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Abstract

We develop a dynamic model of banking network to study the systemic risk of a financial system
arising from its network interconnections. We build on Eisenberg and Noe (2001). The dynamic model
developed allows us to study the dynamics of bank defaults. In contrast to the literature, we show that
while the possibility of contagion is determined by interconnectedness of the financial network, whether
a financial crisis can occur depends on the capital of the banks in the system. We derive an index that
forecasts the occurrence of a financial crisis. We then provide an intuitive measure of systemic risk.
To illustrate the potential usefulness of our model, we provide an analysis of the system of twenty two
German banks. We show how many of the banks are fundamentally weak, where the contagion effect
may arise from, how strong the contagion effect is, and how significant the systemic risk is.
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1 Introduction

It is well understood that an adverse shock to one part of a financial network may give rise to a crisis

through the contagion effect (Allen and Gale (2000), Freixas, Parigi, and Rochet (2000) and Eisenberg and

Noe (2001)). The financial crisis of 2007-2009 is perhaps the most recent real world example. The peak of

the crisis came when Lehman Brothers collapsed on September 15 of 2008. After Lehman Brothers filed for

bankruptcy, the U.S. government came in on the next day and provided emergency loan to AIG with the

purpose of stopping the contagion and the crisis from spreading further in the financial system. Interestingly,

however, prior to the failure of Lehman Brothers, there was already a sequence of events which pointed clearly

to the source of the crisis and what might happen if nothing was done to the financial system. First, there

was the decline of the real estate market in the first quarter of 2006 which was widely believed to be the

trigger of the crisis (Achraya, Philippon, Richardson, and Roubini (2009)); then there was the fall of New

Century Financial and Countrywide in mid 2007, which was then followed by the fall of Bear Stearns in

March of 2008. The first major intervention by the US government came after the fall of Bear Stearns. In

between the collapses of those financial institutions, Citi Group tried to raise new capital on the order 14

billion dollars.1 Looking back at the sequence of events leading up to the peak of the crisis, one cannot

help but wonder what the dynamics of the events tells us about occurrence of the crisis. From the point of

view of regulators, it is not enough to know that the goal of intervention is to stop the contagion. It is also

important to know when and why to intervene if needed.

While it is difficult to define financial crisis precisely, it is typically described as a widespread instability

that impairs the functioning of a financial system (Bisias, Flood, Lo, and Valavanis (2012)). To stress

the importance of dynamics, we argue that it is the dynamics of default events that in fact defines crisis.

Contagion can indeed spread the failure of one financial institution to another and eventually lead to the

failure of a large number of financial institutions. However, if the spread takes a long time and there is

no cluster of failures, it is hard to argue that the collective failure of the financial institutions constitutes

a financial crisis. From the point of view of maintaining a well functioning financial market, even though

such collective failure of financial institutions points to the fundamental weakness of the system, it is not

equivalent to the instability of the system that the managers of the system is most concerned about. On

the other hand, if a large number of financial institutions all fail in a short span of time, due to contagion

or other reasons, it would cause severe difficulty for the normal functioning of the financial market. Then

there is clearly a financial crisis that would concern and would likely need the action of the managers of the

financial system. The collective failure of a large number of banks in a short span of time is the feature that

defines financial crises, the likelihood of which gives rise to systemic risk.

What then are the important factors that drive the dynamics of financial crisis in a banking network?

Network connection is one important factor as shown in Allen and Gale (2000), Freixas, Parigi, and Rochet

(2000) and Eisenberg and Noe (2001). Interestingly, however, bank capital does not play a separate role in

1See Achraya, Philippon, Richardson, and Roubini (2009) for a description of the timing of events.
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their static models. This is rather counter intuitive. Citi group tried to raise capital following the collapse of

Bear Stearns. Also bank capital figures importantly in Basel accords for bank risk management. We show

in this paper that bank capital is another important factor that drives the dynamics of financial crisis in a

banking network. In particular, we develop an index based on the capitals of the banks that forecasts the

clustering of bank failures.

With the help of the developed index, we then study the systemic risk of a financial network. The

systemic risk of a financial network is defined as the probability of widespread failures in a short span

of time of financial institutions. As argued in the literature (Hansen (2013)), while it is relatively easy to

identify a financial crisis ex post, by the collapse or near collapse of the financial system caused by the sudden

occurrence of the defaults of multiple banks, it is important to quantify ex ante the risk of its occurrence.

We will provide a quantitative measure of the likelihood of a financial crisis.

The starting point of our model is Eisenberg and Noe (2001), which is now standard in the literature.

The financial system is comprised of a set of banks. Banks are interconnected by their liabilities among each

other. Each bank’s cash inflow comes from its external cash inflow from sources outside the financial system

as well as payments from banks inside the system. One bank’s failure in making full payment of its liability

will affect the cash inflow of other banks, which in turn may affect how much the bank can pay its own

liability. In equilibrium, a payment vector is determined which specifies the payment of each of the banks

in the financial system. If a component in the vector is less than the total liability of the corresponding

bank, the bank is in default. The payment vector provides a characterization of equilibrium defaults in the

financial system.

In our model, time is continuous over the interval [0,∞). In addition to the external cash inflow, each

bank is endowed with an initial bank capital. Banks settle their liabilities at each point in time as in the

Eisenberg-Noe model. Over time, a bank’s capital may rise or fall. The moment when its capital hits below

zero, the bank is in default. The default time of each of the banks will be derived. If a bank never defaults,

its default time is set at infinity. It should be intuitively clear that in our model, it will be a coincidence that

multiple banks will default simultaneously. More commonly, there will be a sequence of times when some of

the banks will default. A crisis is a sudden occurrence of multiple defaults that threatens the stability of the

financial system. Let η denote a length of a period and q denote the fraction of banks that will default. We

will say that the banking system will experience an (η, q) crisis if greater than q fraction of the banks in the

system will default in the time interval [0, η]. Here q should be viewed as a threshold to capture the severity

of the defaults. Failure of greater than q fraction of the banks will cause the dysfunction of the banking

system. The η is to capture the intensity of the defaults.2 A small η means a clustering of defaults. Thus in

our model a crisis is defined as the eruption of defaults of a significant percentage of banks in the financial

2The intensity and the severity can also be affected by market liquidity. When a bank is short of capital to meet its liability,
it can sell its assets. If a large number of banks all sell their assets at the same time, or if a bank tries to sell a large amount of
an asset, then the proceed received by the banks from the sale will depend on the liquidity of the market. The less liquid the
market, the smaller the proceed. Thus market illiquidity in general exacerbates a financial crisis. In this paper we will abstract
away the effect of market illiquidity on systemic risk.
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system within a short time span. The systemic risk is then defined as the likelihood of the occurrence of an

(η, q) crisis.

After setting up the model, we provide a set of conditions that characterizes the time and severity of

a crisis. We then study whether the crisis is brought about by the fundamental weakness of the default

banks or by contagion (Allen and Gale (2000) and Freixas, Parigi, and Rochet (2000)). Finally, we apply

our model to a system of German banks. We first examine whether there are banks in the system that

will default without any adverse shocks to the system and their default times. We then subject each bank

to individual adverse shock and examine whether the shock to individual banks can lead to contagion in

the system. Finally, we run simulations of simultaneous correlated shocks to the banks in the system and

examine the systemic risk, i.e., the likelihood of crisis, of the system.

There is a large literature on financial network and its implication for contagion and systemic risk. Rochet

and Tirole (1996) point out that lack of monitoring in a system of interconnected banks can be a source of

systemic risk. Morris (2000) shows how contagion may arise from local interaction game. Allen and Gale

(2000) and Freixas, Parigi, and Rochet (2000) are the first to show how network connection can give rise

to financial contagion. Eisenberg and Noe (2001) provide a more formal model for the study of systemic

risk arising in a financial network. Since the pioneering study of Allen and Gale (2000), Freixas, Parigi, and

Rochet (2000) and Eisenberg and Noe (2001), a sizable literature has since emerged that examines a number

of issues related to the implications of network connectedness for systemic risk. Leitner (2005) and Babus

(2015) study how a financial network may arise endogenously. Acemoglu, Ozdaglar, and Tahbaz-Salehi

(2013) examine the effect of network structure on the stability of a financial network. Cifuentes, Ferrucci,

and Shin (2005) argue that market illiquidity of bank assets can exacerbate a crisis.3 Amini, Cont, and

Minca (2011) propose a stress-test framework for evaluating the impact of a macroeconomic shock on the

resilience of a banking network to contagion effects. Glasserman and Young (2013) and Amini, Filipovic,

and Minca (2013) examine the likelihood and magnitude of contagion. Rogers and Veraart (2013) investigate

the effect of the costs of defaults. See also Allen and Babus (2009) for a survey.

In addition to theoretical study on financial systemic risk, there is also a large body of empirical research

on contagion effect in the spread of systemic risk. Elsinger, Lehar, and Summer (2006) apply simulation on

a data set of the Austrian banking system, and find that correlated exposures of the banks and financial

linkages constitute two driving forces behind the systemic risk. Craig and von Peter (2010) show that German

banking network has a tiering structure. Sheldon and Maurer (1998), Wells (2002) and Upper and Worms

(2004) study financial contagion in the Swiss, England and German banks, respectively. Jorion and Zhang

(2010) provide empirical analysis on how credit contagion occurs via direct counter-party effect. Billio,

Getmansky, Lo, and Pelizzon (2007) study the financial crisis of 2007, focusing on the interconnectedness

3Market illiquidity constitutes the other important channel of contagion, as the market has a limited capacity to absorb asset
fire sales. Allen and Gale (2004) and Gorton and Huang (2004) demonstrate how the limited liquidity in the financial markets
generates adverse welfare consequences for the whole system in terms of price volatility, bank defaults, and market inefficiency.
Brunnermeier and Pedersen (2009), Glâneanu and Pedersen (2007), and Gromb and Vayanos (2003) provide various theoretical
models to study the feedback mechanism in fire sale.
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among hedge funds, banks, brokers, and insurance companies, and propose five measures of systemic risk

based on statistical relations among the market returns of these institutions.

The rest of the paper is organized as follows. Section 2 is a brief review of the Eisenberg-Noe model.

The review helps set up the notations and the background for our dynamic model. Section 3 sets up the

dynamic model. It highlights the connection and difference between Eisenberg-Noe model and our model.

Section 4 provides the solution of our dynamic model. Armed with the solution, Section 5 focuses on the

study of financial crises and systemic risk. Section 6 applies the dynamic model developed to the study of

twenty two German banks. Finally, Section 7 concludes.

2 The Eisenberg-Noe Model

To start with, consider the setting of Eisenberg and Noe (2001).4 There is a network of n nodes, indexed

by i ∈ S = {1, . . . , n}. To be concrete, the network models a financial system of n banks. We will refer to

each node as a bank. The application of the model is, however, not limited to network of banks. The banks

are interconnected via a liability matrix L = (Lij), where Lij denotes the liability (or, payment) from bank

i to bank j. In Eisenberg and Noe (2001) model (E-N model hereafter), Lij is interpreted as the debt owed

by bank i to bank j. In our dynamic model to be described later, it is interpreted as the flow of fund from

bank i to bank j. Naturally, it is assumed Lij ≥ 0 for i 6= j, and Lii = 0. In addition, bank i has external

assets such as mortgage loans and external liabilities such as deposits. Let the vector α = (αi), with αi ≥ 0,

denote the external assets of the banks and let the vector b = (bi) with bi ≥ 0 denote the external liabilities

of the banks. In this paper, all vectors are row vectors. The sum of its external liability and its liabilities to

other banks gives the total liability of a bank:

`i = bi +
∑
j 6=i

Lij . (1)

The total asset of the bank is

ai = αi +
∑
j 6=i

Lji. (2)

The difference between the asset of bank i and its liability is its equity, ai = `i + ei. Let ` = (`i) denote the

liability vector. Let

pij = Lij/`i, i ∈ S. (3)

be the fraction of bank i’s liability to bank j in its total liability, and let P = (pij) denote the relative liability

matrix. It is assumed that P is a matrix with a spectral radius < 1, in which case I − P is a matrix that is

invertible and the inverse is a non-negative matrix (Berman and Plemmons (1979)). When bi > 0 for all i,

the assumption is satisfied.

4See also Glasserman and Young (2013).
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In the network of banks described above, banks make payments to each other and to outside debtors.

When a bank, drawing on its assets, is not able to make the full payment, it will default. As the assets

of a bank consists of its external assets and the payments it receives from other banks, one bank’s default

will have impact on the assets side of other banks in the system. Due to the interconnectedness, one bank’s

default can affect the ability of other banks to make their payments. Thus a central issue for the E-N model

is whether all the banks in the network are able to make full payments to each other and to external debtors,

and if not, whether there exists a clearing payment vector. Let π = (πi) be a vector. It is a clearing payment

vector for the system if it is a solution to the following linear system of equations:

πi = `i ∧
(
αi +

∑
j

πjpji
)
, i ∈ S. (4)

where ∧ denote the minimum: x ∧ y = min{x, y}. The first term on the right hand side is the total liability

of bank i. The term inside the brackets is the external asset of bank i plus the total payment that bank i

receives from other banks in the system. Thus what equation (4) says is that each bank i ∈ S needs to pay

its full liability; or, short of that, all of what it will receive from both external and internal sources. In the

latter scenario, bank i defaults, and it pays every other bank j 6= i a proportional payment, i.e., according

to pij = Lij/`i. Implicit in equation (4) is the assumption of limited liability. In matrix notation, equations

in (4) can be rewritten as

π = ` ∧
(
α+ πP

)
. (5)

If a clearing vector exists, then the banking network is in equilibrium in the sense that for each i ∈ S, bank

i based on its assets is able to make the payment πi, the payment is no greater than the amount of full

payment `i, and in the case where a bank is not able to make the full payment, what it pays is exactly equal

to the total value of its internal and external assets. In other words, the banking system will settle on that

payment vector.

In Eisenberg and Noe (2001), a “fictitious default algorithm” is suggested to solve (5). The algorithm

generates a solution that has the following structure. The set S is partitioned into two subsets: the set of

non-default banks, N = {j : πj = `j}, and the set of default banks, D = {i : πi < `i}, along with the

payment vector π. Thus the solution not only gives us a clearing vector, it also tells us which banks will

default and which will not.

The E-N model is a static model. As argued in the introduction, one limitation of the model is its lack of

dynamics. One can think of two time points, today, t = 0, and the end of period, t = T . Conceptually, this

future time T could be the next time instant immediately after 0, in which case the solution to (5), including

the clearing payment, π, and the partition of all n banks into default banks, D and non-default banks, N ,

would be a full characterization of what happens to the banking system. However, should T be substantially

away from 0, the solution to (5) would only tell us that at time T , there will be a set of default banks in

D and a set of non-default banks in N as well as the clearing payment vector π. Eisenberg and Noe (2001)
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in their paper did show how their algorithm can be used to produce the default sequence. That, however,

does not give the true dynamics of the default events. First, it does not provide us with the time intervals

between defaults. Given the time span between today and the future time T , we would want to know not

only how — in what sequence — the banks in D go into default, but also at what time points. Do some of

the banks default in cluster around some time point? Are the defaults close to today or to the end of the

period? In particular, we would want to know that should a bank default at some point, how does its cash

flow evolve up to that point and how would the default impact other banks afterwards, and the factors that

determine whether the defaults occur in cluster or not. Second, as will be seen later, the default sequence

produced by their algorithm actually does not produce the correct default sequence.

3 A Dynamic Model

With those issues mentioned at the end of the last section in mind, we develop in this section a dynamic

model of financial network. We try to take the minimum deviation from the E-N model. The only additional

components we introduce are the time dimension and bank capital. There is no uncertainty in the model, for

example. Adding uncertainty would certainly add more interesting dynamics. A model without uncertainty,

however, allows us to show more clearly some of the main factors that determine the default sequence.

3.1 The Setting

To add time dimension to the E-N model, consider the time interval t ∈ [0,∞). We maintain the same

notations as in E-N model. However, they now have the interpretation as flows. For example, αi is now the

rate of external cash infusion per unit of time. It can arise from the interest payment or prepayment from

mortgage loans. And `i is the rate of the liability bank i promises to pay every unit of time. It can be due

to interest payment to depositors and the changes in the borrowings from other banks. For simplicity, we

assume that these rates are constant over the time interval.5 At any point in time t ∈ [0,∞), if bank i’s total

cumulative inflow (of external cash and internal payments received from other banks) plus the initial amount

of equity that bank has falls below its cumulative outflow (liability), default occurs. Here, for simplicity, we

assume that the equities of all the banks are liquid. They corresponds to liquid bank capital or cash. In the

following, we will use bank capital, cash position and equity interchangeably.

Let zi(t) denote bank i’s bank capital at time t. Let yi(t) denote bank i’s cumulative cash shortfall up to

time t so that the cumulative payment it has actually made, as opposed to promised, is equal to `it− yi(t).

Then, the bank capital of bank i evolves over time according to

zi(t) = zi(0) + αit+
∑
j

[`jt− yj(t)]pji − [`it− yi(t)], i ∈ S, t ∈ [0,∞); (6)

where zi(0) ≥ 0 is the bank i’s initial bank capital, the next term on the right hand side is the cumulative

external cash inflow over the period [0, t], the third term is the cumulative receivables from other banks in

5It is straightforward to introduce time-varying α, `, etc. as long as they are not stochastic. For the issues we focus on in
this paper, that addition does not give us much more insight.
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the network over the period [0, t], and the last term is the bank’s cumulative payment over the period 0, t].

Note that the expression of the third term on the right side of (6) in particular captures the assumption

of equal priority. To complete the specification of the payment and condition for default, we impose the

following constraints on yi(t) and zi(t):

yi(0) = 0, dyi(t) ≥ 0; zi(t) ≥ 0, zi(t)dyi(t) = 0; i ∈ S, t ∈ [0,∞). (7)

The first two constraints above follow directly from the definition of yi(t): it being a cumulative quantity

over time; the third one is the limited liability constraint. Since the lowest possible level of bank capital is

zero, the last constraint dictates that bank i must make payments to other banks and outside debtors as long

as its bank capital is greater than zero (zi(t) > 0), that is, yi(t) must stay flat (the derivative dyi(t) = 0)

when zi(t) > 0.

It will be convenient to rewrite (6) and (7) as follows:

z(t) = z(0) + αt− (`t− y(t))(I − P ), (8)

subject to

y(0) = 0, dy(t) ≥ 0; z(t) ≥ 0, z(t)dy(t) = 0; t ∈ [0,∞). (9)

Equation (8) and the constraints (9) together is our dynamic model of financial network. With a slight abuse

of notation, we will denote it by S = (z(0), α, `, P ). We want to find a solution (z, y) to equation (8) subject

to the constraints in (9).

Suppose that the solution to (8) and (9) exists. As `t − y(t) is the cumulative actual payment vector,

`−y′(t) is the vector of the rates of actual payments.6 Clearly, `i−y′i(t) > 0 if and only if bank i is insolvent.

Thus the first time when `i − y′i(t) > 0, i.e.,

τi = inf{t : t ∈ [0,∞), `i − y′i(t) > 0}

is the default time of bank i. If τi < ∞, then bank i will default at time τi. Otherwise, bank i will never

default. Thus the vector process, `−y′(t), provides the full characterization of the default sequence of banks

in the network.

Equation (8) and the constraints (9) together is known as a Skorohod Problem, a dynamic linear comple-

mentarity problem. Let

x(t) = z(0) + θt, (10)

where

θ = α− `(I − P ) (11)

Note that θi = αi − `i +
∑
j `jpji, which is the net payment by bank i assuming all banks in the network

make their full payment. Thus xi(t) is the process of bank capital of bank i at time t if all banks in the

6The prime of a function, y′(t), is used to indicate the first order derivative of the function y. Noe that the functions y
and z are Lipshitz continuous and hence they are absolute continuous and have derivatives almost everywhere. Whenever the
derivatives are used for y or z at time t, we assume their derivatives exist at that point.
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network make their full payments. It is known (Chen and Yao (2001), §7.2) that, when I − P is invertible,

the solution to (8) and (9) uniquely exists. In fact, this unique solution defines a pair of Lipschitz continuous

mappings Φ and Ψ such that z = Φ(x) and y = Ψ(x).

The structure of the solution to the Skorohod Problem, (8) and (9), reveals an important insight about

the default sequence of the banks. The solution, driven by the state vector x(t), describes the continuous

cash flows through the network of n banks. The routing of the cash flows among the banks is dictated by

the “routing” matrix P . In addition, each bank i has an external cash infusion at the rate αi. Bank i, by

contractual obligations, promises a maximal payment at the rate `i, but it may have to operate at a lower

rate if it runs out of its bank capital and there is not enough cash infusion. Thus, the bank capital process

of bank i, zi(t), can be expressed as a sum of two terms:

zi(t) = xi(t) + yi(t)−
∑
j

yj(t)pji.

The first term xi(t) captures the “net cash outflow” assuming all bank make their full payments; the second

term yi(t)−
∑
j yj(t)pji then compensates when some of the banks do not make their full payments. Once

the process zi(t) drops down to zero at time τ , say, it will remain at zero ever after. This fact will be

confirmed when we solve the Skorohod Problem in the next section. This corresponds to bank i defaulting

at time τ , and we want to be able to derive τ . The structure of the solution suggests that the default time

depends on bank i’s initial capital zi(0). It also depends on what happens at all other banks, in particular,

whether any of them is already in default. In other words, characterizing the default times is more complex,

and in return, yields richer information about the system dynamics than simply partitioning the n banks

into default and non-default ones, as in the static E-N model. We will elaborate more along this line in the

next section.

Before moving on to the analysis of the dynamic financial network set up above, it is worthwhile to

comment on the assumption on the matrix P = (pij) and its implications. We assume that pij ≥ 0 for all i, j

and
∑n
j=1 pij ≤ 1 and I − P is invertible. A network with such a P is called an open network. As pij is the

fraction of the total liability payment per unit of time from bank i to bank j, the quantity, 1−
∑n
j=1 pij , is

the fraction of the liability payment from bank i to the outside world. A sufficient condition for a network to

be open is that 1−
∑n
j=1 pij is strictly positive for all i. Thus if the leakage to the outside world is nonzero

for each bank, then the network is open. In our model, if bi > 0 for all i, then obviously 1 −
∑n
j=1 pij > 0

for all i. In reality, all banks have liabilities other than those to other banks. Thus a banking network is

typically an open system.The financial network is closed if the matrix P is such that
∑n
j=1 pij = 1 for all

i. A closed financial network is one in which cash never flows to the outside world. Payments from banks

within the network get distributed to banks in the network. As a result, in such a network, while some banks

may default, there will always be some banks that will never default. A closely related notion is the surplus

set in Eisenberg and Noe (2001). As Eisenberg and Noe (2001) assumes that
∑n
j=1 pij = 1 for all i, their

surplus sets are closed subnetworks with positive equity values.

9



3.2 Payments

To gain a better understanding of the dynamic model presented in section 3.1 and its solution, it is helpful

to find in our dynamic model the counterpart of the clearing payment vector in E-N model. The clearing

payment vector in E-N model is given by the solution π to equation (5), along with the set of default banks,

D. As will be seen, the clearing payment vector πt and the set of default banks, Dt, will both be time varying

in our model .

It is useful to start with the receivable flow vector denoted λt. In view of (8), we have

λ(t) = α+ (`− y′(t))P, (12)

π(t) = `− y′(t), (13)

z′(t) = λ(t)− π(t). (14)

Suppose, at some point t ∈ [0,∞), some banks are already in default. We split the set of banks S into the

set of default banks, Dt, and the set of non-default banks, Nt. (Here, banks in Nt should be viewed as not in

default yet, as of time t.) For i ∈ Dt, it must be that its bank capital zi(t) = 0 and hence z′i(t) = 0 (since zi

is nonnegative). In addition, as bank i is already in default, λi(t) must be less than its liability `i. Because

z′(t) = λ(t) − π(t), we have πi(t) = λi(t); that is, the clearing payment rate πi(t) must equal the receibale

flow rate λi(t) for the default bank. For the solvent bank, i ∈ Nt, the bank should not have shortfall, i.e.,

y′(t) = 0, or equivalently, the clearing payment rate πi(t) must equal its liability rate, i.e., πi(t) = `i. In

short, in equilibrium, if Dt is the set of default banks at time t, we must have

for i ∈ Dt, z′i(t) = 0 or equivalently πi(t) = λi(t) and πi(t) < `i, (15)

for i ∈ Nt, y′i(t) = 0 or equivalently πi(t) = `i.
7 (16)

Partition the matrix P accordingly into four sub-matrices, PDt , PDt,Nt , PNt,Dt and PNt , respectively, where

PDt,Nt consists of elements from P for i ∈ Dt and j ∈ Nt and so on. Partition λ, π, α, ` and z(t) similarly so

that λ = (λDt
, λNt

), π = (πDt
, πNt

), α = (αDt
, αNt

), ` = (`Dt
, `Nt

) and z(t) = (zDt
(t), zNt

(t)), respectively.

Then in view of (12)-(16), we obtain in the equilibrium,

λDt
(t) = αDt

+ λDt
(t)PDt

+ `Nt
PNt,Dt

, (17)

λNt
(t) = αNt

+ λDt
PDt,Nt

+ `Nt
PNt

, (18)

and πDt
(t) = λDt

(t) and πNt
(t) = `Nt

. In the above we have argued that if Dt is the set of default banks,

then λ(t) and π(t) must satisfy relations (15) and (16). On the other hand, (15) and (16) in fact define the

set of default banks at time t. Since PDt
, like P , is also a substochastic matrix with spectral radius < 1,

10



IDt − PDt is invertible. Solving (17) and (18), we can obtain,

λDt
(t) = [αDt

+ `Nt
PNt,Dt

](I − PDt
)−1, (19)

λNt
(t) = α̃Nt

+ `Nt
P̃Nt

, (20)

πDt
(t) = λDt

(t), (21)

πNt
(t) = `Nt

, (22)

where

α̃Nt
= αNt

+ αDt
(I − PDt

)−1PDt,Nt
, (23)

P̃Nt
= PNt

+ PNt,Dt
(I − PDt

)−1PDt,Nt
. (24)

(In the above and hereafter, we assume the identity matrix I is of the appropriate dimension clearly from

its context; for example, the identity matrix I is of dimension |Dt| in (19).)

In general, λ(t) and π(t) are time varying, which results from the expansion of Dt over time. Before

providing a dynamic evolution, we note that the static E-N model provides a limiting scenario; that is, D∞
would correspond the set of the default banks D in the E-N model. If D = D∞ is an empty set, then we

have a trivial case and no banks will ever default. Otherwise, the network starts with no default banks, i.e.,

Dt is an empty set for small t; and the equilibrium clearing payment meets the liability. This continues till

one of the banks in D defaults, or Dt would include this default bank. Then, the bank capital at the default

bank, zDt , will remain zero, and the receivable flow vector λ(t) and the clearing payment vector π(t) are

computed by (19)-(22). At this point, we would only need to consider the banks remaining in Nt. These

banks form a subnetwork with updated external cash flow rate α̃Nt
and relative liability matrix P̃Nt

. If we

set time t as the new time zero, then the new initial bank capital for this subnetwork would be

z̃Nt
(0) = zNt

(0) + zDt
(0)(I − PDt

)−1PDt,Nt
+ [α̃Nt

− `Nt
(I − P̃Nt

)]t. (25)

It can be shown that this subnetwork would behave exactly the same as the original network. Then, we could

apply the above argument to this subnetwork, and iterate until all the banks that will eventually default

default, i.e., Dt = D. The above construction would be a complete descripton of the network dynamics if we

could identify Dt and Nt for all t ≥ 0; this will be described by an algorithm in the next section.

The following proposition shows the existence of equilibrium λ(t), π(t) and Dt, and relates them to the

clearing payment vector π and the set of default banks D in E-N model. Let λ = (λi) denote the solution to

the rate equation:

λ = α+ (λ ∧ `)P. (26)

By analogy, λ can be viewed is the total received cash flow vector in E-T model. And π = λ ∧ `.

Proposition 1 Suppose that the matrix P has spectral radius less than one. Then

11



(i) The solution λ(t) to the equilibrium condition (15)-(16) uniquely exists and is given by (19) and (20).

The equilibrium clearing payment vector is given by π(t) = λ(t) ∧ `.

(ii) Let D be the set of default banks and π be the clearing payment vector in E-N model. Then limt→∞Dt =

D, limt→∞ λ(t) = λ and limt→∞ π(t) = π.

Note that (ii) of Proposition 1 implies that whether a bank i will eventually default or not depends only

on α, ` and P . In other words, the set of banks that will eventually default is the same as that in E-N

model. Intuitively, if λ is the solution of (26), then λi < `i means bank i’s total cash inflow falls short of its

payments due to others. It will eventually default (assuming T is large enough) regardless of what its initial

level of bank capital is and regardless of the status of other banks. Since λi < `i is equivalent to πi < `i, the

same can be said about the payment vector π. This observation reveals the key weakness of the E-N model:

whether or not a certain bank i will eventually default is perhaps not the complete story, or not even the

most relevant one. It is important to know when bank i will default, and how it relates to its (initial) bank

capital as well as to the defaults of other banks. These are exactly the kind of information we can obtain

from solving the Skorohod Problem in the next section.

4 Sequence of Bank Defaults

In this section, we provide the solution to the Skorohod Problem (8) and (9). The solution will be in the

form of an algorithm which can be used to compute the default times of the banks.

4.1 Deriving the Default Times

We first derive the sequence of default times, denoted

τ (1) < τ (2) < · · · < τ (d), where d := |D|;

and τ (k) denotes the time when the k-th default occurs. Here, in using the strict inequalities, we assume that

default occurs one at a time. In a continuous-time setting, this assumption sacrifices virtually no generality,

but greatly simplifies exposition and notation alike.

To start with, suppose zi(0) > 0 for all i ∈ S. Then, yi(t) = 0 for sufficiently small t and for all i ∈ S;

i.e., at the beginning, every bank i is paying its full liability, thanks to the positive initial bank capital. The

first bank to default is the bank, say j, that first reaches zj(t) = 0. Also, bank j must be one with a negative

net cashflow:

θj = αj +
∑
i∈S

`ipij − `j < 0. (27)

Hence, we have

τ (1) = min
j∈S: θj<0

{zj(0)

−θj

}
;

12



and Dτ(1) = {j} where j is the argument j that achieves min of the above. Bank j is then the first bank to

default at time τ1.

Prior to that point, there is no default and hence Dt = ∅ for 0 ≤ t < τ (1). We have for all i ∈ S,

yi(t) = 0, zi(t) = zi(0) + θit, t ∈ [0, τ (1)).

After that point, i.e., for t ≥ τ (1), zj(t) = 0 for j ∈ Dτ(1) and bank j can only make payment at the rate

λj . We can then remove j from S and consider the subnetwork consisting of the remaining banks, i.e., those

indexed by Nτ(1) = S \ Dτ(1) . In this subnetwork, the external cash flow rate is α(1) given by α̃Nt in (23)

and the relative liability matrix is P (1) given by P̃Nt
in (24), with Dt replaced by D1 and Nt replaced by

N1. We treat τ1 as the new time zero, and update the new initial bank capital as z(1)(0) given by z̃
(1)
Nt

(0) in

(25) with Dt replaced by D1 and Nt replaced by N1. Note that α(1) and z(1)(0) are row vectors of dimension

|N1| and P (1) is an |N1| × |N1| matrix.

We then repeat the above procedure to this new subnetwowrk to identify τ2 and so forth. Specifically,

let

θ(1) = α(1) − `N1
(I − P (1)).

Only the bank j ∈ N1 with θ
(1)
j < 0 may default next. The next default time is given by

τ = min
j∈N1: θ

(1)
j <0

{z(1)j (0)

−θ(1)j

}
.

Then τ2 = τ1 + τ and Dt = D1 for τ1 ≤ t < τ2.

More formally, the algorithm for default times is as follows.

(0) To initialize, set k = 0, c = 0, τ0 = 0; D0 = ∅, N0 = S, D = D0. Set z(0)(0) := z(0) and

θ(0) := α− `(I − P ).

(1) If θ(k) ≥ 0 or D = S, then set Dt = D for all t ≥ τk, and return D as the set of all banks that would

eventually default, return τk as the time as of when all the banks in D default, and return d = k as

the number of the iteration of the algorithm; stop.

Otherwise, compute

τ = min
j∈Nk: θj<0

{z(k)j (0)

−θ(k)j

}
. (28)

Update the newly default set Dk+1 to be arg min of the above, and Nk+1 = Nk \Dk+1.

Set Dt = D for c ≤ t < c+ τ ; set τk+1 = c+ τ . Advance the clock: c← τk+1.

13



(2) Set

α(k+1) = α
(k)
Nk+1

+ α
(k)
Dk+1

(I − P (k)
Dk+1

)−1P
(k)
Dk+1,Nk+1

, (29)

P (k+1) = P
(k)
Nk+1

+ P
(k)
Nk+1,Dk+1

(I − P (k)
Dk+1

)−1P
(k)
Dk+1,Nk+1

, (30)

z(k+1)(0) = z
(k)
Nk+1

(0) + z
(k)
Dk+1

(0)(I − P (k)
Dk+1

)−1P
(k)
Dk+1,Nk+1

(31)

+[α
(k+1)
Nk+1

− `Nk+1
(I − P (k+1)

Nk+1
)]τ. (32)

θ(k+1) = α(k+1) − `Nk+1
(I − P (k+1)

Nk+1
), (33)

and set D = D ∪Dk+1.8

Update k ← k + 1.

Go to (1).

Note that the above algorithm ends with identifying all the banks that would eventually default D and

then all the banks that would never default, N = S \D. This algorithm identifies Dt and hence Nt = S \Dt
for all t ≥ 0. This allows us to compute λ(t) and µ(t) through (19)-(22).

4.2 Piecewise Linear Solutions

Using the algorithm in Section 4.1, the sequence of default times can be derived. We now use the sequence

of default times to construct the solution to (8) and (9). The solution is piecewise linear. The details are

provided in the following proposition.

Proposition 2 The solution to (8) and (9) can be characterized as follows. Both z and y are piecewise

linear functions, with d + 1 pieces, where d is given by the algorithm above. Here, D = {i ∈ S : λi < `i},

and λi is the solution to the rate equation in (26). These linear pieces are connected by the default epochs,

0 = τ0 < τ1 < τ2 < · · · < τd < τd+1 := ∞, together with its corresponding sequential default bank sets

D0, D1, . . . , Dd, derived from the above algorithm, specifically as follows:

• Let Dk be the union of D0, D1, . . . , Dk (and hence, Dd = D). Recall from the above algorithm (Step

(2)), θ(k) is the netflow rate in the k-th iteration. Then for k = 0, 1, . . . , d,

yj(t) = 0, zj(t) = zj(τk) + θ
(k)
j (t− τk); t ∈ [τk, τk+1), j ∈ S \ Dk; (34)

and

yj(t) = yj(τk) + (`j − λ(k)j )(t− τk), zj(t) = 0; t ∈ [τk, τk+1). j ∈ Dk, (35)

where λ
(k)
j is the jth component of λ(k) which is given by the equality (19) with Dt replaced by Dk

and Nt replaced by S \ Dk.

8Note that α(k+1), z(k+1)(0) and θ(k+1) are the vectors of dimension |N (k+1)| and P (k+1) is an |N (k+1)|×|N (k+1)| matrix;
their coordinates are in the set N (k+1).
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Proposition 2 has several immediate implications. First, the parameter θ
(k)
i is decreasing in k for any i

that is not in default yet. This is because as k increases in each iteration, the liability rate of the bank that

goes default in the k-th iteration, `jk , is replaced by the smaller rate λjk . Next, for any non-default bank i,

yi(t) = 0 for all t; whereas zi(t) is piecewise linear and increasing, at rate θ
(k)
i . But this rate of increase is

decreasing over time (i.e., as k increases), as explained above in (i).9 Hence, overall, zi(t) is increasing and

concave in t. These facts are evident from (34). Lastly, for any bank that defaults (eventually), say, bank

j, up to its default epoch, say τk, the associated (zj , yj) process behaves exactly like that of a non-default

bank described in (ii):10 yj(t) = 0; and zj(t) is piecewise linear, with a rate that is decreasing over time.

This rate may start off being positive, but as it decreases, it will become negative, and at τk pulls zjk(t)

down to zero. After that, zjk(t) will stay at zero, while yjk(t) increases piecewise linearly. These phenomena

are reflected in (34) and (35).

We close this section with a note that due to the uniqueness of the solution to the Skorohod Problem,

the proof for the propositions in this section would be a simple but tedious verification that the proposed

piecewise linear functions y and z in the proposition give a solution to the Skorohold Problem.

9TAN: Where is (i) which you referred here?
10TAN: Where is (ii) which you referred here?
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5 Financial Crises and Systemic Risk

While the term has been widely used, the precise definition of financial crisis has been hard to find. Oc-

casionally it is used as synonymous to systemic risk. In general, the term is used to refer to a situation

of financial instability. In banking, a crisis typically refers to the financial instability that can arise due

to the potential failure of a large number of banks that threatens the proper functioning of the banking

system. Financial crisis is hard to define because it is difficult to ascertain what kind failure would cause

instability. The matter is made worse when panic arises even before the actual failure of banks and causes

the dysfunction of the banking system.

Nonetheless, the root of the problem is the failure of banks and that the failure comes with intensity and

severity, i.e., in a short period of time and in large number. Thus in our study, we focus on bank failures and

define a crisis as intensive and severe bank failures. As argued in the introduction and shown more precisely

in this section, financial crisis is intrinsically a dynamic phenomenon. We investigate the condition for the

occurrence of financial crisis and the associated systemic risk.

5.1 Financial Crises

To motivate our definition of financial crisis, we begin with three examples. In all three examples, there are

ten banks in the system. The ten banks are linked by a chain, but not a cycle. Bank 1 has liability of $10

per unit of time to bank 2, bank 2 has liability of $10 per unit of time to bank 3, and so on. In terms of

relative liability matrix P , pi,i+1 = 1, i = 1, 2, . . . , 9, and pij = 0 for all other i and j. None of the ten banks

has external cash inflow so that αi = 0 for all i = 1, 2, . . . , 10. None of the first nine banks has external

liability either so that bi = 0 and hence li = 1 for all i = 1, 2, . . . , 9. Bank 10 has an external liability of $10

per unit of time so that b10 = 10 and `10 = 10. The only difference across the three examples is the initial

bank capital each bank has.

Example 1. Each bank has an initial bank capital of $5, that is, zi(0) = 5 for all i = 1, 2, . . . , 10. As

bank 1 does not have any cash inflow, it can remain solvent only by drawing down its bank capital. In six

months, its bank capital will be depleted and it will default. Bank 2 initially receives payment from bank 1

and makes its payment from what it receives. After bank 1 defaults, it will have to rely on its bank capital

to remain solvent. It will default in six months after its bank capital is drawn down to zero. As the chain

event happens, all banks will default by the end of year 5. The default times are as follows.

τ1 = 0.5, τ2 = 1, τ3 = 1.5, τ4 = 2, τ5 = 2.5, τ6 = 3, τ7 = 3.5, τ8 = 4, τ9 = 4.5, τ10 = 5.

Example 2. Only bank 1 has an initial bank capital of $5, that is, z1(0) = 5 and zj(0) = 0 for all j = 2,

. . . , 10. The default times are as follows.

τ1 = τ2 = · · · = τ9 = τ10 = 0.5.

Example 3. Bank 1 and bank 6 have an initial bank capital of $5 and $15, respectively, that is, z1(0) = 5

and z6(0) = 15 and zj(0) = 0 for all j 6= 1, 6. Again all banks will default by the end of year 5. The default
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times are as follows.

τ1 = τ2 = τ3 = τ4 = τ5 = 0.5, τ6 = τ7 = τ8 = τ9 = τ10 = 2.

Figure 1 illustrates the timing of the bank defaults in the three examples. In the figure, the horizontal
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Figure 1: Default Times in Examples 1-3.

axis is time and the vertical axis is the fraction of banks that have defaulted by time t. By year 5, all ten

banks default in all three examples. In the first example, the failures of the banks are evenly spread over

the five year horizon. In the second example, the timing is highly concentrated around t = 0.5. All 10 banks

fail around this time. In the third example, 5 banks fail around t = 0.5. The other 5 banks fail at t = 2.

In terms of the severity of bank failures, it is the same across the three example. The failure is 100%. The

intensity of bank failure, however, varies across the three examples. By the criteria of intensity and severity,

example one is not a case of financial crisis, while the second example is. It seems also reasonable to argue

that in the third example there are in fact two financial crises.

The three examples illustrate the importance of both the intensity and the severity of bank failures in

the definition of financial crisis. A static model of bank network can easily capture the severity of bank

failures, but not their intensity. The three examples also illustrate that bank capital is an important factor

that determines the intensity of bank failures.

To provide a definition of financial crisis that incorporate both the intensity and severity of bank failures,

it is useful to introduce the default distribution function defined by

F (t) = fraction of banks that have defaulted by time t.

Figure 2 is an illustration of a default distribution function. In this figure, there are less than 10% of the

banks that have defaulted by the end of year 4 and the defaults occurred evenly over time. Function F (t)

on [0,∞) has the properties of a probability distribution function except that limt→∞ F (t) may be strictly

less than one as some of the banks may never default. The difference F (t′)−F (t) gives the fraction of banks

that went into default in the time interval [t, t′). If F (t) is differentiable and F ′(t) = f(t), then f(t) can

be viewed as default density function. The larger the f(t), the higher the density of default around time t.

While the density functions of the three examples do not exist, the big jumps in examples 2 and 3 suggest

multiple defaults around certain points in time. More generally, when the density function exists, if the
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Figure 2: Default Distribution Function.

density function has a single peak with a narrow spread, then defaults are concentrated around the time

where the density function is peaked. If the density function has multiple peaks, then there are multiple

points in time when defaults concentrate.

Using the default distribution function, we can formally define a financial crisis as follows. Let η > 0 and

0 < q < 1.

Definition 3 A financial crisis with intensity η and severity q, or an (η, q)-crisis for short, is said to have

occurred in the time period [0, T ] if there exists a time t ∈ [0, T − η] such that F (t+ η)− F (t) > q.

In this definition, η is the length of a time period and q is a fraction of the banks in the system.

F (t+η)−F (t) > q means that there is at least q fraction of the banks in the system whose defaults occur in

the time interval [t, t+ η). The greater the q is, the more severe the failures. The shorter the time interval,

η, the more intense the failures. Thus a small η and a large q means a major financial crisis in the period

[t, t+ η].

Given a financial system S, how do we know if it is subject to an (η, q)-crisis? Let S be a financial system

and let D be the set of the banks that will eventually default. For j ∈ D, let τ (j) denote the time when bank

j defaults. It is to be distinguished from τj which is the time of the jth default. The following proposition

provides a partial answer to the question.

Proposition 4 Let D′ be a subset of D. Suppose that the first to default bank i is in D′ and its default time

is

tau(i) = tau1 = t0. Let θ by given by (11). If θj < 0 and
∣∣∣ zj(0)−θj −

zi(0)
−θi

∣∣∣ < η for all j ∈ D′, then,

τ (j) ∈ [t0, t0 + η) for all j ∈ D′.

Note that −θj is the initial rate of net cash outflow of bank j. At that rate of net outflow, the bank loses

θj dollars of bank capital per year. Thus, given the initial bank capital zj(0) and without any disturbance

from other banks in the system, bank j can remain solvent for a maximum of
zj(0)
−θj years. After that the

18



bank will not have any bank capital left and hence will default. If there is any disturbance from other banks

of the system in the sense that their payments to bank j decrease due to their defaults, the time that bank j

can remain solvent will of course be shorter. Thus Proposition 4 says that if the net inflow of a set of banks

are all negative, the ratios of initial bank capital over the net outflow are very close to each other and the

first to default bank is among them, then the default times of the banks will be very close. If in addition the

number of banks in the set is greater than q fraction of the banks in the system, then the financial system

will be subject to an (η, q)-crisis around the time t0.

Proposition 4 states that the closeness of the ratios of initial bank capital over net outflow is an important

predictor of whether the financial system is subject to a crisis. It does not provide a full answer to the question

raised earlier, as it has not incorporated the contagion effect, which we now turn to.

5.2 Contagion Effect

As argued by Allen and Gale (2000) among others, an important feature of a typical financial crisis is

contagion. In this section, we provide a characterization of financial contagion in our model.

We say that bank j as fundamentally weak if its initial net cashflow is negative, that is,

θj = αj +

N∑
i

pij`i − `j < 0.

Clearly when bank j’s net inflow θj < 0, the bank will bleed to death eventually when its bank capital is

run down to zero. This is so even if every bank that owes it money pays in full. It is in this sense we say

bank j is fundamentally weak. Define bank, j, as weak by network connection if

θj = αj +

N∑
i

pij`i − `j ≥ 0,

but for the payment vector, π,

αj +

N∑
i

pijπi − `j < 0,

where π is the solution of (5). That is, bank j is weak by network connection if its net cashflow is nonnegative

when every other bank that owes it money pays in full, but its net cashflow can become negative when some

of banks that owe it money do not pay in full. Such a bank operates normally if there is no default in the

system, but can be dragged down by the default of other banks in the system. That some banks fail because

of the failure of other banks in the network is the contagion effect (Allen and Gale (2000)). We referr to the

banks that can be dragged down by the failure of other banks as weak by network connection.

Let D0 ⊂ D be the set of banks that are fundamentally weak. Then banks in D but not in D0 are weak

by network connection. An indicator of how severe the contagion effect can be is

1− |D0|
|D|

(36)

The higher the indicator the great the contagion effect. If D0 = D = S, the indicator is equal to zero, in

which case, even though there is severe failure of banks, the failure is caused by the fundamental weakness of
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the banks in the system and there is no contagion effect. On the other hand, if |D0| = 1 and D = S, then the

indicator is very high, especially when the number of banks in the system is large. In that case, the banking

system is very fragile as the failure of one bank can lead to the failure of all the banks in the system. If the

banks all fail at around the same time, then it is a crisis that is contributed mainly by contagion.

It should be emphasized that the notion of contagion in the literature does not have a time dimension to

it. As is shown in an earlier example, contagion can be severe and there is no financial crisis. The defaults can

spread over time as opposed to being concentrated. As far as it being considered as a measure of contagion

effect in a crisis, the indicator above is an imperfect measure. To have a measure of the contagion effect in

a crisis, suppose that we are given an (η, q)-crisis. Let Dc be the set of default banks in the crisis. Let

Contagion Effect Indicator = 1− |D0

⋂
Dc|

|D
⋂
Dc|

(37)

This indicator provides a measure of the contagion effect of the (η, q)-crisis.

Let S be a financial system and let D be the set of the banks that will eventually default. The following

proposition provides a characterization of crisis with contagion effect.

Proposition 5 Let D′ be a subset of D. Suppose that the first to default bank i is in D′ and τi = t0. Let θ

be given by (11). Let D1 = {j : θj < 0, j ∈ D′} and D2 = D′ \ D1. Suppose also that for all j ∈ D2, θj = 0,

zj(0) = 0 and pkj > 0 for some k ∈ D1. If
∣∣∣ zj(0)−θj −

zi(0)
−θi

∣∣∣ < η for all j ∈ D1, then τj ∈ [t0, t0 + η] for all

j ∈ D′.

In Proposition 5, D1 is the subset of banks in D′ that are fundamentally weak and D2 is the subset of

banks that will fail due to contagion effect. Intuitively, for banks that are weak only by network connection,

their failure must be due to their connection with weak banks in D1, that is, pij > 0 for some i ∈ D1.

However, that is not sufficient. If they have sufficient bank capital or they have large enough positive net

cashflows, they may still be able to sustain the impact of the failure of banks in D1. Short of both, which is

what the conditions, θj = 0 and zj(0) = 0, try to capture, they will be very vulnerable to the failure of banks

in D1. The failure of banks in D1 will immediately drag them down as claimed in Proposition 5. Proposition

5 is in the same spirit of Proposition 4, showing that the closeness of the ratios of initial bank capital over

net outflow, for the fundamentally weak banks, is an important predictor of whether the financial system is

subject to a crisis.

5.3 Amplification Effect

To understand a financial crisis, it is important to understand the channel of magnification effect. It is

equally important if not more important to understand the magnitude of the amplification effect. There

is a sizable literature on the amplification effect through the leverage/collateral channel (Brunnermierer

and Pedersen etc.). In the literature on the network, however, the magnitude of the amplification has not

been fully explored. In this section, we provide a quantitative measure of the potential magnitude of the

amplification effect.
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Now suppose that there is a shock to the cashflow from the external assets, i.e., a shock to α. How will

the shock affect the payment vector π? Consider first the final effect. That is, all the banks that will default

eventually default have defaulted. In this case, π(α) as a function of α is given by ` ∧ λ(α) where λ(α) is

given by (19) and (20) (with Dt replaced by D and Nt replaced by N ). Differentiating yields

∂πD(α+ δξ)

dδ
= ξD(I − PD)−1

This derivative is the magnification effect of the shock to α in the direction of ξ. Then the maximum

magnification effect appropriately normalized is

M := max
ξ 6=0

‖ξ(I − PD)−1‖
‖ξ‖

= ‖(I − PD)−1‖

which can be viewed as the multiplier of the system.

Now in our dynamic model, bank defaults occur over time. Accordingly, the multiplier changes over

time. The best way to understand it is as follows. Initially, as banks start with positive equities, even the

fundamentally weak banks will be able to make full payments. It is as if the banks have larger cash flows

from external assets, except that the additional cash flows from running down bank equity. Let us assume

that ξi is the rate at which bank i runs down its equity just so that it can make its payment. That is

` = ` ∧
(
α+ ξ + `P

)
= α+ ξ + `P. (38)

Thus

` = (α+ ξ)(I − P )−1.

When banks run out of equity, ξ will change. It is as if α changes. This change occurs over time. At each

point in time, we can examine the amplification effect, which summaries in the multipliers, M1, M2, . . . ,

Md, where Md = M . 11

5.4 Systemic Risk

In this section we examine the systemic risk that may arise when the fundamentals of banks in the system

S are hit by random shocks.

There are many approaches to modeling random shock to the fundamental of banks in the system S.

One general approach, for example, is to model the cash flows as stochastic processes and the liability matrix

as a matrix with stochastic components. In this paper, however, we adopt a simpler approach and leave the

more general approach to future study. We focus on the random shocks to banks’ cash inflows from external

assets and their cash outflows due to external liabilities. We can also add shocks to banks assets. As will be

shown below, however, the impact of this type of shocks is not as important as one initially thinks.

What we have in mind is the following scenario. Given that shocks constantly hit the system, the

regulatory authority or risk manager of the banking system would like to know what the likelihood is that

11TAN: I am not sure that I understand this last paragraph.
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in the near future there will be a financial crisis which will impair the normal functioning of the banking

system. We define the systemic risk of an (η, q)-crisis in the time period [0, T ] as the probability of the

occurrence of an (η, q)-crisis during the time period. We will examine below the likelihood of the occurrence

of an (η, q)-crisis.

Suppose that ε is a random vector that represents the shock to the external cash inflow vector α. After

the shock, the external cash inflow vector becomes α+ ε. Similarly, let δ be a random vector that represents

the shock to the external liability vector b so that after the shock the external liability vector becomes b+ δ.

Clearly, after the shocks, all the endogenous variables of the system will be dependent on the shocks. For

example, the set of banks that will eventually default, D(ε, δ), will depend on the shocks. So will the net

cash flow vector, θ(ε, δ) and so on.

Given the shocks, let D(ε, δ) be the set of the banks that will eventually default. Let D1(ε, δ) be a subset

of D(ε, δ) such that for all j ∈ D1(ε, δ), θj(ε, δ) < 0. Suppose further that the first to default bank is in

D1(ε, δ) and,

τ(ε, δ) = min
j∈S:θj(ε,δ)<0

{
zj(0)

−θj(ε, δ)

}
.

If the shocks (ε, δ) are such that

prob

(∣∣∣∣ zj(0)

−θj(ε, δ)
− τ(ε, δ)

∣∣∣∣ < η, for all j ∈ D1(ε, δ), and |D1(ε, δ)|/|S| ≥ q
)
≥ p

then the probability that there is an (η, q)-crisis is greater than p. That is, the systemic risk is greater than

p.

The actual computation of the probability is difficult. However, given (α, `, P ) and the distribution

function of (ε, δ), defaults can be simulated. The systemic risk can then be assessed numerically. We will

illustrate this in the next section.

6 A Study of Twenty Two German Banks

In this section, we provide an analysis of the systemic risk of a network of twenty two German banks to

illustrate the potential application of the model developed in this paper. The analysis is based on the

information that can be obtained from the financial statements of the twenty two banks. In the past few

decades, there is a declining trend in the number of banks in Germany. Germany had over 3,000 banks in

1980s while it has about 1,800 banks as of 2015, a decline of over 40%. The twenty two banks we base our

study on are public banks and are on the larger side in term of size. They include commercial banks, savings

banks, cooperatives, which are the three pillars in the German banking system, as well as special banks.

Overall, they account for more than 50% of the total assets and liabilities of German banks.

6.1 Preliminary Analysis

Ideally, to study the network of twenty two banks, we would like to have accurate information on the flows

of funds inside the network, that is, the flows among the banks themselves, as well as the flows of funds
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between the banks and parties outside the bank network. However, information at such detailed level is

practically impossible to obtain. Thus we need to estimate the flows. The approach followed in this section

is to use the information from the balance sheets of banks, coupled with assumptions on the structure of the

network, to infer the flows of funds. In practical applications, if additional information can be obtained, the

approach can be suitably adjusted and the accuracy of the estimates can be significantly improved.

Let the total claims of bank i on other banks in the network be Abi and the total other claims of the bank

be Aoi so that the total asset of the bank is Ai = Abi +Aoi . Similarly, let the total liability of bank i to other

banks in the network be Db
i and the total other liabilities of the bank be Do

i so that the total liability of

the bank is Di = Db
i +Do

i . The equity of the bank is then Ei = Ai −Di. We assume that Ei is completely

liquid so that it can be viewed as the cash position of the banks in the model. When the equity of the bank

runs down to zero, the bank is bankrupt. The asset Ai, liability Di and Ei of the bank are stock values. To

estimate the flows of funds, we make two assumptions. The first assumption is that the flow of funds from

bank i to bank j in the rest of the network is a fixed percentage kbij of the total liability of bank i to the rest

of the network. Implicit in this assumption is the assumption that the network is a complete network. That

is, there is a net flow of fund between every pair of banks in the network. The second assumption is that the

flow of funds received by bank i from outside the network is a fixed percentage koi of the total other claim

of bank i. By these two assumptions, αi = koiA
o
i , bi = koiD

o
i , Lij = kbijD

b
i . The balance sheets of the banks

do not provide information to pin down the parameters koi and kbij .
12 The parameters, koi and kbi , are a bit

easier to estimate from banks’ cashflow statements and income statements. The parameters kbij are much

harder to estimate. We follow the approach used by Upper and Worms (2004).

The assets and liabilities of the twenty two German banks are summarized in Table 1. As the twenty two

banks are not the whole banking industry of German, there are other banks, both domestic and foreign, that

are part of the German banking industry and interact with the twenty two banks. In Table 1, we added the

twenty third bank. This bank can be viewed as the rest of the German banking industry. The asset of the

bank is the difference of the total assets of German banks minus the total assets of the twenty two banks.

The liability and equity of the bank are obtained similarly. The value in the Claim on Banks is equal to the

difference between sum of Liabilities to Banks and total Claims on Banks of the twenty two banks.

We assume that every bank interacts with all the other banks. That is, the banking network connection

is complete. Under this assumption, the connection among banks is the strongest. The contagion effect is

possibly the strongest for large shocks (Acemoglu, Ozdaglar and Tahbas-Salehi (2013)). We set koi = 0.04

and kb = 0.04. These numbers are typical for the banks in the system. Following the approach of Upper and

Worms (2004), the estimated liability matrix is given by Table 2. In the table, the banks are sorted by size.

The first row and the first column of the table are the list of the banks according to their sizes. The entries of

the matrix suggest that the smaller banks, which are mostly spacial banks, do not have strong connections

12This is where information from the income and cashflow statements can help. However, as those statements typically do not
provide detailed information on the flows of funds at the level of individual banks either, one should not expect the information
from those statements would allow us to pin down kbi and kbij precisely.
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Table 1: Assets and Liabilities of Twenty Two German Banks

Bank Asset Liability Equity Claim on Banks Liability to Banks Ext. Asset Ext. Liability
1 42981 40531 2450 2531 1589 40450 38942
2 34695 32851 1844 1128 8231 33567 24620
3 40521 38360 2161 3029 5020 37492 33340
4 24732 23749 983 2235 10169 22497 13580
5 23437 20246 3191 848 18424 22589 1822
6 70682 68065 2617 20484 23708 50198 44357
7 81932 78738 3194 49440 5550 32492 73188
8 34592 33774 818 3264 4297 31328 29477
9 145350 127467 17883 34287 40727 111063 86740

10 90992 82109 8883 2019 11134 88973 70975
11 22546 21848 698 3091 2653 19455 19195
12 13444 13094 350 1202 3630 12242 9464
13 1580760 1526020 54739 93982 133229 1486780 1392790
14 549661 522725 26936 87545 77694 462116 445031
15 273523 260120 13403 47577 58030 225946 202090
16 386978 372824 14154 74214 91361 312764 281463
17 190307 179136 11171 46424 62367 143883 116769
18 200845 193570 7275 27481 59181 173364 134389
19 109022 104498 4524 5156 18212 103866 86286
20 178083 170996 7087 21396 34106 156687 136890
21 116073 112305 3768 30728 39001 85345 73304
22 51360 49139 2221 21890 26994 29470 22145
23 3341693 3162878 178815 155356 0 3186337 3162878
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Table 3: Row Sums and Column Sums of the Liability Matrix

Bank cj =
∑
i Lij ri =

∑
j Lij Ratio Li,23

12 60 181 0.33 35
11 155 132 1.17 26
5 41 921 0.04 180
4 114 509 0.22 99
8 164 216 0.76 42
2 54 413 0.13 80
3 155 250 0.62 49
1 128 79 1.62 16

22 1094 1350 0.81 271
6 1026 1183 0.87 237
7 2473 276 8.96 58

10 100 559 0.18 109
19 258 910 0.28 179
21 1535 1949 0.79 396
9 1713 2038 0.84 416

20 1069 1709 0.63 342
17 2320 3118 0.74 649
18 1374 2959 0.46 599
15 2380 2902 0.82 605
16 3710 4571 0.81 997
14 4377 3884 1.13 864
13 4701 6662 0.71 1521
23 7770 0 ∞ 0

among themselves. They tend to be net payers to the larger banks, which are mostly Landesbanken or

commercial banks. The large banks have strong connections among themselves.

The row sums and column sums are given in Table 3. Element j of the row sums is the sum of the

elements of the jth row of the liability matrix. Similarly, element i of the column sums is the sum of the

elements of the ith column of the liability matrix. When the row sum of bank j is greater than its column

sum, bank j’s liability to other banks is greater than its receivables from other banks. For example, bank

5’s liability to other banks is 921 whereas its receivables from other banks in the system is 41. Banks that

pays less than it receives from other banks in the system is a net receiver. Otherwise it is a net payer. The

smaller the ratio of column sum to row sum of a bank, the less vulnerable the bank is to contagion effect

because a relatively smaller fraction of its liability is paid from its receivables from other banks. The ratios

for the banks in the system varies from as low as 0.04 for bank 5 to as high as 8.96 for bank 7. In the case

of bank 5, the low ratio means that even if all the other banks in the system stop making payments to it, it

would affect at worst 4% of its liability. It relies mainly on its own assets to pay for its liabilities to other

banks. In that sense, it is not significantly vulnerable to contagion effect. If it fails, it would be due to its

own weakness. On the other hand, a high ratio implies the bank is more vulnerable to contagion effect. For

example in the case of bank 7, the ratio is 8.96. It is a net receiver. Potentially, the bank can count on the

payments it receives from other banks to pay for its liabilities to other banks. If that is the case, it could be
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more vulnerable to contagion effect.

Table 4 reports the P -matrix of the 22 banks.13 To make the matrix more readable, we have set pij to

zero if the actual number is less than 0.005. The table reveals several interesting features of the system.

For example, the first eight columns of the table are approximately zero. It shows that smaller banks do

not receive much from the system. They typically are net payers of the system. Also, the upper 8 by 8

sub-matrix is approximately zero. It suggests that the small banks do not pay each other. The sub-system of

the eight smallest banks is a system of 8 isolated banks. The smaller banks, however, do make payments to

larger banks. Larger banks typically receive payments from all other banks in the system. The behavior of

mid-sized banks varies. Some receive payments from all banks, while others such as banks 10 and 19 receive

approximately zero payments from other banks. Large banks connect with each other. The last column

provides the sum,
∑23
j=1 pij . It is the fraction of the total payment of bank i to the rest of the banks in

the system. For bank 5, the number is 0.93, which suggests that 93% of the payments made by bank 5 go

to other banks in the system. For bank 1, the number is 0.05, which suggests that 95% of the payments

made by bank 1 are to liabilities outside the system. On average, 29% of the payments made by the banks

in the system are to the banks in the system. The standard deviation is 20%. Tables 2 and 4 together

suggest that there are significant connections among the banks, although the strength of the connection

varies significantly across banks.

6.2 Default Sequence and Financial Crisis

In this section, we examine how adverse shocks to banks affect the default sequence of the banks in the

system.

We start with the case where ka is equal to kb which are both equal to 0.04. As described earlier, these

numbers are typical for banks in the system. This case serves as the benchmark that shows under normal

conditions how the system of the twenty two German banks evolve over time. Table 5 shows the banks

that will eventually default. Table 5 tells us several things about the system of the twenty two German

banks. Firstly, the first column tells us which banks will eventually default. The last column shows that

the equity-net-cashflow ratios of the four banks are all negative. Thus these four banks are fundamentally

weak. In other words, they fail not because of contagion but because of the weakness in the fundamentals

of the banks. The smallest of the four ratios in absolute value is that for bank 4. Thus bank 4 defaults

first, according to the prediction of our theory, and the time of default is equal to the absolute value of the

ratio. The ratios of the other banks, which are not reported here, are all positive. Next, since all the default

times of the four banks are relatively far away, the implication is that for the near future, the bank system

is not subject to financial crisis. Consequently the systemic risk of the twenty-two German banks, or more

generally, the German banking system, is minimum. Lastly, the default times are far apart from each other.

The first to default bank is bank 4, which defaults in about 24.6 years from now, followed by banks 12, 5

13To estimate the liability matrix we need to introduce another bank into the system to make the row sum equal to column
sum. So the matrix is a 23 by 23 matrix. We report the 22 by 22 P -matrix of the original 22 banks.
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Table 5: Default Sequence

Bank Default Time (years) Equity/Net-Cashflow
4 24.6 -24.6

12 34 -34.0
5 66.3 -66.3

18 259.7 -279.8

and 18, defaulting in 34, 66.3 and 259.7 years, respectively. Clearly there is no clustering of bank failures.

Next, we will subject each bank to an adverse shock and examine possibility of contagion. Table 6 shows

effect of 50% negative shock to exogenous cash inflow, αj , of bank j, j = 1, . . . , 23, on banks in the system.

There are 23 panels in the table. Each panel describes the effect of the shock to one bank. The order of the

panels is organized according to the size of the banks. For example, the first panel in the top row describes

the effect of the shock of bank 12. The second panel in the top row describes the effect of the shock of bank

11, and so on. The symbol ∞ in the table is used to indicate that the number of years is greater than or

equal to 100. For example, in panel one, the default time of bank 18 is greater than 100 years.

-100

-50

0

50

100

Figure 3: Equity/net-cashflow Ratios.

The first thing to notice in Table 6 is that banks, 4, 5, 12 and 18 are in every panel. This is no surprise as

they are fundamentally weak. The twenty-three panels in the table tells us quite a bit about the system of

these banks. As bank 23 does not have liability to any of the other twenty two banks, it will never drag any

of the other twenty two banks into default. As explained earlier, bank 23 can be viewed as the aggregation

of all the banks outside the system of the twenty two banks. Then if there is any default in the system, it

can only be due to the fundamental weakness of the banks inside the system or due to the contagion effect

generated inside the system. This is shown in the last panel in Table 6, in which only bank 23 plus banks,
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Table 7: Contagion Effect

Bank 13 16 14 22 4 12 21 6 18 5 17 8 20 15 2 19
Time 2.0 2.4 3.2 15.7 16.9 17.5 19.1 24.4 26 57 60 90 116 174 215 1422

4, 5, 12 and 18 will eventually default. Another interesting common pattern in the panels is that when the

adverse shock hit a bank, only that bank plus the four weak will default. This is true of 19 out the 23

panels. Moreover, in these 19 panels, when the bank hit by the shock is not among the four weak banks, the

failure of the hit bank has very little effect on the default times of the four weak banks. This suggests that

in the majority cases, while there are connections among banks, most banks are effectively isolated as far as

contagion effect on default is concerned. This is largely because the equity/net-cashflow ratios are mostly

significantly positive except for the four weak banks as shown in Figure 3. The most important character of

the system in Table 6 is of course the contagion effect. The effect is exhibited in panels 18, 20, 21 and 22.

In panel 22, there are ten banks that will eventually fail. In addition to banks 13, 4, 5, 12 and 18, banks 2,

6, 16, 21 and 22 will also fail. These later five banks start with positive equity/net-cashflow ratios, meaning

they are net cash receivers to begin with, but eventually are dragged into default by the failure of bank 13.

Finally, there is no clustering of banks failure in any of the 23 panels. That is, there is no financial crisis.

Next we look at the case where banks 13, 14 and 16 are hit by adverse shocks at the same time. Table 7

shows that altogether 16 banks will fail in the end. The contagion effect arising from shocks to banks 13, 14

and 16 will lead to the failure of 9 banks that are otherwise healthy. However, again there is no clustering

of bank failures, except for the three banks that are hit by adverse shocks.

If we shock all the banks, this is what we have. In two years, 12 banks will fail with 10 of them happening

between year 1 and 2, and in 3 years, 19 banks will fail from year 1 to 3. Even though all banks will fail,

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0
Distribution of Defaults

Figure 4: Equity/net-cashflow Ratios.
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the first default will not happen until year 1.35.

Finally, we look at systemic risk. We shock the koi for all banks at the same time. We repeat the shocks for

5000 times and then calculate the statistical likelihood of bank defaults. Specifically, let koi = 0.04exp (ηi),

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0.0

0.2
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1.0
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Figure 5: Systemic Risk. η = 1, 2 and 3 years. Correlation coefficient is zero. Standard deviation is 0.2

i = 1, 2, . . . , 23, where (η1, η2, . . . , η23) follows the jointly normal distribution, N(0,Σ). The variance-

covariance matrix is such that the standard deviation ξi of all ξi are the same. We set the common value

σ = σi to 0.2. By setting such value for the common standard deviation, we are assuming that an adverse

one standard deviation shock the bank i will cause koi to drop from 0.04 to 0.327, about 18% drop, which

corresponds to 18% drop in α0. That is, the exogenous cash inflow of the bank drops by 18%. A two

standard deviation adverse shock leads to 33% decrease of k0i . That is, 33% drop in exogenous cash inflow.

The shocks ξi can be correlated. If the correlations of ξi are all equal to zero, the shocks are all idiosyncratic

shock. If the shock are correlated, then the shocks have a systematic component. We look at two cases: (a)

the correlation coefficients are all equal to zero, and (b) the correlation coefficients are all equal to 0.7. We

shock the system of twenty three banks 5000 times. We then calculate there are 0, 1, 2, . . . , 23 banks that

will default in the next one, two and three years. The results are shown in Figure 5 and 6. In both cases, the

probability of having more than one bank to default in the next one year is zero. The probability of having

more than one bank to default in the next two year is negligible, 0.0006. When the correlation coefficient is

0.7, the probability is 0.0046. If the horizon is three years, the probabilities of having more than three banks

are 0.0002 and 0.017, respectively.

32



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0.0

0.2

0.4

0.6

0.8

Figure 6: Systemic Risk. η = 1, 2 and 3 years. Correlation coefficient is 0.7. Standard deviation is 0.2

For the regulator who monitors the systemic risk of the banking system, these numbers suggest that the

occurrence of systemic risk in the next one year is a zero probability event. To use our terminology, suppose

that a (η, q) = (1, 0.1) financial crisis is defined as when there is more than 10% of the banks that will default

in the next year. Then the probability of a (1, 0.1) financial crisis is zero whether the correlation coefficients

are zero or 0.7. Even if we extend the horizon to η = 3 years, then the probability is 0.14% when the shocks

are all idiosyncratic, while the probability is 3.08% when the correlation coefficient of the shocks is 0.7.

7 Conclusion

It has been well argued that network externality can give rise to financial contagion. Network may arise for

a variety of reasons such as diversification and insurance need (Allen and Gale (2000), Freixas, Parigi, and

Rochet (2000) and Leitner (2005)). Once the network is generated, the contagion effect can be affected by

a number of factors such as lack of monitoring (Rochet and Tirole (1996) ), the structure of the network

(Acemoglu, Ozdaglar, and Tahbaz-Salehi (2013)), and the illiquidity of bank assets (Cifuentes, Ferrucci, and

Shin (2005)).

However, the factors and mechnism that determine whether a crisis will occur have not been as well

understood. The existing literature is largely based on static network models. A static model is best suited

for capturing the interconnection aspect of a network. For example, it can be used to show how the structure
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of the network may affect the likelihood of contagion (Acemoglu, Ozdaglar, and Tahbaz-Salehi (2013)). While

the understanding of the role of interconnectedness in the occurrence of financial crisis is important, it is not

the full story. The contrast of stock vs flow, for example, is missing in static models. As a result, there is no

meaningful distinction between bank capital and cash flow. To capture the distinction, a dynamic model is

needed. In this paper, we introduce dynamics into an otherwise standard network model of financial system,

i.e., Eisenberg-Noe model (Eisenberg and Noe (2001)). The dynamic model developed allows us to study

the dynamics of bank defaults and the financial crises that can arise due to contagion effect. An important

insight from the study is that while the possibility of contagion is determined by interconnectedness of the

financial network, which is largely determined by the flows among the banks, whether a financial crisis

may occur depends on the capitals of the banks in the system. The amount of capital held by the banks

determines how long a bank can remain solvent. The profile of bank capitals and net cashflows to banks

together determine the default times of the banks. A financial crisis occurs when a large number of banks

default in a short span of time. Thus, it is the profile of initial capitals and net cashflows of the banks that

pre-determines the occurrence of a financial crisis.

Drawing on that insight, we develop an index that predicts the occurrence of a financial crisis. Then an

intuitive measure of systemic risk is provided. To illustrate the potential usefulness of our model, we conduct

an analysis of the system of twenty two German banks. We show how many of the banks are fundamentally

weak, where the contagion effect may arise from and how large the systemic risk is.

Our study contributes to a better understanding of the factors that give rise to financial crises and systemic

risk. It should also be of interest not only to the academic profession but also to those practitioners whose

responsibility is to monitor the systemic risk of the financial system and to maintain the well functioning of

the financial markets.
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A Proof of Lemmas and Propositions

Proof of Proposition 1: (i) Since P is substochastic with spectral radius < 1, Pn → 0 as n→∞; hence,

the fixed-point iteration is a contraction (when n is sufficiently large), which guarantees convergence. [In

fact, the mapping is increasing in λ (since P is non-negative). Thus, if we start with λ = α, the sequence

(of iterative solutions) will converge monotonically to the solution.]

(ii) Taking minimum against ` on both sides of (26), we have

` ∧ λ = ` ∧
[
α+ (λ ∧ `)P

]
,

from which we obtain π = ` ∧ λ as a solution to (5).

(iii) From (26), we have

λ = α+ (λ ∧ `)P ≤ α+ `P.

In addition, from (??), we know θi < 0 means αi + (`P )i < `i, and hence implies λi < `i. �

Proof of Proposition 4: Bank i is the first to default and hence τi = τ (1) = t0. The time of first default

is in [t0, t0 + η). By (34),

zj(τ
(k+1)) = zj(τ

k) + θ
(k)
j (τ (k+1) − τ (k));

Now suppose that bank j is the Kth to default so that τj = τ (K). Since θj < 0 for j ∈ D′, we have

τj =

K−1∑
k=0

τ (k+1) − τ (k) =

K−1∑
k=0

zj(τ
(k+1))− zj(τk)

θ
(k)
j

where τ (0) = 0. By (33), θ
(k+1)
j < θ

(k)
j . Note also zj(τ

(k+1))− zj(τk) < 0. Thus,

zj(τ
(k+1))− zj(τk)

θ
(k)
j

+
zj(τ

(k))− zj(τk−1)

θ
(k−1)
j

≤ zj(τ
(k−1))− zj(τk+1)

−θ(k−1)j

Hence

τj =

K−1∑
k=0

zj(τ
(k+1))− zj(τk)

θ
(k)
j

≤ zj(τ
(0))− zj(τK)

−θ(0)j
=
zj(0)

−θj

where the last equality follow from zj(τ
K) = 0 as bank j is the Kth to default. Subtracting τ (1) from both

sides yields,

|τj − τ (1)| =
∣∣∣∣zj(0)

−θj
− zi(0)

−θi

∣∣∣∣ ≤ η.
Thus τj ∈ [t0, t0 + η) as claimed. �

Proof of Proposition 5: As shown in Proposition 4, for j ∈ D1, τj ∈ [t0, t0 + η]. Now let j ∈ D2. Suppose

that pkj > 0 for some k ∈ D1. Suppose that bank k is the mth to default. Then after bank k defaults, the

payment from bank k to bank j will be strictly less than `kpkj . As a result, by (33), θ
(m)
j < θj = 0. As bank

j has zero initial bank capital, zj(0) = 0, and because θ
(k)
j (t) ≤ θj for all k ≤ m its bank capital does not

increase over time, z(k)(t) ≤ 0 for all k ≤ m. Thus, τj ≤ τk and hence τj ∈ [t0, t0 + η] as claimed. �
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