup
{c1,t,c2,t|c1,t+c2,t=ct}

E1

[

∫ ∞

0
e−ρ1t

(

λ
c1−γ
1,t

1− γ
+ (1− λ)Mt

c1−γ
2,t

1− γ

)

dt

]

. (3.32)

According to Proposition 3.1 this problem then characterizes the equilibrium production choice and

allocation in the economy where both real and non-fundamental risks are traded.

To characterize the value function in the economy where only the real risk is traded, we define

the value function similarly but now according to Proposition 3.2 we replace the state variable M

with the state variable E1[M |FB
t ]. For notational convenience we can continue to refer to the state

variable M but change the dynamics to

dMt = (ρ1 − ρ2)Mtdt− ηβMtdBt, (3.33)

which now reflects the dynamics of E1[M |FB
t ].

We begin our analysis by recording the optimal production for each investor if they own the

firm and there is no trade in financial markets. It is useful to introduce the following notation

Γ1 = ρ1 − (1− γ)

(

µ− δ −
γσ2

2

)

, Γ2 = ρ2 − (1− γ)

(

µ− δ − ηβσ −
γσ2

2

)

, (3.34)
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and for i = 1, 2,

c̄ia =
Γi − (1− γ)α(1− a)

(1− a)γ
, c̄ib =

Γi − (1− γ)α(1 + b)

(1 + b)γ
. (3.35)

We assume Γi > 0 for i = 1, 2. This condition is sufficient for the existence of autarky equilibria.

Proposition 3.3. Assume Γi > 0 for all i = 1, 2. Then, at autarky equilibrium,

V (AK,M) =
(AK)1−γ

1− γ
×











h1, λ = 1

Mh2, λ = 0,

(3.36)

where8

hi =



























c̄
−γ
ia

1−a
, (1− γ)(1− a) < Γi

α
< 1− a

α1−γ

Γi
, 1− a ≤ Γi

α
≤ 1 + b or Γi

α
≤ (1− γ)(1− a)

c̄
−γ
ib

1+b
, Γi

α
> 1 + b,

(3.37)

for capital accumulation, no adjustment, and capital depletion, respectively. The corresponding

consumption to AK ratios are c̄ia, α, and c̄ib.

Proposition 3.3 tells us the solution when there is only one type of investor present in the

economy. In this case, the optimal ratio of consumption to AK is constant and the optimal choice

is obtained by maximizing the Bellman equation over each of the three possible regions. In this

case, an investor has three choices of production plan, capital accumulation, no adjustment, and

capital depletion. The maximizing choice for each region must also be feasible. For example, in the

capital accumulation region c̄1a represents the optimal ratio of consumption to AK; if it is greater

than α, then capital accumulation is feasible for investor 1. Similarly, if c̄1b is smaller than α then

capital depletion is not feasible. By solving this in all three regions, investors then choose the

production (consumption) plan that is feasible because the conditions for feasibility are mutually

exclusive. These polar solutions provide the key boundary conditions for solving the general case.

Our next proposition provides some useful bounds and properties of the value function when there

8The condition (1− γ)(1− a) < Γi

α
only applies to the case with γ < 1; it always satisfies for γ > 1.
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is trade in the financial markets and both types of investor are present.

Proposition 3.4. The value function V (AK,M) has the form

V (AK,M) =
(AK)1−γ

1− γ
h(M).

The function h(M) is strictly increasing in M , the function h(M)/M is strictly decreasing in M ,

h(M)
1−γ

is convex, and

0 ≤
Mh′(M)

h(M)
≤ 1. (3.38)

These properties of h(M) in Proposition 3.4 are important to understand the equilibrium of

the economy. Our next result characterizes the value function when both types of investors are

present.

Proposition 3.5. Suppose both financial securities are traded. If there is a C2 function h which

satisfies the conditions of Proposition 3.4 and solves

(

−Γ1

1− γ
+ α(1− a)

)

h(M) +
β2M2

2(1− γ)
h′′(M) +

(

ρ1 − ρ2
1− γ

− ηβσ

)

Mh′(M)

+
γ

1− γ

[

λ
1

γ + ((1− λ)M)
1

γ

]

[(1− a)h(M)]
1− 1

γ = 0 (3.39)

in the capital accumulation region,

(

−Γ1

1− γ
+ α(1 + b)

)

h(M) +
β2M2

2(1− γ)
h′′(M) +

(

ρ1 − ρ2
1− γ

− ηβσ

)

Mh′(M)

+
γ

1− γ

[

λ
1

γ + ((1− λ)M)
1

γ

]

[(1 + b)h(M)]
1− 1

γ = 0 (3.40)
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in the capital depletion region, and in the no-adjustment region

−Γ1

1− γ
h(M) +

β2M2

2(1− γ)
h′′(M) +

(

ρ1 − ρ2
1− γ

− ηβσ

)

Mh′(M)

+
α1−γ

1− γ

[

λ
1

γ + ((1− λ)M)
1

γ

]γ

= 0, (3.41)

with the conditions

(1− a)h(M) ≤ α−γ
[

λ
1

γ + ((1− λ)M)
1

γ

]γ

≤ (1 + b)h(M). (3.42)

Boundary conditions are given by

lim
M→0

h(M) = λh1, lim
M→∞

h(M)

M
= (1− λ)h2, (3.43)

where h1 and h2 are given in Proposition 3.3. Then V (AK,M) = (AK)1−γ

1−γ
h(M).

Proposition 3.5 characterizes the optimal production plan when investors trade both financial

assets. In contrast with the case where there is only one type of agent present, the optimal

consumption to capital ratio can vary stochastically over time. A key implication of the model

is that the nature of the optimal production plan also varies with M ; it is possible that the

economy switches from capital accumulation/depletion to the phase of no adjustment, in which all

output is consumed and there is no aggregate investment or divestment. We also call the state of

no adjustment the exchange phase. The economy in our model is a combination of pure production

and pure exchange phases, which are endogenously determined in our model. The next proposition

shows the quantitative effects of speculation on optimal production.
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Proposition 3.6. The aggregate consumption is given by

c∗t = c∗1,t + c∗2,t = AtKt ×



























(

λ
(1−a)h(Mt)

) 1

γ
+
(

(1−λ)Mt

(1−a)h(Mt)

) 1

γ

α
(

λ
(1+b)h(Mt)

) 1

γ
+
(

(1−λ)Mt

(1+b)h(Mt)

) 1

γ
,

(3.44)

in the capital accumulation, no adjustment, and the capital depletion regions. Furthermore, the

aggregate consumption also satisfies

c∗t = AtKt ×











(

1− Mth
′(Mt)

h(Mt)

)

c̄1a +
Mth

′(Mt)
h(Mt)

c̄2a −
β2M2

t h
′′(Mt)

2γ(1−a)h(Mt)
(

1− Mth
′(Mt)

h(Mt)

)

c̄1b +
Mth

′(Mt)
h(Mt)

c̄2b −
β2M2

t h
′′(Mt)

2γ(1+b)h(Mt)
,

(3.45)

in the capital accumulation and capital depletion regions, respectively.

Proposition 3.4 shows h′′(M) is negative (positive) when γ < 1 (γ > 1), and 0 ≤ Mh′(M)
h(M) ≤ 1.

Equation (3.45), in conjunction with the properties of h(M), highlights the influence of disagreement

on optimal production. If both investors would choose to accumulate capital in autarky and γ < 1

then in equilibrium the optimal production will accumulate capital. On the other hand, if both

investors would choose to deplete capital in autarky and γ > 1 then in equilibrium the firm would

deplete capital. In general, Proposition 3.6 shows that when γ < 1 heterogeneous beliefs tend to

increase equilibrium investment while if γ > 1 equilibrium investment tends to decrease.

When β = 0, individuals have homogeneous beliefs but possibly different time preferences. In

this case we see that the optimal consumption to AK ratio, c∗t /AtKt, is a weighted average of c̄1a

and c̄2a in the capital accumulation region. In this case, the optimal production must be smaller

than α to be in the capital accumulation region, but also must be between c̄1a and c̄2a. If c̄1a and c̄2a

are both greater than α then the optimal production cannot involve capital accumulation. However,

if β 6= 0, then optimal production can involve capital accumulation when γ < 1 since in this case

Proposition 3.4 implies h′′(M) ≥ 0 so the additional term can lower the optimal consumption and

raise investment.
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A similar analysis applies when γ > 1. In this case Proposition 3.4 implies h′′(M) ≤ 0 so

disagreement will cause optimal consumption to AK ratio to be higher than a weighted average

of c̄1b and c̄2b in the capital depletion region. If c̄1b and c̄2b are both less than α, and β = 0,

then optimal production cannot involve capital depletion. However, when β 6= 0, then optimal

consumption can be higher and capital depletion can be part of the optimal production plan.

The next proposition outlines the solution for the function h when only real risks are traded.

Trade in the non-fundamental risk either lowers the trough optimal consumption to AK ratio or

raises the peak optimal consumption to AK ratio depending on the coefficient of relative risk

aversion. Without trade in non-fundamental risks, the trough optimal consumption to AK ratio

is higher than the economy where non-fundamental risks are traded when 0 < γ < 1 and the peak

optimal consumption to AK ratio is lower than the economy where non-fundamental risk is traded

when γ > 1.

Proposition 3.7. When only real risks are traded, if a function h satisfies the same condi-

tions as in Proposition 3.5 except the term β2M2

2(1−γ)h
′′(M) is replaced by η2β2M2

2(1−γ) h
′′(M) in equa-

tions (3.39), (3.40), and (3.41), then the value function is V (AK,M) = (AK)1−γ

1−γ
h(M). Optimal

consumption is again given by (3.44) and when 0 < γ < 1 (γ > 1) the maximal (minimal) optimal

consumption to AK ratio is always higher (lower) than that in the economy when all risks are

traded.

To understand the effects of speculation over extraneous risk, we can insert the expression

for optimal consumption in Equation (3.44) into Equations (3.39), and (3.40) only with the term

β2M2

2(1−γ)h
′′(M) is replaced by η2β2M2

2(1−γ) h
′′(M). This gives Equation (3.45) with β2 replaced by η2β2.

Since |η| ≤ 1 this is suggestive of the fact that trading extraneous risk will tend to have a bigger

effect on real activity. In particular, when η = 0 and β 6= 0, then investors agree on fundamental risk

but disagree on extraneous risk. In this case, trading extraneous risk raises equilibrium consumption

above the weighted average when γ > 1 and lowers equilibrium consumption below the weighted

average when γ < 1. However, when extraneous risk is not traded, then aggregate consumption
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must be equal to the weighted average.

Propositions 3.5 and 3.7 indicate that the function h is the solution to a free boundary prob-

lem. In other words, we must find the boundaries between the accumulation, no-adjustment, and

depletion regions. To solve this we need to impose smooth pasting conditions at the boundaries

between the various regions to ensure the function h is C2 . This is aided by the fact that the

solution in the no-adjustment region takes a very explicit form9

h(M) =



C1 −
2α1−γ

β2(φ+ − φ−)

∫ M

[

λ
1
γ + ((1− λ)x)

1
γ

]γ

xφ++1
dx



Mφ+

+



C2 +
2α1−γ

β2(φ+ − φ−)

∫ M

[

λ
1
γ + ((1− λ)x)

1
γ

]γ

xφ−
+1

dx



Mφ
− (3.46)

for constants φ+ and φ− as defined in Equation (6.94) in the appendix.

Proposition 3.8. The function h(M) in the pure exchange region is given by Equation 3.46. Given

C2 candidate solutions outside of the pure exchange region, if C1, C2 and the boundaries are chosen

so that the value and derivative match at the boundaries, the resulting function is C2.

In order to solve the free boundary problem, we employ a variation of the “shooting” method

in which a boundary value problem is transformed into an initial value problem. The basic idea

is that we know the boundary values for limM→0 h(M) and limM→∞
h(M)
M

. For concreteness, let

us assume that when M = 0 we are in the capital accumulation region, in other words investor 1

in autarky would run the firm to accumulate capital. We start very near M = 0 and prescribe an

initial value for h′(M). We then numerically solve (3.39) with these initial conditions. We then

travel along this solution until (3.42) holds with equality. At this point we solve for C1 and C2 in

our expression for the value function in the no-adjustment region so that this expression matches

the value of our numerical solution and so that the derivatives also match. We then travel along

this solution until the one of the boundary conditions (3.42) are violated. This then gives us initial

9A brief proof is provided in the proof of Proposition 3.5. This expression also leads to a closed form expression
(see Proposition 4.1) for the value of the aggregate endowment in a pure exchange economy. This, and much more,
is analyzed in Lee, Li and Loewenstein (2015).
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conditions at this point to solve either (3.39) or (3.40) depending on which boundary condition is

violated. We then travel along this solution and continue in this manner until we reach a very large

value of M . At this point we then compare the value of h(M)
M

for our constructed solution to the

known value we are trying to match. We then repeat this procedure by varying the initial condition

for h′(M) until we satisfy the boundary condition for very large M . By construction, the smooth

pasting and value matching conditions hold at the boundaries of the adjustment regions and the

no-adjustment regions.

The nature of the optimal consumption helps determine where the optimal boundaries are

located. From Proposition 3.6, we know that if both investors would choose to invest capital in

autarky and γ < 1 then in equilibrium, the firm would invest capital. Similarly, if γ > 1 and both

speculators would choose to deplete in autarky, then in equilibrium, the firm would always deplete.

The cases which involve capital accumulation, no-adjustment, and capital depletion can arise when

the optimal consumption to capital ratio in autarky is to accumulate capital for one speculator and

to deplete capital in autarky for the other speculator. However, this is not necessary. Interestingly,

when γ < 1 if both investors would choose to deplete capital, it is possible for the equilibrium

production choice to involve no-adjustment and/or capital investment. In this case we look for

4 possible boundaries: the first boundary between the capital depletion and the no adjustment

region, the first boundary between the no-adjustment region and the capital accumulation region,

the second boundary between the capital accumulation and the capital adjustment region, and

the second boundary between the no-adjustment region and the capital depletion region. Similarly,

when γ > 1 if both investors would choose to deplete capital in autarky, the equilibrium production

choice could involve no adjustment and/or capital accumulation, and again we would look for four

possible boundaries.
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3.2 Asset Prices

In equilibrium, optimality requires

c1−γ
1,t =

1

λ
ξt. (3.47)

While the value function V (AK,M) is C2 inM , consumption as a function ofM is not differentiable

at the boundary points where the economy switches between productive and pure exchange regions.

This occurs because the adjustment cost function is not differentiable. Therefore, one of the

interesting features of this model with linear adjustment costs is that the rate of interest may

not exist. That is, the value of a one unit of consumption invested in riskless lending is given by

Rt = exp

(∫ t

0
rsds+ Lt

)

, (3.48)

where Lt is a measurable, adapted, continuous finite variation process which is singular with respect

to Lesbesgue measure, meaning it increases or decreases only on a Lesbesgue measure zero set of

points. The presence of Lt is due to non-smoothness of consumption in the state variable M at

the boundaries of the no-adjustment region. The function Lt only increases or decreases at these

points depending on whether c1,t(AK,M) is a concave or convex function of M . To see this, we

use the generalized Ito formula for convex, not necessarily differentiable, functions (Karatzas and

Shreve (1991) Theorem 3.7.1 ) to expand c1,t(AK,M) and match coefficients for the Ito expansion

for ξt to solve for Lt, rt, and κt.

The interest rate, when it exists, is the expected growth rate of marginal utility of consumption.

In the adjustment regions, marginal utility of consumption is proportional to the marginal utility of

capital (AK)−γh(M). In the no-adjustment region, marginal utility of consumption is proportional

to (αAK)−γ
[

λ
1

γ + (1− λ)M)
1

γ

]γ

. While consumption is continuous in M , it is not differentiable

at the boundaries of a no-exchange region. In the interior of the adjustment regions and the

no-adjustment region, the expected growth rate is found using Ito’s lemma. However, at the

boundaries, consumption is not smooth in M and the process Lt accounts for this. Practically
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speaking, to measure the rt and Lt processes one would need to observe a continuous path of the

investment in the locally riskless asset; these processes cannot be identified with discrete data.

However, the following proposition suggests investments in the locally riskless asset will have very

different properties across the different phases of the economy.

Proposition 3.9. When trade is allowed in both financial securities, the state price density (under

P 1) is given by

ξt =



























e−ρ1t(AtKt)
−γh(Mt)(1− a)/(c∗1,0)

−γ

e−ρ1t(αAtKt)
−γ
[

λ
1

γ + ((1− λ)Mt)
1

γ

]γ

/(c∗1,0)
−γ

e−ρ1t(AtKt)
−γh(Mt)(1 + b)/(c∗1,0)

−γ

and the interest rate is given by

rt =



































α(1− a) + µ− δ − γσ2 − ηβσMth
′(Mt)

h(Mt)

λ
1
γ

λ
1
γ +((1−λ)Mt)

1
γ
r̄1 +

((1−λ)Mt)
1
γ

λ
1
γ +((1−λ)Mt)

1
γ
r̄2 +

1
2

(

1− 1
γ

)

(λ(1−λ)Mt)
1
γ

(

λ
1
γ +((1−λ)Mt)

1
γ

)2β
2

α(1 + b) + µ− δ − γσ2 − ηβσMth
′(Mt)

h(Mt)
,

(3.49)

for the regions of capital accumulation, no adjustment, and capital depletion, respectively, where

r̄1 = ρ1 + γ(µ− δ)−
1

2
γ(1 + γ)σ2,

r̄2 = ρ2 + γ(µ− δ − ηβσ)−
1

2
γ(1 + γ)σ2.

The interest rate does not exist at the transition points between regions of capital accumulation and

no adjustment, and capital depletion and no adjustment.

When trade in only real risk is allowed the expressions above still apply with β2 replaced by

η2β2.

Proposition 3.9 indicates that asset prices behave differently in the accumulation and depletion

phases than in the exchange phase. To better understand this, we first consider the behavior of
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the interest rate. For example, when investors have identical beliefs, the equilibrium interest rate

in the accumulation phase is given by

α(1− a) + µ− δ − γσ2, α(1− a) + µ− ηβσ − δ − γσ2

if they both have investor 1’s beliefs or if they both have investor 2’s beliefs, respectively. Notice

that these do not depend on the time discount rate. In equilibrium with investors with both types

of beliefs, the interest rate in the accumulation phase is a weighted average these interest rates with

the weights

1−
Mh′(M)

h(M)
,

Mh′(M)

h(M)
,

which are between 0 and 1 as discussed earlier.

In exchange phase, the interest rate when all investors have the same time preferences and

beliefs as investor i is r̄i, given in Proposition 3.9. In contrast with the rates in the production

regions, this does depend on the time preference. In equilibrium with both types of investors, the

equilibrium interest rate is not simply weighted sum of all ri, but it also includes the term with β2

or η2β2, which is positive when γ > 1 and negative when γ < 1. This additional term arises because

investors with γ > 1 prefer to consume earlier and invest less when future investment opportunities

become more attractive, while investors with γ < 1 prefer to invest more and consume later when

future investment opportunities become more attractive.

Much of the behavior of asset prices is traced to the fact that in the accumulation and depletion

regions the marginal utility of consumption is proportional to the marginal utility of capital; in the

exchange phase, this proportionality does not hold.
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Proposition 3.10. The value of aggregate consumption (or dividend) is given by

St = αAtKt ×



































1
(1−a)α

αγ−1h(Mt)
[

λ
1
γ +((1−λ)Mt)

1
γ

]γ

1
(1+b)α ,

(3.50)

for the regions of capital accumulation, no adjustment, and capital depletion, respectively. Further-

more, in the no-adjustment region

St = αAtKt ×

[(

1−
Mth

′(Mt)

h(Mt)

)

Γ1 +
Mth

′(Mt)

h(Mt)
Γ2 −

β2

2

M2
t h

′′(Mt)

h(Mt)

]−1

, (3.51)

where Γi, given by (3.34), is the output-price ratio in autarky in the case of no adjustment.

Proposition 3.10 indicates that the output-price ratio, αAtKt

St
is trivially a weighted average

of the output-price ratios in an economy with homogeneous investors in the capital accumulation

and depletion regions. In the no-adjustment region the output-price ratio is a weighted average of

output-price ratios from a pure exchange economies with homogeneous investors plus an adjustment

term. The adjustment term is non-zero when investors disagree and is strictly negative for γ < 1

and strictly positive for γ > 1. When γ < 1 (γ > 1), it is possible for the output-price ratio to

be lower (higher) than the minimum output-price ratio in the single agent economies,min{Γ1, Γ2}

(max{Γ1, Γ2}), if the adjustment term for disagreement is large enough. The price-output ratio

satisfies

St
αAtKt

> (<)

[(

1−
Mth

′(Mt)

h(Mt)

)

Γ1 +
Mth

′(Mt)

h(Mt)
Γ2

]−1

for γ < 1 (γ > 1) in the no-adjustment region. When speculators have the same time discount rate

and agree on the fundamental risk, the impact of speculation on asset price is unambiguous in the

no-adjustment region; the price-output ratio is always higher (lower) than Γ1 = Γ2 when γ < 1

(γ > 1).
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The price-output ratio is 1/(1−a)α > 1/α for capital accumulation region and 1/(1+b)α < 1/α

for capital depletion region. However, this ratio becomes stochastic in the region of no adjustment,

in which the economy becomes a pure exchange one. When the economy in the exchange phase, real

investment does not respond to financial markets, so asset prices behave quite differently than in

the accumulation and depletion regions. In particular, the stock price can be depend on the extra-

neous risk when the financial market trades both financial assets. For the accumulation/depletion

phase, speculation does not directly impact this ratio, but does impact aggregate consumption and

investment. The investment/divestment channel is optimally shutdown in the exchange phase, and

thus heterogeneity between investors is fully reflected in asset prices and the interest rate.

When extraneous risk is traded, it affects the equilibrium through the dynamics of Mt. Since

St does not depend on Mt in the production phase, the value of aggregate consumption does not

depend on extraneous risk, however, it does depend on the extraneous risk in the exchange phase.

Thus, the market value of aggregate consumption may have a lower correlation with fundamentals

when investors have a large disagreement on extraneous risk.

4 Comparative Statics

We now explore the quantitative features of the model through numerical examples. In the nu-

merical examples which follow, we consider two values of relative risk aversion; 3 = γ > 1 and

0.3 = γ < 1. For both of these choices, we fix the beliefs of investor 1 and let β = −1. This

means that when η = 1 investor 2 estimates the cash flow growth to be one standard deviation of

fundamental risk (σ) higher than investor 1. We will vary η to get different mixes of disagreement

on fundamental and extraneous risk. When η = 0 both investors agree on the drift of the cash flows

but have disagreement on extraneous risk. We examine the cases where η is positive which means

that investor 1 is relatively pessimistic and investor 2 is relatively optimistic about the fundamental

risk. For most of our analysis we assume the investors have the same time preference parameter

ρ1 = ρ2 = 0.05. For the fundamental parameters, we choose α = 0.05, µ− δ = −0.02, σ = 0.03 and
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λ = 1
2 .

4.1 Aggregate Consumption and Investment when Both Financial Securities

Are Traded

In this section, we assume both financial securities are traded and explore the effect of this on

the optimal production in equilibrium. In Figure 1, we set γ = 3 and plot the ratio of aggregate

consumption to AK versus the logarithm of M for different values of η. Consistent with Proposi-

tion 3.6 we see that heterogeneity of beliefs tends to raise aggregate consumption and thus decrease

aggregate investment.

The top graph of Figure 1 displays the case where η = 0, that is investors agree on the funda-

mentals but disagree on extraneous risk. In this case, the limit as M approaches infinity and as

M approaches zero are the same because in isolation (or when extraneous risk is not traded) each

investor would choose the same production plan and consume approximately 0.036AK. In this

case, both investors would choose to accumulate capital since 0.036 < 0.05 = α. However, when

both investors are present in equilibrium and aggregate risk is traded, aggregate consumption can

be much higher than this level, and hence the aggregate investment is much lower. This indicates

that speculation over extraneous risk can have large effects on the real side of the economy. It

is also important to note that this effect is present even when one group of investors is relatively

small; the aggregate consumption is above 0.04AK for e−5 ≤M ≤ e5.

When η > 0, investors disagree on the fundamental risk. Graphs 2 to 4 in Figure 1 plot the

optimal consumption for different values of η. As η increases, investor 2 becomes more optimistic

about the fundamental risk, thus, since γ > 1 in autarky he would choose a production plan which

consumes more and invests less. In the second graph from the top, even though both investors

still prefer capital accumulation, the aggregate consumption ratio is higher than 0.05 = α for some

values of M , thus two no-adjustment regions emerge to bridge the regions of capital accumulation

and capital depletion. In the third graph of Figure 1, investor 2 is even more optimistic about the
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Figure 1: Aggregate Consumption to AK Ratio (γ > 1). The model parameters are set as follows:

α = 0.05, µ− δ = −2%, σ = 3%, ρ1 = ρ2 = 5%, γ = 3, λ = 0.5, β = −1, a = 0.1, and b = 0.2. From top to

bottom: η = 0, 0.5, 0.8, 1, respectively.

fundamental risk and he would choose a production plan with no adjustment to capital stock. In

this case, the second no-adjustment region extends all the way to the boundary and the region of

capital depletion also becomes larger. As investor 2 becomes more optimistic about the fundamental

risk, he prefers capital depletion as indicated in the fourth graph in Figure 1, in which the second

no-adjustment region vanishes and the magnitude of the depletion ratio is more pronounced.

We repeat the previous numerical exercises for the case of γ < 1 in Figure 2. A key difference

is that the optimistic investors in autarky would run the firm to accumulate capital and consume

a lower fraction of AK in general. According to Proposition 3.6 we should expect speculation to
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lower consumption, which is the case in Figure 2.
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Figure 2: Aggregate Consumption to AK Ratio (γ < 1). The model parameters are set as follows:

α = 0.05, µ − δ = −2%, σ = 3%, ρ1 = ρ2 = 5%, γ = 0.3, λ = 0.5, β = −1, a = 0.1, and b = 0.2. From top

to bottom: η = 0, 0.5, 1, respectively.

When investors only disagree on extraneous risk, the production plan investors would choose

in autarky (or in the case where extraneous risk is not traded) depletes capital and consumes at

a higher rate than α as shown in the top graph of Figure 2. However, speculation changes the

nature of the optimal consumption/investment policy. When both financial securities are traded,

the optimal production plan accumulates capital when the future investment opportunity set is

most attractive, that is when M near to 1.

As investor 2 becomes more optimistic about the fundamental risk, he prefers less current

consumption (ratio), thus his investment in autarky goes from capital depletion to no adjustment

to capital accumulation as η increases as shown in the second and third graphs in Figure 2. However,

in equilibrium, when both financial securities are traded, consistent with Proposition 3.6 we see

that the optimal production accumulates even more capital and consumption is lower.
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In the regions of no adjustment, all output is consumed, thus, the economy is similar to a pure

exchange economy, although this phase appears endogenously. As shown in the figures, adjustment

costs make this production economy a combination of pure exchange, production with investment

in capital, and production with divestment of capital. The switches among those different types of

economy creates interesting dynamics of asset prices, which we examine next.

4.2 Asset Prices
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Figure 3: Price-Output Ratio (γ > 1). The model parameters are set as follows: α = 0.05, µ− δ = −2%,

σ = 3%, ρ1 = ρ2 = 5%, γ = 3, λ = 0.5, β = −1, a = 0.1, and b = 0.2. From top to bottom: η = 0.5, 0.8, 1,

respectively.

The value of the aggregate consumption is given in Proposition 3.10. The price-output ratio,

St

αAtKt
, is 1

(1−a)α for the capital accumulation region, 1
(1+b)α for the capital depletion region, and

depends on M in the no-adjustment region. Figure 3 plots the price-output ratios that correspond

to the parameter choices in last three graphs in Figure 1 (for the parameters in the first graph of

Figure 1 the price-output ratio is just a constant since the economy always accumulates capital).
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Figure 4: Price-Output Ratio (γ < 1). The model parameters are set as follows: α = 0.05, µ− δ = −2%,

σ = 3%, ρ1 = ρ2 = 5%, γ = 0.3, λ = 0.5, β = −1, a = 0.1, and b = 0.2. From top to bottom: η = 0, 0.5, 1,

respectively.

Figure 4 displays these ratios but now for the parameter choices in the three graphs in Figure

2. In the no-adjustment region speculation tends to decrease the price-output ratio when γ > 1

and increase the price-output ratio when γ < 1. This is consistent with Proposition 3.10, where

output-price ratio is a weighted average of the output-price ratios from pure exchange economies

with homogeneous investors plus an adjustment term. The adjustment term is negative when γ < 1

and positive when γ > 1.

As indicated in these figures, the price-output ratio is constant when the economy is in the invest-

ment/divestment regions. However, the price-output ratio varies with M in the no-adjustment re-

gion. Therefore, the stock price volatility only reflects fundamental risk in the investment/divestment

region but can depend on extraneous risk in the no-adjustment region. Speculation does not nec-

essarily cause the stock to be more volatile; at best this can only happen in the no-adjustment

region.
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Figure 5: Interest Rate (γ > 1). The model parameters are set as follows: α = 0.05, µ − δ = −2%,

σ = 3%, ρ1 = ρ2 = 5%, γ = 3, λ = 0.5, β = −1, a = 0.1, and b = 0.2. From top to bottom: η = 0.5, 0.8, 1,

respectively.

We can also see clearly the distinct of behavior of the real interest rate across the production and

exchange phases. Figure 5 plots interest rate corresponding to the case of γ > 1 for the parameter

choices in the last three panels of Figure 1. First notice that interest rate is not continuous and

jumps at the transition points where the economy changes from production to exchange and vice

versa. As shown in this example, the jump size of interest rate can be very large, which reflects

the different nature between a production and an exchange economy. When the economy in the

production phase, the interest rate is regulated since production responds to changes in the financial

market. However, in the pure exchange phase aggregate consumption does not respond to changes

in the financial market and the risk-free rate is solely determined by investors’ local intertemporal

rate of marginal substitution for consumption.

As shown in Proposition 3.9, the high interest rate in the no-adjustment region is due to the

β2 term in Equation (3.49), which is positive for the case of γ > 1. This term is especially strong
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when the consumption weights of investors are close to each other and the output doesn’t adjust to

the financial market. In this case because both investors perceive an attractive future investment

opportunity set; all else equal they would tend to increase consumption and the interest rate must

go up to clear markets.
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Figure 6: Interest Rate (γ < 1). The model parameters are set as follows: α = 0.05, µ − δ = −2%,

σ = 3%, ρ1 = ρ2 = 5%, γ = 0.3, λ = 0.5, β = −1, a = 0.1, and b = 0.2. From top to bottom: η = 0, 0.5, 1,

respectively.

Figure 6 plots the interest rate when γ < 1 for the parameter choices in Figure 2. In this case,

the β2 term in Equation (3.49) has a negative impact on the equilibrium interest rate, thus, interest

rate can be very low, or even negative, as in the first two panels in Figure 6.

Notice in Figure 6 as η increases from 0 to 1, the real interest rate in an economy with only

investor 2 also increases. Changes in η also affect the transition points between the production and

exchange phases. The equilibrium interest rate behaves differently in the exchange phase, especially

when the consumption weights for investors are close to each other in the exchange region. In this

case, both investors have plenty of wealth to exploit the profitable future investment opportunities.
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4.3 Extraneous Risk Is Not Tradable

When only the first financial security is traded, extraneous risk is essentially not traded. To

illustrate the effects of extraneous risk, we repeat the previous numerical exercises in this case.

When η = 0 and investors disagree only about extraneous risk, then when this risk is not traded,

the optimal production is to produce according to the way each investor would run the firm in

autarky. Therefore in the first graph in Figure 1 the firm would always accumulate capital and pay

out 0.036AK to its owners assuming extraneous risk is not traded in the financial market. In the

first graph in Figure 2 the same analysis applies only now the firm would deplete capital and pay

0.061AK to the owners. Immediately we see the dramatic difference in production that trade in

extraneous risk can create.
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Figure 7: Extraneous Risk Is Not Tradable (γ > 1). The model parameters are set as follows: α = 0.05,

µ− δ = −2%, σ = 3%, ρ1 = ρ2 = 5%, γ = 3, λ = 0.5, β = −1, a = 0.1, b = 0.2, and η = 0.5.

We now examine cases where there is a mix of disagreement over both fundamental and extra-

neous risk. The case when γ > 1 is presented in Figure 7 where we plot the ratio of consumption to

AK and the interest rate versus the logarithm ofM for η = 0.5. In this case, the economy is always

in the capital accumulation phase and the effects of disagreement are quite muted compared to the

case where extraneous risk is traded. When the extraneous risk is traded, the phases of exchange

and capital depletion appear as shown in the second panel of Figure 1. The impacts of speculation

on extraneous risk may be very substantial as shown by this example; the region that the economy

stays in the exchange and depletion phases is very large. Trading extraneous risk also affects the

behavior of asset prices profoundly as the price-output ratio is constant and interest rate is smooth
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and less variable relative to the ones presented in Figures 3 and 5.
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Figure 8: Extraneous Risk Is Not Tradable (γ < 1). The model parameters are set as follows: α = 0.05,

µ− δ = −2%, σ = 3%, ρ1 = ρ2 = 5%, γ = 0.3, λ = 0.5, β = −1, η = 0.5, a = 0.1, and b = 0.2. From top to

bottom: aggregate consumption to AK ratio, price-output ratio, and interest rate, respectively.

Figure 8 plots aggregate consumption to AK, price-output ratio of output, and interest rate

versus the logarithm of M for the case of γ < 1 when extraneous risk is not traded and η = 0.5. In

this example, investor 1 in autarky would deplete capital and investor 2 in autarky would not adjust

the capital stock. When there is trade in only fundamental risk, the production also transitions

to an exchange phase and capital accumulation phases. In this case, trade in fundamental risk

increases investment in the real economy relative to the case when there is no disagreement; this

effect is magnified when extraneous risk is also traded as shown by the second panel in Figure 2.

The effects of trading extraneous risk on asset prices is also evident when we compare the last two

panels in Figure 8 with the second panel in Figures 4 and 6, respectively.
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4.4 Heterogeneous Time Preferences

Sometimes short term speculation is blamed for impairing the real economy. One possible reason

why time preferences might vary is because intermediaries might invest on the behalf of other

investors. In this case their compensation contract might induce intermediaries to focus on shorter

horizon results. In this section we examine this possibility by introducing heterogeneous time

preferences. Lower time discount parameters will generally raise investment since investors become

more patient. However, especially when extraneous risk is traded, it is possible that the optimal

production is lower than each individual would choose in autarky when γ > 1 or higher than each

investor would choose in autarky when γ < 1. This is displayed in Figure 9 which examines the

optimal production versus the logarithm of M when investors only disagree about extraneous risk

and they can trade the extraneous risk. The top graph assumes that γ = 0.3 and ρ1 = 0.025 and

varies ρ2.
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Figure 9: The Effects of Time Preferences. The model parameters are set as follows: α = 0.05,

µ− δ = −2%, σ = 3%, λ = 0.5, β = −1, η = 0, a = 0.1, and b = 0.2; top panel: γ = 0.3, ρ1 = 2.5%; bottom

panel: γ = 3, ρ1 = 5%.

In this case we see that as ρ2 increases from 0.025 to 0.05, when investor 2 is dominates the

economy, then optimal consumption increases and investment thus decreases. However, when both

investors are more equally weighted, optimal consumption decreases below that which both investors
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would choose in autarky. The bottom graph of Figure 9 displays the same information only now

for γ = 3. In this case, the presence of disagreements over extraneous risk tend to work in the

same direction as increasing ρ2 so optimal consumption increases as investor 2 becomes larger and

ρ2 increases.

4.5 Zero Adjustment Costs

In this case, we have a = b = 0 and c̄ia = c̄ib. Then the no-adjustment regions shrink into points10

and the ODEs for the adjustment regions in Proposition 3.5 collapse into a single one as

(

−Γ1

1− γ
+ α

)

h(M) +
β2M2

2(1− γ)
h′′(M) +

(

ρ1 − ρ2
1− γ

− ησβ

)

Mh′(M)

+
γ

1− γ

[

λ
1

γ + ((1− λ)M)
1

γ

]

h(M)
1− 1

γ = 0,

with boundary conditions:

lim
M→0

h(M) = λ

(

γ

Γ1 − (1− γ)α

)γ

, lim
M→∞

h(M)

M
= (1− λ)

(

γ

Γ2 − (1− γ)α

)γ

.

This is the case in which the economy becomes a pure production one, the exchange phase only

occurs at isolated points. The transition between capital accumulation and depletion is smooth

because h now satisfies the same ODE above in both phases.

Note that the price-output ratio is always 1/α when adjustment costs are not present. Figures

10 and 11 repeat the previous numerical exercises without adjustment costs. These plots show

that trading financial assets or speculation still has significant impacts on consumption, hence

investments, and interest rate. What is interesting is that the adjustment costs do not affect the

peak or trough consumption to AK ratios much, although the regions over which these occur

narrows in the presence of adjustment costs.

10This is not true for the case when γ < 1 and min{Γ1,Γ2} ≤ (1− γ)α. In this case, the equilibrium should have
a no-adjustment region or involves no region of capital adjustment if max{Γ1,Γ2} ≤ (1− γ)α by Proposition 3.6.
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Figure 10: No Adjustment Costs (γ > 1). The model parameters are set as follows: α = 0.05, µ − δ =

−2%, σ = 3%, ρ1 = ρ2 = 5%, γ = 3, λ = 0.5, β = −1, a = 0, and b = 0. From to to bottom: η = 0, η = 0.5

(extraneous risk is not traded) , η = 0.5 (extraneous risk is traded), η = 1.

The impact of trading extraneous risk is also significant as we compare the second with the third

panels in both figures. However, financial markets display less dramatic behavior as the exchange

phase never shows up. This indicates that the production always adjusts to changes in financial

markets. While trade in financial markets causes dramatic changes in the consumption/investment

policy, the financial markets do not display abrupt changes in the dynamics. Contrasting the

equilibrium without adjustment costs to the one with adjustment costs highlights the significant

role played by this friction.
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Figure 11: No Adjustment Costs (γ < 1). The model parameters are set as follows: α = 0.05, µ − δ =

−2%, σ = 3%, ρ1 = ρ2 = 5%, γ = 0.3, λ = 0.5, β = −1, a = 0, and b = 0. From top to bottom: η = 0,

η = 0.5 (extraneous risk is not traded), η = 0.5 (extraneous risk is traded), η = 1.

4.6 Infinite Adjustment Costs

When adjustment costs are infinite, both capital accumulation and depletion are not feasible. Thus,

there is no adjustment and the exchange phase is the only choice for both investors. This implies

that the boundary conditions are

lim
M→0

h(M) =
λα1−γ

Γ1
, lim

M→∞

h(M)

M
=

(1− λ)α1−γ

Γ2
.

40



With these boundary conditions, ODE (3.41) admits a closed-form (integral) solution, and hence

the value function.

Proposition 4.1. When adjustment costs are infinite the value function is

V (AK,M) =
(AK)1−γ

1− γ
h(M),

where h(M) is given by

h(M) =





2α1−γ

β2(φ+ − φ−)

∫

∞

M

[

λ
1
γ + ((1− λ)x)

1
γ

]γ

xφ++1
dx



Mφ+

+





2α1−γ

β2(φ+ − φ−)

∫ M

0

[

λ
1
γ + ((1− λ)x)

1
γ

]γ

xφ−
+1

dx



Mφ
− , (4.52)

where φi for i = +, − is given by equation (6.94) in the Appendix.

In this case the economy becomes a pure exchange economy, and value of aggregate output

and the real interest rate are the same as that given previously for the region of no adjustment.

Obviously, trading financial assets with or without extraneous risk affects the equilibrium by altering

the dynamics of Mt.

5 Irreversibility and Housing Market Booms and Busts

Housing construction plays a major role in the economy and is an example of a largely irreversible

investment. The recent boom in housing construction followed by an almost complete halt to new

construction shows that irreversibility might play a critical role in the economy. In this section

we explore the impact of irreversibility. If the adjustment costs for capital depletion are infinite,

then investors never deplete capital, thus capital investments become irreversible. One of the

implications of irreversibility is that the exchange phase region expands if capital depletion exists

in equilibrium when investments are reversible. We reproduce the previous numerical exercises for
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η = 0.5 to illustrate the impacts of irreversible investment for γ < 1.
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Figure 12: The Effects of Irreversibility (γ < 1). The model parameters are set as follows: α = 0.05,

µ− δ = −2%, σ = 3%, ρ1 = ρ2 = 5%, γ = 0.3, λ = 0.5, β = −1, a = 0.1, b = ∞, and η = 0.5. From top to

bottom: aggregate consumption to AK ratio, interest rate, and asset price-output ratio.

Figure 12 shows how irreversibility affects consumption, the real interest rate, and the price-

output ratio. Comparing the first panel of this figure with the second panel of Figure 2, the first

capital depletion region is replaced by an exchange region due to irreversibility. Impressively, even

though neither investor would choose a production plan which would accumulate capital in autarky,

in an equilibrium with both types of investor present, the optimal production would accumulate

capital even with irreversibility. Intuitively, in the no-adjustment regions the riskless rate drops

and the value of aggregate output rises. The drop in discount rates makes investment attractive so

the equilibrium involves capital accumulation. This provides a new insight into the recent housing

crisis. Over investment might not depend directly on optimistic investors; instead, speculation

in non-fundamental risks can impact discount rates so that investment in housing is becomes

optimal, even in the presence of irreversibility. When speculation makes investment in production
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optimal, the price-output ratio reaches its highest value. When one group of speculators loses

enough wealth, investment in production halts, the interest rate jumps down, and the price-output

ratio decreases. Thus, speculation can create a boom-and-bust cycle in housing construction and

asset prices. Speculation on pure extraneous risk can also generate the boom-and-bust pattern as

illustrated in the first panel of Figure 4. In this case, speculation always makes the price-output

ratio higher than those in autarky. Interestingly, any sudden change in policy which resolves the

source of speculation would lead to collapse in asset prices and production.
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Figure 13: Historical US Housing Price and Rent Indexes: 1975-2014. Both quarterly US housing

price index (All-Transactions House Price Index for the United States) and rent index (Consumer Price

Index for All Urban Consumers: Rent of primary residence) are downloaded from FRED of St. Louis Fed.

The price-rent ratios are normalized by the ratio of the first quarter of 1975. The vertical lines in the second

panel indicate percentage increase (green) from trough to peak and decrease (red) from peak to trough.

The first panel of Figure 13 plots the quarterly US housing price index and rent index from

1975 to 2014. The boom and bust in US housing price in the 2000s are very visible. If we examine

the price-rent ratio as in the second panel of Figure 13, there are two housing price-rent ratio
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boom-and-bust cycles during this period, even though the 75-85 cycle does not have a house price

boom-and-bust pattern. The boom and bust in price-rent ratio in the 95-12 cycle are about twice

of that in the 75-85 cycle. These observed boom-and-bust patterns in housing price-rent ratios can

be explained by our model with both heterogeneous beliefs and adjustment costs if we assume that

the price-output ratio in the model roughly matches the observed price-rent ratio.11

In the example used in Figure 12, by Equation (3.34) we have Γ1 = 0.064 and Γ2 = 0.054. By

Proposition 3.10, the lowest price-output ratio is 1/Γ1 = 15.6, and the highest price-output ratio

is 1/(α(1 − a)) = 22.2. Thus, the highest model trough-to-peak and peak-to-trough percentages

are 22.2−15.6
15.6 = 42.3% and 15.6−22.2

22.2 = −29.7%,12 respectively. These boom and bust sizes are

comparable to what we observed in the 95-12 cycle as indicated in Figure 13. The big bust in

the price-rent ratio around 2012 suggests that the optimistic investors did not prevail. In the

perspective of our model, this suggests that the state variable M goes as follows: starting low,

becoming relative high, and ending up low. This dynamics of M can create a boom-and-bust

cycle in that the two troughs are relatively close as we observed in the 95-12 cycle. On the other

hand, the two troughs in the 75-85 cycle are about 10% different. This asymmetry in troughs

can also be understood in our model. As shown in the last panel of Figure 12, the asymmetric

troughs are possible if the optimistic investor prevails, that is M goes from low to high, because

of 1/Γ2 > 1/Γ1. This may be one of the key reasons that housing price did not bust even though

there was a price-rent boom and bust in the 75-85 cycle.13

An alternative explanation to the difference between the two cycles is the role played by ex-

traneous risk that is not correlated with housing market. Under this hypothesis, the 95-12 cycle

is mostly affected by the trade in extraneous risk, thus the two troughs are close (with same time

preferences and low η). Interestingly, we did witness a unprecedented growth in financial inno-

11We can also use the model price-dividend ratio as the observed price-rent ratio. The model price-dividend ratio
has qualitatively similar properties regarding the boom-and-bust pattern, even though it is not flat at the top.

12These numbers are much larger if we use the model price-dividend ratio as the price-rent ratio because the highest
price-dividend ratio is roughly 0.05/0.03 times the price-output ratio in the example.

13Obviously, the numerical example does not match the boom and bust sizes of the 75-85 cycle. To do so, we need
to adjust the parameter values, for example, the value of β.
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vations during the early 2000s. Meanwhile, in the 75-85 cycle, the real risk played a major role,

thus, the two related troughs are different. Overall, our model with irreversibility offers reasonable

explanations for the key empirical facts that are observed in the housing market.

6 Conclusion

In this paper we examined how speculative trade based on heterogeneous beliefs can affect the real

economy. Speculative trade in financial markets can lower or raise investment in capital depending

on whether the coefficient of relative risk aversion is greater than or less than one. Interestingly,

when investment is irreversible, trade in extraneous risk can lead to higher investment even when

investors would choose not to invest when this risk is not traded. This suggests an alternative

explanation for the recent housing crisis: trade in extraneous risk affected valuations so as to make

investment in housing profitable. When this trade slowed down due to one group of investors losing

wealth, the economy reverted to a more normal state.

While any welfare comparisons in the context of the model are likely to be misleading, our

model does show that trade based speculative motives can affect real activity through changes in

valuations of cash flows. One could, in principal, use these insights to gain insight into how welfare

of various participants in the economy might be affected by these changes in real activity stemming

from trade in financial markets.

45



Appendix: Proofs

Proof of Proposition 2.1 Assuming an optimal solution exists, this exercise is pretty standard but

we will provide a proof of optimality for investor 2 for the case where only real risk is traded. First

observe that Nt

E1[Nt|FB
t ]

= exp
(

− 1
2(1 − η2)β2t − β

√

1− η2B̂t

)

and for any feasible choice for c2,t

Equation (2.21), Ito’s lemma and the solvency condition imply

Nt

E1[Nt|FB
t ]
ξt(W

2
t + θ2St) +

∫ t

0

Ns

E1[Ns|FB
s ]
ξsc2,sds (6.53)

is a non-negative local martingale and by Fatou’s lemma

E1

[∫ ∞

0

Nt

E1[Nt|FB
t ]
ξtc2,tdt

]

≤ θ2S0. (6.54)

Next let

c∗2,t =

(

χ2e
ρ2t

ξt

E1[Nt|FB
t ]

)− 1

γ

, (6.55)

where χ2 > 0 is chosen to satisfy the static budget constraint (2.26) with equality. Since we can

write

W 2
t + θ2St =

1

ξt
E1

[∫ ∞

t

ξsc
∗
2,sds|Ft

]

(6.56)

and c∗2,t depends only on Bt standard martingale representation results imply the existence of a

φ2,t which finances the consumption plan. Then using the inequality u(c∗)− u(c) ≥ u′(c∗)(c∗ − c)

we have

E2

[

∫ ∞

0
e−ρ2t

(

c∗1−γ
2,t

1− γ
−
c1−γ
2,t

1− γ

)

dt

]

= E1

[

∫ ∞

0
Nte

−ρ2t

(

c∗1−γ
2,t

1− γ
−
c1−γ
2,t

1− γ

)

dt

]

≥ E1

[∫ ∞

0
e−ρ2tNtc

∗−γ
2,t (c∗2,t − c2,t)dt

]

= E1

[∫ ∞

0
χ2

Nt

E1[Nt|FB
t ]
ξt(c

∗
2,t − c2,t)dt

]

= χ2θ2S0 − χ2E
1

[∫ ∞

0

Nt

E1[Nt|FB
t ]
ξtc2,tdt

]

≥ 0.
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Therefore, we have shown that c∗2,t is optimal choice for investor 2 when only the real risk is traded.

Showing optimality for the remaining cases is similar.

Proof of Proposition 2.2 This follows because, given state prices, maximizing the value of the

firm expands both investors budget constraints displayed in Equation (2.19).

Proof of Proposition 3.1 Given an equilibrium choice of production c∗t and the consumption

choices c∗i,t, and any other feasible choice of production ct and an allocation c1,t and c2,t with

c1,t + c2,t = ct,

E1

[

∫ ∞

0
e−ρ1t

(

λ

(

c∗1−γ
1,t

1− γ
−
c1−γ
1,t

1− γ

)

+ (1− λ)Mt

(

c∗1−γ
2,t

1− γ
−
c1−γ
2,t

1− γ

))

dt

]

≥ E1

[∫ ∞

0
e−ρ1t

(

λc∗−γ
1,t (c∗1,t − c1,t) + (1− λ)Mtc

∗−γ
2,t (c∗2,t − c2,t)

)

dt

]

= E1

[∫ ∞

0
ξt
(

λχ1(c
∗
1,t − c1,t) + (1− λ)χ2(c

∗
2,t − c2,t)

)

dt

]

=
1

1
χ1

+ 1
χ2

E1

[∫ ∞

0
ξt(c

∗
t − ct)dt

]

≥ 0,

where the first inequality follows from u(c∗) − u(c) ≥ u′(c∗)(c∗ − c) which is valid for concave

functions u, the following equality follows from using the optimal consumption policies in Propo-

sition 2.1, and the final equality comes from setting λ =
1

χ1
1

χ1
+ 1

χ2

and the fact that the optimal

equilibrium production maximizes the value of the firm. Therefore, the equilibrium values maxi-

mize the planner’s objective function.

Proof of Proposition 3.2 Because Proposition 2.1 indicates that when the second financial asset

is not traded, investors will optimally choose consumption adapted to FB
t , we can restrict our

attention to c1,t ∈ FB
t and c2,t ∈ FB

t . Notice that for any feasible choice of production ct and an

allocation c1,t and c2,t with c1,t + c2,t = ct that satisfy c1,t ∈ FB
t and c2,t ∈ FB

t

E1

[

∫ ∞

0
e−ρ1t

(

λ
c1−γ
1,t

1− γ
+ (1− λ)Mt

c1−γ
2,t

1− γ

)

dt

]

= E1

[

∫ ∞

0
e−ρ1t

(

λ
c1−γ
1,t

1− γ
+ (1− λ)E1[Mt|F

B
t ]

c1−γ
2,t

1− γ

)

dt

]

.
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Using this the proof now is similar to that in Proposition 3.1.

Proof of Proposition 3.3 This is a special case of Proposition 3.5. The conditions for the capital

accumulation, no adjustment, and capital depletion are determined by the following mutually

exclusively feasible conditions

0 < c̄ia < α, c̄ia ≤ 0; c̄ia ≥ α; c̄ib ≤ α, c̄ib > α,

respectively.

Proof of Proposition 3.4 The form of the value function follows from the homogeneity of the

problem. We first show that when γ > 1 then h(M) is increasing. Observe that for any feasible

choice of c1,t, c2,t, and any ǫ > 0 we have

V (AK,M) ≥ E1

[

∫ ∞

0
e−ρ1t

(

λ
c1−γ
1,t

1− γ
+ (1− λ)M

Mt

M0

c1−γ
2,t

1− γ

)

dt

]

> E1

[

∫ ∞

0
e−ρ1t

(

λ
c1−γ
1,t

1− γ
+ (1− λ)(M + ǫ)

Mt

M0

c1−γ
2,t

1− γ

)

dt

]

(6.57)

and taking the supremum in the last line then gives

V (AK,M) > V (AK,M + ǫ).

Therefore

h(M)

1− γ
>
h(M + ǫ)

1− γ
. (6.58)
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Since γ > 1, h(M) is increasing. Similarly, we also have

MV (AK,M + ǫ) ≥ E1

[

∫ ∞

0
e−ρ1t

(

Mλ
c1−γ
1,t

1− γ
+ (1− λ)M(M + ǫ)

Mt

M0

c1−γ
2,t

1− γ

)

dt

]

> E1

[

∫ ∞

0
e−ρ1t

(

(M + ǫ)λ
c1−γ
1,t

1− γ
+ (1− λ)M(M + ǫ)

Mt

M0

c1−γ
2,t

1− γ

)

dt

]

= (M + ǫ)E1

[

∫ ∞

0
e−ρ1t

(

λ
c1−γ
1,t

1− γ
+ (1− λ)M

Mt

M0

c1−γ
2,t

1− γ

)

dt

]

(6.59)

and taking supremum yields

MV (AK,M + ǫ) > (M + ǫ)V (AK,M).

This equation is equivalent to

1

1− γ

h(M + ǫ)

M + ǫ
>

1

1− γ

h(M)

M
,

and hence h(M)/M is deceasing in M . The monotonicity results for the case of γ < 1 can be

proved in a similar manner.

To show h(M)
1−γ

is convex in M observe for any feasible choice of c1,t and c2,t, any ψ ∈ [0, 1],

positive M1 and M2, we have

E1

[

∫ ∞

0
e−ρ1t

(

λ
c1−γ
1,t

1− γ
+ (1− λ)(ψM1 + (1− ψ)M2)

Mt

M0

c1−γ
2,t

1− γ

)

dt

]

= ψE1

[

∫ ∞

0
e−ρ1t

(

λ
c1−γ
1,t

1− γ
+ (1− λ)M1

Mt

M0

c1−γ
2,t

1− γ

)

dt

]

+ (1− ψ)E1

[

∫ ∞

0
e−ρ1t

(

λ
c1−γ
1,t

1− γ
+ (1− λ)M2

Mt

M0

c1−γ
2,t

1− γ

)

dt

]

≤ ψV (AK,M1) + (1− ψ)V (AK,M2). (6.60)
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Taking the supremum over feasible c1,t and c2,t in the top line of Equation (6.60) then gives

V (AK,ψM1 + (1− ψ)M2) ≤ ψV (AK,M1) + (1− ψ)V (AK,M2). (6.61)

Thus V is convex in M and this implies h(M)
1−γ

is convex in M .

Finally, Equation (3.38) is a direct implication of the facts that h(M) is increasing in M and

h(M)/M is decreasing in M .

Proof of Proposition 3.5 We want to make the process

e−ρ1tV (AtKt,Mt) +

∫ t

0
e−ρ1s

(

λ
c1−γ
1,s

1− γ
+ (1− λ)Ms

c1−γ
2,s

1− γ

)

ds (6.62)

a martingale for the optimal policy and a supermartingale for an arbitrary policy.

The dynamics of AK (3.31) becomes

dAtKt =
[

AtKt(α− αa+ µ− δ)− (c1,t + c2,t) (1− a)
]

dt+AtKtσdBt, (6.63)

in the capital accumulation region,

dAtKt = AtKt(µ− δ)dt+AtKtσdBt, (6.64)

In the no-adjustment region, and

dAtKt =
[

AtKt(α+ αb+ µ− δ)− (c1,t + c2,t) (1 + b)
]

dt+AtKtσdBt, (6.65)

in the capital depletion region. We use subscript K as the indication of taking derivatives with
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respect to AK. The supermartingale property implies

− ρV + VK
[

AK(α− αa+ µ− δ)− (1− a)(c1 + c2)
]

+
1

2
VKKσ

2(AK)2

+
1

2
VMMβ

2M2 − VKMησβAKM +

(

λ
c1−γ
1

1− γ
+ (1− λ)M

c1−γ
2

1− γ

)

≤ 0 (6.66)

in the capital accumulation region,

− ρV + VK
[

AK(α+ αb+ µ− δ)− (1 + b)(c1 + c2)
]

+
1

2
VKKσ

2(AK)2

+
1

2
VMMβ

2M2 − VKMησβAKM +

(

λ
c1−γ
1

1− γ
+ (1− λ)M

c1−γ
2

1− γ

)

≤ 0 (6.67)

in the capital depletion region, and

− ρV + VKAK(µ− δ) +
1

2
VKKσ

2(AK)2 +
1

2
VMMβ

2M2 − VKMησβAKM

+

(

λ
c1−γ
1

1− γ
+ (1− λ)M

c1−γ
2

1− γ

)

≤ 0 (6.68)

in the no-adjustment region; the martingale property implies Equations (6.66), (6.67), and (6.68)

hold with equality for an optimal choice of production.

From homogeneity, the value function is given by V (AK,M) = (AK)1−γ

1−γ
h(M). Therefore maxi-

mizing Equation (6.66), the optimal consumption is given by

c∗1 =

(

λ

(1− a)h(M)

) 1

γ

(AK), c∗2 =

(

(1− λ)M

(1− a)h(M)

) 1

γ

(AK), (6.69)
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in the capital accumulation region. Thus, the function h satisfies

(

−
ρ1

1− γ
+ α− αa+ µ− δ −

γσ2

2

)

h(M)

+
β2M2

2(1− γ)
h′′(M) +

(

ρ1 − ρ2
1− γ

− ησβ

)

Mh′(M)

+ (1− a)

(

1

1− γ
− 1

)

[

(

λ

1− a

) 1

γ

+

(

(1− λ)M

1− a

) 1

γ

]

h(M)
1− 1

γ = 0. (6.70)

Substituting Γ1 as defined in Equation (3.34) yields the ODE for the capital accumulation region.

Similarly, in the capital depletion region, the optimal consumption is

c∗1 =

(

λ

(1 + b)h(M)

) 1

γ

(AK), c∗2 =

(

(1− λ)M

(1 + b)h(M)

) 1

γ

(AK), (6.71)

and subsequently, the function h satisfies

(

−
ρ1

1− γ
+ α+ αb+ µ− δ −

γσ2

2

)

h(M)

+
β2M2

2(1− γ)
h′′(M) +

(

ρ1 − ρ2
1− γ

− ησβ

)

Mh′(M)

+ (1 + b)

(

1

1− γ
− 1

)

[

(

λ

1 + b

) 1

γ

+

(

(1− λ)M

1 + b

) 1

γ

]

h(M)
1− 1

γ = 0. (6.72)

In the no-adjustment region, c1 + c2 = αAK, and the sharing rule gives

c∗1 = αAK
λ

1

γ

λ
1

γ + ((1− λ)M)
1

γ

, c∗2 = αAK
((1− λ)M)

1

γ

λ
1

γ + ((1− λ)M)
1

γ

. (6.73)

Thus, the function h satisfies

(

−
ρ1

1− γ
+ µ− δ −

γσ2

2

)

h(M) +
β2M2

2(1− γ)
h′′(M) +

(

ρ1 − ρ2
1− γ

− ησβ

)

Mh′(M)

+
λ

1− γ

(

αλ
1

γ

λ
1

γ + ((1− λ)Mt)
1

γ

)1−γ

+
(1− λ)M

1− γ

(

α((1− λ)M)
1

γ

λ
1

γ + ((1− λ)M)
1

γ

)1−γ

= 0. (6.74)
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In the no-adjustment region, the left hand side of Equation (6.66) should be smaller than that

of Equation (6.68). Thus, given any 0 ≤ ǫ < 1, we should have for any ci = (1− ǫ)c∗i for i = 1, 2

VK [AK(α− αa)− (c1 + c2)(1− a)] + λ
(c1)

1−γ

1− γ
+ (1− λ)M

(c2)
1−γ

1− γ

≤ λ
(c∗1)

1−γ

1− γ
+ (1− λ)M

(c∗2)
1−γ

1− γ
, (6.75)

which can be simplified to

h(M)α(1− a)ǫ ≤
α1−γ

1− γ

(

1− (1− ǫ)1−γ
)

[

λ
1

γ + ((1− λ)M)
1

γ

]γ

, (6.76)

where we use Equation (6.73). Thus, taking limǫ→0
1−(1−ǫ)1−γ

ǫ
= 1 − γ by the L’Hospital’s rule

yields

h(M)(1− a) ≤ α−γ
[

λ
1

γ + ((1− λ)M)
1

γ

]γ

. (6.77)

Similarly, given any ǫ ≥ 0, we have for any ci = (1 + ǫ)c∗i for i = 1, 2

VK [AK(α+ αb)− (c1 + c2)(1 + b)] + λ
(c1)

1−γ

1− γ
+ (1− λ)M

(c2)
1−γ

1− γ

≤ λ
(c∗1)

1−γ

1− γ
+ (1− λ)M

(c∗2)
1−γ

1− γ
, (6.78)

which can be simplified to

−h(M)(α+ αb)ǫ ≤
α1−γ

1− γ

(

1− (1 + ǫ)1−γ
)

[

λ
1

γ + ((1− λ)M)
1

γ

]γ

, (6.79)

so using the L’Hospital’s rule to limǫ→0
1−(1+ǫ)1−γ

ǫ
= −(1− γ) yields

h(M)(1 + b) ≥ α−γ
[

λ
1

γ + ((1− λ)M)
1

γ

]γ

. (6.80)

We now show V (AK,M) = (AK)1−γ

1−γ
h(M) is the value function. To see this, define Vt =
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e−ρ1t (AtKt)1−γ

1−γ
h(Mt) and for the optimal choices of c1,t and c2,t we have

dVt = −e−ρ1t

(

λ
(c∗1,t)

1−γ

1− γ
+ (1− λ)Mt

(c∗2,t)
1−γ

1− γ

)

dt+ Vt

(

(1− γ)σdBt + β
h′(M)M

h(M)
dB̂t

)

= −Vt
c∗1,t + c∗2,t
AtKt

dt+ Vt

(

(1− γ)σdBt + β
h′(M)M

h(M)
dB̂t

)

. (6.81)

From Proposition 3.4 and the form of the optimal consumption,
c∗
1,s+c∗

2,s

AsKs
is bounded away from

0 and 0 ≤ h′(M)M
h(M) ≤ 1. We can write

Vt
V0

= exp

(

−

∫ t

0

c∗1,s + c∗2,s
AsKs

ds

)

×exp

(

∫ t

0

{

−
(1− γ)2σ2

2
+ ηβσ

h′(Ms)Ms

h(Ms)
−

1

2

(

h′(Ms)Ms

h(Ms)

)2
}

ds

+

∫ t

0
(1− γ)σdBs +

∫ τ

0

h′(Ms)Ms

h(Ms)
βdB̂s

)

≤ e−ctNt, (6.82)

where c is the lower bound on
c∗
1,s+c∗

2,s

AsKs
and from the Novikov condition (Corollary 5.5.13 in Karatzas

and Shreve (1991)), Nt is a martingale. Therefore limt→∞E[Vt] = 0 and

V (AK,M) = E

[

∫ t

0
e−ρ1s

(

λ
(c∗1,s)

1−γ

1− γ
+ (1− λ)Ms

(c∗2,s)
1−γ

1− γ

)

ds

]

+ E[Vt]

= E

[

∫ ∞

0
e−ρ1s

(

λ
(c∗1,s)

1−γ

1− γ
+ (1− λ)Ms

(c∗2,s)
1−γ

1− γ

)

ds

]

. (6.83)

When γ < 1, define

τn = inf

{

t|

∣

∣

∣

∣

∣

e−ρ1t
(AtKt)

1−γ

1− γ
h(Mt) +

∫ t

0
e−ρ1s

(

λ
c1−γ
1,s

1− γ
+ (1− λ)Ms

c1−γ
2,s

1− γ

)

ds

∣

∣

∣

∣

∣

≥ n

}

. (6.84)

Then for an arbitrary feasible strategy the process

e−ρ1t∧τn (At∧τnKt∧τn)
1−γ

1− γ
h(Mt∧τn) +

∫ t∧τn

0
e−ρ1s

(

λ
c1−γ
1,s

1− γ
+ (1− λ)Ms

c1−γ
2,s

1− γ

)

ds (6.85)
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is a bounded nonnegative supermartingale. Therefore

V (AK,M) = E

[

∫ ∞

0
e−ρ1s

(

λ
(c∗1,s)

1−γ

1− γ
+ (1− λ)Ms

(c∗2,s)
1−γ

1− γ

)

ds

]

≥ E

[∫ t∧τn

0
e−ρ1s

(

λ
(c1,s)

1−γ

1− γ
+ (1− λ)Ms

(c2,s)
1−γ

1− γ

)

ds

]

+E

[

e−ρ1t∧τn
(At∧τnKt∧τn)

1−γ

1− γ
h(Mt∧τn)

]

≥ E

[∫ t

0
e−ρ1s

(

λ
(c1,s)

1−γ

1− γ
+ (1− λ)Ms

(c2,s)
1−γ

1− γ

)

ds

]

+ E

[

e−ρ1t
(AtKt)

1−γ

1− γ
h(Mt)

]

≥ E

[∫ ∞

0
e−ρ1s

(

λ
(c1,s)

1−γ

1− γ
+ (1− λ)Ms

(c2,s)
1−γ

1− γ

)

ds

]

, (6.86)

where the first inequality follows from the supermartingale property, the second inequality follows

from Fatou’s lemma taking limits as n → ∞, the third inequality follows from the monotone

convergence theorem and nonnegativity taking limits as t → ∞. So the strategy c∗1,t and c∗2,t is

optimal and V (AK,M) is the value function.

Let us now assume γ > 1 and fix an initial capital stock K. Consider an arbitrary feasible

strategy c1,t, c2,t with resulting capital stock Kt. We assume that

E

[∫ ∞

0
e−ρ1t

(

λ
(c1,t)

1−γ

1− γ
+ (1− λ)Mt

(c2,t)
1−γ

1− γ

)

dt

]

> −∞. (6.87)

Now suppose we start withK+ǫ. Then following the strategy c1,t and c2,t until time τ and behaving

according to our candidate optimal strategy thereafter is feasible and has capital stock Kτ + ǫe−δτ

at time τ . Moreover, (Aτ (Kτ+ǫe−δτ ))1−γ

1−γ
h(Mτ ) ≥

(Aτ (ǫe−δτ ))1−γ

1−γ
h(Mτ ). Tedious algebra then reveals

(Aτ ǫe
−δτ )1−γ

1− γ
h(Mτ ) =

(ǫA0)
1−γ

1− γ
exp

(

−

∫ τ

0

{(

1−
h′(Ms)Ms

h(Ms)

)

Γ1 +
h′(Ms)Ms

h(Ms)
Γ2 −

β2M2
s h

′′(Ms)

2h(Ms)

}

ds

)

× exp

(

∫ τ

0

{

−
(1− γ)2σ2

2
+ (1− γ)ηβσ

h′(Ms)Ms

h(Ms)
−

1

2

(

h′(Ms)Ms

h(Ms)

)2
}

ds

+

∫ τ

0

(1− γ)σdBs −

∫ τ

0

h′(Ms)Ms

h(Ms)
βdB̂s

)

. (6.88)
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Since 0 ≤ h′(M)M
h(M) ≤ 1, the second line is a martingale. Also, when γ > 1 h′′(M) < 0. Therefore,

lim
τ→∞

E

[

((Aτ ǫe
−δτ ))1−γ

1− γ
h(Mτ )

]

= 0. (6.89)

Therefore for any strategy which is feasible starting with capital K, defining the stopping times τn

as before we have

V (A(K + ǫ),M) ≥ E

[∫ t∧τn

0

e−ρ1s

(

λ
(c1,s)

1−γ

1− γ
+ (1− λ)Ms

(c2,s)
1−γ

1− γ

)

ds

]

+ E

[

e−ρ1t∧τn
(At∧τn(Kt∧τn + ǫe−δt∧τn)1−γ

1− γ
h(Mt∧τn)

]

≥ E

[∫ t∧τn

0

e−ρ1s

(

λ
(c1,s)

1−γ

1− γ
+ (1− λ)Ms

(c2,s)
1−γ

1− γ

)

ds

]

+ E

[

e−ρ1t∧τn
(At∧τnǫe

−δt∧τn)1−γ

1− γ
h(Mt∧τn)

]

≥ E

[∫ t

0

e−ρ1s

(

λ
(c1,s)

1−γ

1− γ
+ (1− λ)Ms

(c2,s)
1−γ

1− γ

)

ds

]

+ E

[

e−ρ1t
(Atǫe

−δt)1−γ

1− γ
h(Mt)

]

≥ E

[∫

∞

0

e−ρ1s

(

λ
(c1,s)

1−γ

1− γ
+ (1− λ)Ms

(c2,s)
1−γ

1− γ

)

ds

]

. (6.90)

Where the first inequality follows from the supermartingale property, the second inequality comes

from taking limits as n → ∞, using monotone convergence theorem and dominated convergence

theorems, and the third inequality follows from monotone convergence theorem and Equation (6.89).

Now letting ǫ ↓ 0 we see from continuity,

V (AK,M) = E

[

∫ ∞

0
e−ρ1s

(

λ
(c∗1,s)

1−γ

1− γ
+ (1− λ)Ms

(c∗2,s)
1−γ

1− γ

)

ds

]

≥ E

[∫ ∞

0
e−ρ1s

(

λ
(c1,s)

1−γ

1− γ
+ (1− λ)Ms

(c2,s)
1−γ

1− γ

)

ds

]

. (6.91)

Therefore the strategy c∗1,t and c
∗
2,t is optimal and V (AK,M) is the value function.

Proof of Proposition 3.6 The aggregate consumption (3.44) follows from the proof of Proposi-

tion 3.5.

We can show the other expression as follows. For the capital accumulation region, dividing
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Equation (3.39) by γ(1−a)h(M)
1−γ

yields

−
Γ1 − (1− γ)α(1− a)

γ(1− a)
+

β2M2h′′(M)

2γ(1− a)h(M)
+
ρ1 − ρ2 − (1− γ)ηβσ

γ(1− a)

Mh′(M)

h(M)
+ c∗t = 0,

where we use Equation (3.44) to substitute the optimal consumption. Then, the result follows for

the region of capital accumulation by recognizing the following identities:

Γ1 − Γ2 = ρ1 − ρ2 − (1− γ)ηβσ, c̄1a − c̄2a =
Γ1 − Γ2

γ(1− a)
,

where Γi and c̄ia are as defined in (3.34) and (3.35). The result for the region of capital depletion

follows similarly.

Proof of Proposition 3.7 This follows immediately when we change the dynamics of the state

variable M to

dMt = (ρ1 − ρ2)Mtdt− ηβMtdBt (6.92)

and follow the steps in Proposition 3.5.

Proof of Proposition 3.8 Equation (6.74) can be simplified as

−
Γ1

1− γ
h(M) +

(

ρ1 − ρ2
1− γ

− ηβσ

)

Mh′(M) +
β2M2

2(1− γ)
h′′(M)

+
α1−γ

1− γ

[

λ
1

γ + ((1− λ)M)
1

γ

]γ

= 0. (6.93)

The homogeneous solutions to the ODE (6.93) are given by Mφi , i = +,− where φi are given by

φ± =
(1− γ)

(

ηβσ − ρ1−ρ2
1−γ

)

+ β2/2±

√

(

(1− γ)
(

ηβσ − ρ1−ρ2
1−γ

)

+ β2/2
)2

+ 2β2Γ1

β2
, (6.94)

where Γ1 is as defined in (3.34). The general solution to the ODE (6.93) is given by Equation (3.46)

with two free parameters C1 and C2. Therefore, the general solution in the no-adjustment region
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is given by Equation (3.46) with the conditions (3.42).

At the free boundaries between accumulation and no-adjustment regions, the first inequality

in (3.42) holds as equality. Using this equality to substitute h(M)(1 − a) in ODE (3.39) yields

the exact same ODE (3.41). Thus, the smooth pasting conditions for h and h′ at the boundary

imply the same h′′. Similar argument also works for the free boundaries between depletion and

no-adjustment regions. Thus, h is in C2 for all M .

Proof of Proposition 3.9 By Equation (2.23) or Equation (2.25) when extraneous risk is not

allowed to trade in Proposition 2.1, we have

e−ρ1t(c∗1,t)
−γ

(c∗1,0)
−γ

= ξt,

where c∗1,t is the optimal consumption of investor 1 derived in the proof of Proposition 3.5. The

rest of the proposition follows using Equations (6.69), (6.71), and (6.73).

Proof of Proposition 3.10 Let c∗1 and c∗2 be the optimal consumption processes for each investor.

Using the fact that the allocation is Pareto optimal, the value function can be written

e−ρ1tV (AtKt,Mt) = E

[

∫ ∞

t

e−ρ1s

(

λ
(c∗1,s)

1−γ

1− γ
+ (1− λ)Ms

(c∗2,s)
1−γ

1− γ

)

ds|Ft

]

=
λ

1− γ
E

[∫ ∞

t

e−ρ1s(c∗1,s)
−γ
(

c∗1,s + c∗2,s
)

ds|Ft

]

= e−ρ1t
(AtKt)

1−γ

1− γ
h(Mt).

Therefore,

St =
1

e−ρ1t(c∗1,t)
−γ
E

[∫ ∞

t

e−ρ1s(c∗1,s)
−γ
(

c∗1,s + c∗2,s
)

ds|Ft

]

=
(AtKt)

1−γh(Mt)

λ(c∗1,t)
−γ

,

and the result follows from Equations (6.69) and (6.71) for the adjustment regions, and Equation

(6.73) for the no-adjustment region. Equation (3.51) follows by substituting the expression of St

αAtKt
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for the no-adjustment region into Equation (3.41).

Proof of Proposition 4.1 It is straightforward to verify h(M) given by Equation (4.52) solves

ODE (3.41). Then what remains for the proof is to verify the boundary conditions. By the

L’Hospital’s rule,

lim
M→0

h(M) =
2α1−γ

β2(φ+ − φ−)
lim
M→0

(

−
[

λ
1

γ + ((1− λ)M)
1

γ
]γ
M−(φ++1)

−φ+M−(φ++1)

+

[

λ
1

γ + ((1− λ)M)
1

γ
]γ
M−(φ−+1)

−φ−M−(φ−+1)

)

=
2α1−γ

β2(φ+ − φ−)

( λ

φ+
−

λ

φ−

)

=
λα1−γ

Γ1
.

Similarly, we have

lim
M→∞

h(M)

M
=

2α1−γ

β2(φ+ − φ−)

( 1− λ

φ+ − 1
−

1− λ

φ− − 1

)

=
(1− λ)α1−γ

Γ2
.

Thus, both boundary conditions are satisfied.

59



References

Baker, S. D., B. Hollifield, and E. Osambela, 2015, “Disagreement, Speculation, and Aggregate

Investment,” Journal of Financial Economics, forthcoming.

Basak, S., 2000, “A Model of Dynamic Equilibrium Asset Pricing with Heterogeneous Beliefs and

Extraneous Risk,” Journal of Economic Dynamics and Control, 24, 63–95.

Bhamra, H. S. and R. Uppal, 2014, “Asset Prices with Heterogeneity in Preferences and Beliefs,”

Review of Financial Studies, 27, 519–580.

Burnside, C., M. Eichenbaum, and S. Rebelo, 2015, “Understanding Booms and Busts in Housing

Markets,” working paper, Northwestern University.

Cheng, I.-H., S. Raina, and W. Xiong, 2014, “Wall Street and the Housing Bubble,” American

Economic Review, 104, 2797–2829.

Cox, J. and C.-F. Huang, 1989, “Optimal Consumption and Portfolio Policies when Asset Prices

Follow a Diffusion Process,” Journal of Economic Theory, 49, 33–83.

Cox, J., J. Ingersoll, and S. Ross, 1985, “An Intertemporal General Equilibrium Model of Asset

Prices,” Econometrica, 53, 363–384.
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