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Abstract

Size discovery is the use of trade mechanisms by which large quantities of an asset can be

exchanged at a price that does not respond to price pressure. Primary examples of size

discovery include “workup” in Treasury markets, “matching sessions” in corporate bond

and CDS markets, and block-trading “dark pools” in equity markets. By freezing the

execution price and giving up on market-clearing, a size-discovery mechanism overcomes

large investors’ concerns over price impacts. Price-discovery mechanisms clear the mar-

ket, but cause investors to internalize their price impacts, inducing costly delays in the

reduction of position imbalances. We show how augmenting a price-discovery mechanism

with a size-discovery mechanism improves allocative efficiency.
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1 Introduction

This paper shows that size-discovery mechanisms, by which large transactions can be

quickly arranged at fixed prices, improve allocative efficiency in markets with imperfect

competition and private information over latent supply or demand imbalances.

The issue of market liquidity has received intense attention in the last few years. The

Securities and Exchange Commission (2010) and the U.S. Department of the Treasury

(2016) raise important questions and concerns about the liquidity and design of markets

for U.S. equities and Treasuries. The “Flash Crash” on May 6, 2010 in U.S. equity and

futures markets and the “Flash Rally” on October 15, 2014 in U.S. Treasury markets were

wake-up calls that even deep liquid markets may experience extreme price movements

without obvious fundamental news (Joint CFTC-SEC Advisory Committee, 2011; Joint

Staff Report, 2015). There are widespread concerns that dealers are less willing or likely

to absorb large trade flows onto their balance sheets (Adrian, Fleming, Shachar, and Vogt,

2015).

An important aspect of market liquidity is the ability to quickly buy or sell large

quantities of an asset with a small price impact. By definition, price impact is primarily

a concern of large strategic investors—such as dealers, mutual funds, pension funds, and

insurance companies—and not of small or “price-taking” investors. Price impact is a

particular concern of major financial intermediaries such as broker-dealers, who often

absorb substantial inventory positions in primary issuance markets or from their client

investors, and then seek to offload these positions in inter-dealer markets. Duffie (2010)

surveys widespread evidence of substantial price impact around large purchases and sales,

even in settings with relatively symmetric and transparent information.

To mitigate price impact, investors often split large orders into many smaller pieces

and execute them slowly over time. Order splitting is done by computer algorithms in

electronic markets and manually in voice markets. As we explain shortly, such piecemeal

execution is inefficient from an allocative point of view, given the associated costly delay

in reducing undesired positions. Investors could alternatively pass a large to position to

a dealer at a price concession, but this strategy has become more costly in recent years,

as bank-affiliated dealers are subject to tighter capital and liquidity regulation.

We show that size discovery is an effective way to mitigate the allocative inefficiency

caused by strategic avoidance of price impact. Therefore, size discovery acts as a valu-

able source of block liquidity that substitutes for order-splitting execution strategies and

for the supply of market-making services by major dealers. Examples of size-discovery

mechanisms used in practice include:

• Workup, a trading protocol by which buyers and sellers successively increase, or

“work up,” the quantities of an asset that are exchanged at a fixed price. Each
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participant in a workup has the option to drop out at any time. In the market for

U.S. Treasuries, Fleming and Nguyen (2015) find that workup accounts for 43% to

56% of total trading volume on the BrokerTec platform on a typical day.

• “Matching sessions,” a variant of workup found in markets for corporate bonds

and credit default swaps (CDS). For the most actively traded CDS product, Collin-

Dufresne, Junge, and Trolle (2016) find that matching sessions or workup account

for 38% of trade volume on GFI, a major swap execution facility.

• Block-crossing “dark pools,” such as Liquidnet and POSIT, which are predominantly

used in equity markets. In a typical “midpoint” dark pool, buyers and sellers match

orders at the midpoint of the best bid price and best offer price shown on transparent

exchanges. Dark pools account for about 15% of trading volume in the U.S. equity

markets (Zhu, 2014). Certain dark pools offer limited price discovery. Others do not

use price discovery at all.

Despite some institutional differences discussed in Section 2, these various forms of

size discovery share the key feature of crossing orders at fixed prices, thus without price

impact. Although aware of the trade price, market participants conducting size discovery

are uncertain of how much of the asset they will be able to trade at that price, which is not

sensitive to their demands. One side of the market is eventually rationed, being willing to

trade more at the given price. Thus, a size-discovery mechanism cannot clear the market,

and is therefore inefficient on its own. Size discovery stands in sharp contrast to “price

discovery” trading mechanisms, which find the market-clearing price that matches supply

and demand. Nevertheless, precisely by giving up on market clearing, a size-discovery

mechanism reduces the adverse effect of investors’ strategic incentives to dampen their

immediate demands. We show, as a consequence, that a market design combining size

discovery and price discovery offers substantial efficiency improvement over a market that

relies only on price discovery.

Our modeling approach and the intuition for our results can be roughly summarized

as follows. An asset pays a liquidating dividend at a random future time. Before this

time, double auctions for the asset are held among n strategic traders at evenly spaced

time intervals of some length ∆. Thus, the auctions are held at times 0, ∆, 2∆, and so

on. Before the first of these auctions, the inventory of the asset held by each trader has an

undesired component, positive or negative, that is not observable to other traders. Each

trader suffers a continuing cost that is increasing in his undesired inventory imbalance.

In each of the successive double auctions, traders submit demand schedules. The market

operator aggregates these demand schedules and calculates the market-clearing price, at

which total demand and supply are matched.

Because there are only finitely many traders, each of them “shades” her demand sched-

ule in order to mitigate her own impact on the market-clearing price. For example, each
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trader who wishes to sell submits a supply schedule that expresses, at each price, only a

fraction of her actual trading interest in order to reduce her own downward pressure on the

market-clearing price. The unique efficient allocation is that giving each trader the same

magnitude of undesired inventory. At each successive double auction, however, traders’

inventories adjust only gradually toward the efficient allocation. As a result, traders with

large unwanted positions, whether short of long, may bear significant costs, relative to

the efficient allocation. These excess costs are not reduced by holding more frequent auc-

tions. As shown by Vayanos (1999) and Du and Zhu (2015), even if trading is continual,

convergence to the efficient allocation is not instantaneous. Strategic incentives to avoid

price impact actually reduce the equilibrium rate of reduction of imbalances as the time

between trading rounds become smaller.

In summary, because of strategic bidding behavior and imperfect competition, the

sequential-double-auction market is slow in reducing allocative inefficiencies. This point

is well recognized in prior work, including the static models of Vives (2011), Rostek and

Weretka (2012), and Ausubel, Cramton, Pycia, Rostek, and Weretka (2014), as well as the

dynamic models of Vayanos (1999), Rostek and Weretka (2015), and Du and Zhu (2015).

Figure 1 illustrates the time paths of expected inventories of a buyer and a seller for

a parametric case of our sequential-double-auction market that we present later in the

paper. The two thin-line plotted curves in Figure 1 illustrate the convergence over time

of the expected inventories to those of the efficient allocation.

Now, consider an alternative market design in which traders have the opportunity

to conduct a size-discovery session, say a workup, before the first double auction. For

simplicity of exposition, we first solve the equilibrium for the special case of bilateral

workups. Any active bilateral workup session involves a trader with a negative inventory

imbalance, the “buyer,” and a trader with a positive inventory imbalance, the “seller.”

Any trader who does not enter a workup participates only in the subsequent double

auctions.

The fixed workup price is set at some given level. (We show that our efficiency results

are robust to the choice of workup price.) As mentioned, the quantity to be exchanged

between the buyer and seller in the workup is raised continually until one of the two

traders drops out. That dropout quantity of the asset is then transferred from the seller

to the buyer at the fixed workup price. Because the workup price is fixed, neither the

buyer nor the seller is concerned about price impact. They are therefore able to exchange

a potentially large block of the asset immediately, leading to a significant reduction in the

total cost of maintaining undesired inventory over time.

Each workup participant recognizes that the workup process reveals information about

his own inventory that is adverse to his interests. In equilibrium, we show that this effect

inhibits traders with small inventory imbalances from entering workup. For the same
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Figure 1: Inventory paths with and without a workup. The thin-line plots are the equilibrium inventory paths
of a buyer and a seller in sequential-double-auction market. Plotted in bold are the equilibrium inventory paths
of the same buyer and seller in a market with a workup followed by the same sequential-double-auction market.
This example is plotted for the continuous-time limit of the double-auction market.

reason, during a workup session a “large trader” continues to work up the size of the

trade only until his inventory imbalance falls to some interior endogenous threshold that is

determined by two countervailing incentives. On one hand, each trader wishes to minimize

the unwanted inventory that is carried into the sequential-double-auction market. These

leftover inventories take time to optimally liquidate, involve price-impact costs, and in the

meantime are accompanied by holding costs. On the other hand, each trader in a workup

faces adverse selection caused by asymmetric information concerning inventory levels. For

example, if the buyer’s offer to trade an additional unit is accepted, the buyer will have

learned that the seller has more to sell than had been expected. The buyer would in that

case have missed the chance to buy that unit in a subsequent double auction at a price

whose conditional expectation is lowered by the seller’s agreement to continue the workup.

This risk to the buyer of being adversely selected for trade implies that, at some point

in the workup (if the seller has not already dropped out), the buyer should withhold the

next additional unit from the workup and reserve it for execution in the double-auction

market at a more favorable conditional expected price. In equilibrium, these two effects

determine a unique inventory threshold for dropping out of workup, which we calculate

explicitly.
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The two thick lines in Figure 1 illustrate the welfare-improving effect of augmenting

the market design with an initial workup, which causes an instant reduction in inventory

imbalances. In a simple parametric setting examined later in the paper, we show that

buyers and sellers participating in bilateral workup eliminate between 27.6% and 62.7% of

the inefficiency costs they bear from the effect of imperfect competition and the avoidance

of price impact.

Comparative statics reveal that workup accounts for a larger fraction of total trade

volume if the double auctions are run more frequently, if the arrival of payoff-relevant

information is less imminent, or if there are fewer traders in the market. Under any of

these conditions, traders are more sensitive to price impact because they will liquidate their

inventories more gradually, implying higher inventory holding costs. These conditions

therefore increase the welfare improvement allowed by workup.

The same intuition applies in a multilateral workup, in which many buyers and sellers

taking turns to trade at the same fixed price. The multilateral workup session begins (if at

all) with a workup between the first buyer and seller in their respective queues. Eventually,

either the currently active buyer or seller drops out. If, for example, the seller is the first

to drop out, it is then revealed whether there is at least one more trader remaining in

the seller’s queue, and if so whether that seller wishes to continue selling the asset at the

same price. Based on this information, the buyer may continue the workup or may choose

to drop out and be replaced by another buyer, if there is one, and so on. This process

continues until there are no more buyers or no more sellers, whichever happens first. The

equilibrium is solved in terms of the dropout threshold for the remaining inventory of an

active workup participant, which is updated as each successive counterparty drops out and

is replaced with a new counterparty. For example, when a new seller arrives and begins

to actively increase the workup quantity, the current buyer’s conditional expectation of

the total market-wide supply of the asset jumps up, and this causes the buyer’s dropout

threshold to jump up at the same time by an amount that we compute and that depends

on the history of prior workup observations. That is, with the arrival of a new active

replacement seller, the buyer infers that the conditional expected double-auction price

has become more favorable, and holds back more inventory from the workup, reserving a

greater fraction of its trading interest for the double-auction market.

For tractability reasons, our work does not address the endogenous timing of size-

discovery trading. Indeed, we are able to solve for equilibria with only an initializing round

of size discovery. In practice, size discovery occurs with intermittent timing, presumably

whenever position imbalances are sufficiently large on both sides of the market. Our

equilibrium solution methods, however, rely on parametric assumptions for size-discovery

prices and for the probability distribution of inventory levels entering into size discovery.

Replacing these parametric initial conditions with endogenously determined size-discovery
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conditions is intractable in our framework, and we know of no tractable approaches for a

useful equilibrium analysis of intermediate-timed size discovery.

This research is positive rather than normative. Size discovery has existed in Treasury

and equity markets for decades. More recently, trade platform operators have introduced

size-discovery mechanisms for corporate bonds, CDS, and interest rate swaps. We an-

alyze the allocative effect of this augmentation of conventional price-discovery markets

by solving the associated equilibrium and showing how this leads to a Pareto improve-

ment. Traders who execute a positive quantity in size discovery strictly benefit from it;

traders who participate only in the price-discovery market are not harmed by the use by

others of size-discovery mechanisms. The efficiency improvement is greater to the degree

that the initial allocation is worse. That is, size discovery is most helpful when order

imbalances are highly concentrated among buyers and sellers. We show, however, that

size-discovery mechanisms do not achieve first-best allocations. For example, traders drop

out of workups or matching sessions prematurely from a social-welfare viewpoint, based on

their equilibrium inference of expected future pricing advantages that are merely transfers.

An alternative research goal would be a normative design of the optimal dynamic

mechanism for asset allocation, subject to incentive compatibility and budget balancing.

If the inventory-allocation problem were static, a first-best allocation could, under con-

ditions, be achieved by the “AGV” mechanism1 of Arrow (1979) and d’Aspremont and

Gérard-Varet (1979). In a dynamic market with imperfect competition and the stochastic

arrival of new inventory shocks, static mechanisms such as AGV are no longer optimal.

Solving for an optimal dynamic mechanism is difficult, and well beyond the scope of this

paper.2

In short, while one could analyze many alternative mechanisms for treating inefficien-

cies caused by the strategic avoidance of price impact in the presence of large position

imbalances, we focus our attention on the equilibrium properties of a class of size-discovery

mechanisms that has, in practice, been widely chosen and extremely active.

As far as we are aware, our paper is the first to explicitly model how a size-discovery

mechanism reduces allocative inefficiency caused by strategic demand reduction in price-

discovery markets. We are also the first to solve for equilibrium behavior in multilateral

workup and matching-session markets.

The only prior theoretical treatment of workup, to our knowledge, is by Pancs (2014),

who focuses on the entirely different issue of “front-running.” In the workup modeled

by Pancs (2014), the seller has private information about the size of his desired trade

1In a side communication, Romans Pancs has shown us the explicit AGV mechanism for a simple variant of
our model, based on iid original inventory positions and the assumption of no subsequent re-trade opportunities.
In the Bayes-Nash equilibrium induced by this direct mechanism, each agent truthfully reports his original excess
inventory as his type. Agents are assigned balanced-budget payments, based on their reported types.

2In a conversation, Bruno Biais suggested the mechanism-design problem of re-allocating inventory at a given
point in time, taking as given the subsequent double-auction market.
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(“block”), whereas the buyer is either a “front-runner” or a dealer. If the seller cannot sell

his entire position in the workup, he liquidates the remaining positions to an exogenously

given outside demand curve. At any point during the workup, the front-runner may decide

to front-run the seller in the same outside demand curve. A dealer does not front-run by

assumption. Under parameter conditions, Pancs (2014) characterizes an equilibrium in

which each step of the workup transacts the smallest possible incremental quantity. This

equilibrium minimizes the front-runner’s payoff since it reveals as little information about

the seller’s block as possible. The key idea of our paper—that by freezing the price,

workup mitigates strategic avoidance of price impact in price-discovery markets—is not

considered by Pancs (2014).

Block-trading dark pools used in equity markets are also size-discovery mechanisms.

The small and parallel literature on dark pools focuses instead on the effect of dark trading

on price discovery and liquidity. Relevant papers include Hendershott and Mendelson

(2000), Degryse, Van Achter, and Wuyts (2009), Zhu (2014), and Buti, Rindi, and Werner

(2015), among others. In these models, each investor’s trading interest is one unit, two

units, or an infinitesimal amount. By characterizing allocative efficiency in the presence of

arbitrarily large trading interests, our model goes substantially beyond existing research

on the role of dark pools.

Empirical analyses of workup include those of Boni and Leach (2002, 2004), Dungey

and McKenzie (2013), Fleming and Nguyen (2015), and Huang, Cai, and Wang (2002).

Empirical studies of dark pools include Buti, Rindi, and Werner (2011), Ready (2014),

and Menkveld, Yueshen, and Zhu (2015), among many others.

2 Size Discovery in Practice

In current market practice, size discovery shows up most prominently in three forms

of trade mechanisms: workups, matching sessions, and block-crossing dark pools. This

section summarizes the institutional settings of these respective mechanisms.

Workup was introduced in the last decades of the 20th century by interdealer voice

brokers for U.S. Treasury securities, and is now heavily used on platforms for the electronic

trading of Treasuries. The most active of these platforms are BrokerTec and eSpeed. On

BrokerTec, for example, workup is fully integrated with central limit order book trading.

Once a trade is executed on the limit order book at some price p, a workup session

is opened for potential additional trading at the same price. The original buyer and

seller and other platform participants may submit additional buy and sell orders that are

executed by time priority at this workup price. Trade on the central limit order book is

meanwhile suspended. The workup session ends if either (i) the workup session has been

idle for some specified amount of time, which has been successively reduced in recent
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years and is now three seconds, or (ii) a new aggressive limit order arrives that cannot

be matched immediately at the workup price p but can be matched immediately against

a standing limit order deeper in the book. In Case (ii), the new order establishes a new

price, at which point a new workup process may begin. In Case (i), order submission

on the limit order book resumes and continues until another limit-order-book trade is

executed, kicking off another potential workup trade. This process repeats. A key feature

is the integration of workup with the limit order book; when one of these two protocols is

in process, the other is interrupted. For more details on BrokerTec’s workup protocol, see

Fleming and Nguyen (2015), Fleming, Schaumburg, and Yang (2015), and Schaumburg

and Yang (2016).

Matching sessions use a trade protocol that is a close variant of workup, and appear

most prominently on electronic platforms for trading corporate bonds3 and credit de-

fault swaps (CDS). The markets for corporate bond and CDS are distinguished by much

lower trade frequency than those for Treasuries and equities. Matching sessions, corre-

spondingly, are less frequent and of longer duration. For example, matching sessions on

Electronfie, a corporate bond trade platform, have a duration of 10 minutes.

A distinctive feature of matching sessions is that the fixed price is typically chosen by

the platform operator. Given the incentives of the platform operator to maximize total

trading fees, the fixed price seems likely to be designed to maximize expected trading

volume. GFI, for example, chooses a matching-session price that is based, according to

SIFMA (2016), on “GFI’s own data (input from the internal feeds), TRACE data, and

input from traders.” On the CDS index trade platform operated by GFI, the matching

price “shall be determined by the Company [GFI] in its discretion, but shall be between the

best bid and best offer for such Swap that resides on the Order Book.” Collin-Dufresne,

Junge, and Trolle (2016) find that matching sessions or workup account for 38% of trade

volume for the most popular CDS index product, known as CDX.NA.IG.5yr, a composite

of 5-year CDS referencing 125 investment-grade firms, and 33% of trade volume for the

corresponding high-yield index product.

Trade platforms for interest-rate swaps also commonly incorporate workup or matching-

session mechanisms, as described by BGC (2015), GFI (2015), Tradeweb (2014), and Tra-

dition (2015). The importance of workup for the interest-rate swap market is discussed

by Wholesale Markets Brokers’ Association (2012) and Giancarlo (2015).

Block-trading dark pools operate in equity markets in parallel to stock exchanges,

which are also referred to by market participants as “lit” venues. The dominant trade

mechanism of stock exchanges is a central limit order book. Lit venues provide the latest

bid-ask prices continuously. Dark pools match orders at a price between the most currently

3According to SIFMA (2016), matching sessions are provided on the following corporate bond platforms:
Codestreet Dealer Pool (pending release), Electronifie, GFI, Latium (operated by GFI Group), ICAP ISAM
(pending release), ITG Posit FI, Liquidity Finance, and Tru Mid.
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obtained bid and ask. Block-trading dark pools such as Liquidnet or POSIT typically use

the midpoint of the prevailing bid-ask prices. Most dark pools operate continuously, in

that buy and sell orders can be submitted anytime, and matching happens by time priority

when both sides are available. When dark pools are executing orders, exchange trading

continues. In current U.S. equity markets, only a few dark pools have execution sizes that

are substantially larger than those on exchanges. Most dark pools have execution sizes

similar to exchanges. For more details on dark-pool trading protocols, see Zhu (2014) and

Ready (2014).

3 Dynamic Trading in Double Auctions

This section models dynamic trading in a flexible-price market consisting of a sequence of

double auctions. Allocative inefficiency in dynamic double auction markets has already

been shown by Vayanos (1999), Rostek and Weretka (2015), and Du and Zhu (2015).4

This section merely reproduces the key thrust of their contributions in a simpler model.

(We use a simple variant of the model of Du and Zhu (2015).) We claim no significant

contribution here relative to these three cited papers. Our objective in this section is

instead to set up a price-discovery market with imperfect competition as a benchmark.

The rest of the paper then analyzes the effect of adding a size-discovery mechanism. Once

we have solved for equilibrium in this price-discovery market, the associated indirect

utilities for pre-auction inventory imbalances serve as the terminal utility functions for

the prior size-discovery stage, which is modeled in the next section.

We fix a probability space and the time domain [0,∞). Time 0 may be interpreted

as the beginning of a trading day. The market is populated by n ≥ 3 risk-neutral agents

trading a divisible asset. The payoff π of the asset, a random variable with some finite

mean v, will be revealed publicly at a random time T that is exponential with parameter

r. Thus E(T ) = 1/r. Everyone has symmetric information about π. At time T , the

traders receive their payoffs from the assets and the economy ends.

The n traders’ respective asset inventories at the beginning of the double-auction

market are given by a vector z0 = (z10, z20, . . . , zn0) of random variables that have non-

zero finite variances. While the individual traders’ inventories may be correlated with

each other, there is independence among the asset payoff π, the revelation time T , and

the vector z0 of inventories.

At each nonnegative integer trading period k ∈ {0, 1, 2, . . . } a double auction is used to

reallocate the asset. The trading periods are separated by some clock time ∆ > 0, so that

the k-th auction is held at time k∆. As the first double auction begins, the information

4Equilibrium models of static demand-schedule-submission games under imperfect competition include those
of Wilson (1979), Klemperer and Meyer (1989), Kyle (1989), Vives (2011), and Rostek and Weretka (2012).
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available to trader i includes the initial inventory zi0, but does not include5 the total

inventory Z0 =
∑

i zi0. This allows that some traders may be better informed about

Z0 than others, and may have information about Z0 going beyond their own respective

inventories.

Right before auction k + 1, trader i receives an incremental inventory shock wi,k+1.

The random variables {wik} are i.i.d. with mean zero and variance σ2
w∆.

At the k-th auction, trader i submits a continuous and strictly decreasing demand

schedule. The information available to trader i at period k consists6 of the trader’s

initial information, the sequence p0, . . . , pk−1 of prices observed in prior auctions, as well

as the trader’s current and lagged inventories, zi0, . . . , zik. We focus on equilibria in

which the demand schedule chosen by trader i optimally depends only on the trader’s

current pre-auction inventory zik. That is, trader i submits a demand schedule of the

form xik( · ; zik) : R → R, which is an agreement to buy xik(pk; zik) units of the asset at

the unique market-clearing price pk. Whenever it exists, this market clearing price pk is

defined by ∑
i

xik(pk; zik) = 0. (1)

The inventory of trader i thus satisfies the dynamic equation

zi,k+1 = zik + xik(pk; zik) + wi,k+1. (2)

The total inventory in the market right before auction k is Zk =
∑

i zik. The periodic

inventory shocks make it impossible to perfectly infer the current total inventory from

past prices. Hence, the double-auction game always has incomplete information.

This double-auction mechanism is typical of those used at the open and close of the

day on equity exchanges.7 The double-auction model captures the basic implications of

a flexible-price market in which traders are rational and internalize the equilibrium price

impacts of their own trades. In practice, participants in a multi-unit auction submit a

package of limit orders rather than a demand function. An arbitrary continuous demand

function can be well approximated with a large number of limit orders at closely spaced

limit prices.

When choosing a demand schedule in period k, each trader maximizes his conditional

mean of the sum of two contributions to his final net payoff. The first contribution is

5Fixing the underlying probability space (Ω,F , P ), trader i is endowed with information given by a sub-σ-
algebra Fi0 of F . The inventory zi0 is measurable with respect to Fi0, whereas the total inventory Z has a
non-zero variance conditional given Fi0.

6That is, the σ-algebra with respect to which the demand schedule of trader i in the k-th auction must be
measurable is the join of the initial σ-algebra Fi0 and the σ-algebra generated by {p0, . . . , pk−1}, {zi1, . . . , zik},
and {wi1, . . . , wik}.

7See, for example, http://www.nasdaqtrader.com/content/ProductsServices/Trading/Crosses/fact sheet.pdf.

10

http://www.nasdaqtrader.com/content/ProductsServices/Trading/Crosses/fact_sheet.pdf


trading profit, which is the final payoff of the position held when π is revealed at time

T , net of the total purchase cost of the asset in the prior double auctions. The second

contribution is a holding cost for inventory. The cost per unit of time of holding q units

of inventory is γq2, for a coefficient γ > 0 that reflects the costs to the trader of holding

risky inventory.8 For simplicity, we normalize time discounting. This is a reasonable

approximation for trader inventory management in practice, at least if market interest

rates are not extremely high, because traders lay off excess inventories over relatively

short time periods, typically measured in hours or days.

In summary, for given demand schedules xi1( · ), xi2( · ), . . ., the ultimate net payoff to

be achieved by trader i, beginning at period k, is

Uik = πzi,K(T ) −
K(T )∑
j=k

pjxij(pj ; zij)−
∫ T

k∆
γz2

i,K(t) dt, (3)

where K(t) = max{k : k∆ ≤ t} denotes the number of the last trading period before time

t. For given demand schedules, the continuation utility of trader i at the k-th auction,

provided it is held before the time T at which the asset payoff is realized, is thus

Vik = E

(
Uik

∣∣∣∣ Fik) , (4)

where Fik represents the information of trader i just before the k-th auction.

Based on this calculation, the continuation utility of trader i given by (4) satisfies the

recursion

Vik = −xikpk − γη(xik + zik)
2 + (1− e−r∆)(xik + zik)v + e−r∆E(Vi,k+1 | Fik), (5)

where we have used the shorthand xik for xik(pk; zik), and where η is the expected duration

of time from a given auction (conditional on the event that the auction is before T ) until

the earlier of the next auction time and the payoff time T :

η =

∫ ∆

0
rt e−rt dt+ e−r∆∆ =

1− e−r∆

r
. (6)

The four terms on the right-hand side of (5) represent, respectively, the payment made

in the k-th double auction, the expected inventory cost to be incurred in the subsequent

8Even though they do not have direct aversion to risk, broker-dealers and asset-management firms have
extra costs for holding inventory in illiquid risky assets. These costs may be related to regulatory capital
requirements, collateral requirements, financing costs, agency costs related to the lack of transparency of the
position to higher-level firm managers or clients regarding true asset quality, as well as the expected cost of
being forced to raise liquidity by quickly disposing of remaining inventory into an illiquid market. Our quadratic
holding-cost assumption is common in models of divisible auctions, including those of Vives (2011), Rostek and
Weretka (2012), and Du and Zhu (2015).
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period (or until the asset payoff is realized), the expectation of any asset payment to be

made in the next period multiplied by the probability that T is before the next auction, and

the conditional expected continuation utility in period k+ 1 multiplied by the probability

that T is after the next auction.

Each trader takes the total of the demand functions of the other traders as given. By

the Bellman principle of dynamic optimality, in each period k, trader i is conjectured to

submit a demand schedule xik( · ; zik) that maximizes the right-hand side of (5) subject

to the dynamic equation (2), when taking Vi,k+1 = V(zi,k+1), for some indirect inventory

value function V : R → R. This indirect inventory value function V( · ) must satisfy (5)

for this maximizing demand function, when taking Vik = V(zik). The equilibrium given

by the following proposition is established by a standard Bellman verification argument,

which implies the optimality of the corresponding demand functions. For this, we use the

fact that, for the candidate optimal demand schedule, e−rk∆V(zik) converges to 0 as k

goes to infinity, and the fact that lim supk→∞ e
−rk∆V(zik) ≤ 0 for any feasible demand

strategy. Details are in Appendix A.

Proposition 1. In the game associated with the sequence of double auctions, there exists

a stationary and subgame perfect equilibrium, in which the demand schedule of trader i in

the k-th auction is given by

xik(p; zik) = a∆

(
v − p− 2γ

r
zik

)
, (7)

where

a∆ =
r

2γ

2(n− 2)

(n− 1) + 2e−r∆

1−e−r∆ +
√

(n− 1)2 + 4e−r∆

(1−e−r∆)2

. (8)

The equilibrium price in auction k is

pk = v − 2γ

nr
Zk. (9)

The bidding strategies of this equilibrium are ex-post optimal with respect to all realizations

of inventory histories. That is, trader j would not strictly benefit by deviating from the

equilibrium strategy even if he were able to observe the history of other traders’ inventories,

{zim : i 6= j,m ≤ k}.

The ex-post optimality property of the equilibrium arises from the fact that each

trader’s marginal indirect value for additional units of the asset depends only on his own

current inventory, and not on the inventories of other traders. This property will be useful

in solving the workup equilibrium.

The slope a∆ of the equilibrium supply schedule is increasing in ∆. That is, trading
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is more aggressive if double auctions are conducted at a lower frequency. We also have

lim
∆→∞

a∆ =
r(n− 2)

2γ(n− 1)
<

r

2γ
. (10)

Moreover, as ∆ goes to 0, a∆ converges to 0.

The market-clearing price pk reveals the total inventory Zk at the moment of the k-th

auction. Because the total inventory process {Z0, Z1, Z2, . . .} is a martingale, the price

process {pk} is also a martingale.

Although traders have symmetric information about the asset fundamental, uncer-

tainty about the total inventory Zk generates uncertainty about the market-clearing price.

As we will see in the next section, uncertainty over the initial inventory Z0 is an important

determinant of the optimal strategy in the workup stage of the model.

By symmetry and the linearly decreasing nature of marginal values, the efficient allo-

cation immediately assigns each trader the average inventory Zk/n. The double-auction

market, however, merely moves the allocation toward this equal distribution of the asset.

Specifically, by substitution, we have

xik = a∆

(
v − pk −

2γ

r
zik

)
= −a∆

2γ

r

(
zik −

Zk
n

)
, (11)

zi,k+1 = zik + xik + wi,k+1 = zik − a∆
2γ

r

(
zik −

Zk
n

)
+ wi,k+1. (12)

At auction k, the equilibrium trade xik eliminates only a fraction ϕ = a∆2γ/r of

the “excess inventory” zik − Zik/n of trader i. This partial and inefficient liquidation

of unwanted inventory is caused by imperfect competition. From (10), we have ϕ ≤
(n − 2)/(n − 1), and this bound is achieved in the limit as ∆ → ∞. As ∆ → 0, we have

a∆ → 0, and the fractional reduction ϕ of the mis-allocation of inventory converges to

zero.

Since our ultimate objective is to characterize the workup strategy at time 0, we spell

out the continuation value of each trader, evaluated at time 0, in the following proposition.

Proposition 2. Let Vi,0+ = E(Ui0 | zi0, p0) denote the initial utility of trader i, evaluated

at time 0 after conditioning on the initial market-clearing price p0, which reveals the initial

total inventory Z ≡ Z0. We have:

Vi,0+ =

[
v
Z

n
− γ

r

(
Z

n

)2
]

+

(
v − 2

γ

r

Z

n

)(
zi0 −

Z

n

)
− γ

r

1− 2a∆
γ
r

n− 1

(
zi0 −

Z

n

)2

+ Θ,

(13)

where Θ < 0 is a constant whose expression is provided in Appendix A.2.

The first term of (13) is the total utility of trader i in the event that trader i already
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holds the initial efficient allocation Z/n. The second term of (13) is the amount that could

be hypothetically received by trader i for immediately selling the entire excess inventory,

zi0 − Z/n, at the market-clearing price, v − 2γZ/(rn). But this immediate beneficial

reallocation of the asset does not actually occur because traders strategically shade their

bids to account for the price impact of their orders. This price-impact-induced drag on

each trader’s expected ultimate net payoff, or “utility,” is captured by the third term of

(13), which is the utility loss caused by the fact that the demand schedule of trader i

in each auction is decreasing in a∆. The constant Θ captures the additional allocative

inefficiency caused by periodic inventory shocks. (If σ2
w = 0, then Θ = 0.) The loss of

welfare associated with the initial inventory allocation is proportional to
∑

i(zi0−Z0/n)2,

a natural welfare metric formalized in Appendix C.

Again, because a∆ is always smaller than r/(2γ), full efficiency cannot be achieved.

Moreover, because a∆ is increasing in ∆, each trader’s utility loss gets larger as ∆ gets

smaller. The basic intuition is as follows. (See Du and Zhu (2015) for a detailed dis-

cussion.) Although a smaller ∆ gives traders more opportunities to trade, they are also

strictly less aggressive in each trading round. A smaller ∆ makes allocations less efficient

in early rounds but more efficient in late rounds. Traders value early-round efficiency

more because of the effective “time discounting” e−r∆. The net effect is that allocative

efficiency is worse if ∆ is smaller.

Appendix B provides the continuous-time limit of the discrete-time double auction

model, and shows that this limit matches the equilibrium of the continuous-time version

of the double-auction model.

4 Introducing Workup for Size Discovery

We saw in the previous section that successive rounds of double auctions move the in-

ventories of the traders toward a common level. This reduction in inventory dispersion is

only gradual, however, because at each round, each trader internalizes the price impact

caused by his own quantity demands, and thus “shades” his demand schedule so as to

trade off inventory holding costs against price impact.

We now examine the effect of introducing at time 0 a size-discovery mechanism, taken

for concreteness to be a workup session, that gives traders the opportunity to reduce

the magnitudes of their excess inventories without concern over price impact. It would

be natural in practice to run a workup session whenever traders’ inventories have been

significantly disrupted. In the U.S. Treasury market, for example, primary dealers’ posi-

tions can be suddenly pushed out of balance by unexpectedly large or small awards in a

Treasury auction. Individual dealers’ inventories could also be disrupted by large surges

of demand or supply from their buy-side clients. We show that workup immediately re-
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allocates a potentially large amount of inventory imbalances, which improves allocative

efficiency relative to the double-auction market without a workup.

4.1 A model of bilateral workup

For expositional simplicity, we first consider a setting in which each of an arbitrary number

of bilateral workup sessions is conducted between an exogenously matched pair of traders,

one with negative inventory, “the buyer,” and one with positive inventory, “the seller.”

Any trader not participating in one of the bilateral workup sessions is active only in the

subsequent double-auction market. Information held by a pair of workup participants

regarding participation in other workup sessions plays no role in our model. That is,

the equilibrium for the bilateral workup sessions and the subsequent double auctions is

unaffected by information held by the participants in a given workup regarding how many

other workup sessions are held and which traders are participating in them. For simplicity,

we do not model the endogenous matching of workup partners.

In the next section, we generalize the model to cover a more realistic multilateral

workup session.

In a given bilateral workup session, say that between traders 1 and 2, the seller has

an initial inventory Ss that is exponentially distributed with parameter µ, thus having

a mean of 1/µ. The initial inventory Sb of the buyer is negative, with a magnitude

|Sb| that independent of, and identically distributed with, the seller’s initial inventory.

For the purpose of characterizing the equilibrium in a bilateral workup, we only need to

assume that the sum of the initial inventories z30, . . . , zn0 of the other n − 2 traders has

mean zero and is independent of Ss and Sb. But for symmetry and a more convenient

quantitative assessment of the welfare improvement brought by the bilateral workup, we

will additionally assume that z30, . . . , zn0 are iid with the density function

f(z) =
1

2
µe−µ|z|, z ∈ (−∞,∞). (14)

Thus, everyone has identical second moment of inventory: E[(Sb)2] = E[(Ss)2] = E[z2
i0] =

2/µ2 for all i ≥ 3.

The workup price p̄ is set without the use of information about traders’ privately

observed inventories, and therefore at some deterministic level p̄. We will provide an

interval of choices for p̄ that is necessary and sufficient for interior equilibrium workup

dropout policies. We will also show that the allocative efficiency improvement of workup

is invariant to changes in the workup price p̄ within this interval. A natural choice for

p̄ is the unconditional expectation of the asset payoff v, which can be interpreted as the

expectation of the clearing price in the subsequent double-auction market, or as the price

achieved in a previous round of auction-based trade, before new inventory shocks instigate
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a desire by traders to lay off their new unwanted inventories.

After each of a given pair of participants in a workup privately observes his own

inventory, the workup proceeds in steps as follows:

1. The workup operator announces the workup price p̄.

2. The workup operator provides a continual display, observable to buyer and seller,

of the quantity Q(t) of the asset that has been exchanged in the workup by time t

on the workup “clock.” The units of time on the workup clock are arbitrary, and

the function Q( · ) is any strictly increasing continuous function satisfying Q(0) = 0

and limt→∞Q(t) = ∞. For example, we can take Q(t) = t. The workup clock can

run arbitrarily quickly, so workup can take essentially no time to complete. This

mechanism is essentially the “button mechanism” described in Pancs (2014).

3. At any finite time Tb on the workup clock, or equivalently at any quantity Qb =

Q(Tb), the buyer can drop out of the workup. Likewise, the seller can drop out at

any time Ts or quantity Qs = Q(Ts). The workup stops at time T ∗ = min(Ts, Tb),

at which the quantity Q∗ = Q(T ∗) = min(Qb,Qs) is transferred from seller to buyer

at the workup price p̄, that is, for the total consideration p̄ Q∗.

After the bilateral workups terminate, all traders enter the sequence of double auctions

described in Section 3.

As mentioned in the introduction, the workup procedure modeled here is similar to

the matching mechanism used by certain dark pools, such as POSIT and Liquidnet, that

specialize in executing large equity orders from institutional investors. In a dark-pool

transaction with one buyer and one seller, each side privately submits a desired trade

size to the dark pool, understanding that the dark pool would execute a trade for the

minimum of the buyer’s and seller’s desired quantities. In a bilateral setting, workup and

dark-pool matching are thus equivalent.

4.2 Characterizing the workup equilibrium

This section characterizes the equilibrium behavior of the two traders in a given bilateral

workup session.

Any trader’s strategy in the subsequent double-auction market, solved in Proposition 1,

depends only on that trader’s inventory level. Thus any public reporting, to all n traders,

of the workup transaction volume Q∗ plays no role in the subsequent double-auction

analysis.

We conjecture the following equilibrium workup strategies. The buyer and seller fix

deterministic thresholds, Mb and Ms respectively, for the magnitudes of residual inventory

at which they drop out of workup. That is, the buyer allows the workup transaction size

to increase until the time Tb at which his residual inventory |Sb +Q(Tb)| is equal to Mb.
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The seller likewise chooses a dropout time Ts at which his residual inventory Ss −Q(Ts)

reaches Ms. One trader’s dropout is of course pre-empted by the other’s. A threshold

equilibrium is a pair (Mb,Ms) ∈ R2
+ with the property that Mb maximizes the conditional

expected payoff of buyer given the seller’s threshold Ms and conditional on the buyer’s

inventory Sb, and vice versa. We emphasize that, given Ms, the buyer is not restricted to

a deterministic threshold, and vice versa.

The Dropout Strategies. For any y > 0, let Fy be the event that the buyer’s

candidate requested quantity y > 0 is filled. That is,

Fy =
{

0 ≤ −(Sb + y)−Mb, 0 ≤ Ss − y −Ms

}
. (15)

The remaining inventory of the buyer, −(Sb + y), is weakly larger than the dropout

quantity Mb, for otherwise the buyer would have already dropped out. Similarly, the

remaining inventory of the seller, Ss − y, is weakly larger than his dropout quantity Ms,

for otherwise the seller would have already dropped out.

With the conjectured equilibrium dropout strategies, the memoryless property of the

exponential distribution implies that, for the buyer, the seller’s inventory in excess of the

dropout quantity, which is W ≡ Ss − y −Ms, is Fy-conditionally exponential with the

same parameter µ. Thus, recalling that Z is the aggregate inventory of the traders, we

have

E(Z | Fy, Sb) = Sb + y +Ms +
1

µ
, (16)

using the fact that the expected total inventory of all traders not participating in this

workup is zero.

By a similar calculation,

E(Z2 | Fy, Sb) = E

(Sb + y +Ms +W )2 +

(
n∑
i=3

zi0

)2


= (Sb + y +Ms)
2 + E(W 2) + 2(Sb + y +Ms)E(W ) + θ

= (Sb + y +Ms)
2 +

2

µ2
+ 2(Sb + y +Ms)

1

µ
+ θ, (17)

where

θ = E

( n∑
i=3

zi0

)2
 .

On the other hand, given the initial inventory Sb and the candidate quantity y ≥ 0 to

be acquired in the workup, the buyer’s conditional expected ultimate value, given {Z, Sb},

17



is

U b = −p̄y + V(Sb + y), (18)

where, based on Proposition 2,

V(z) = v
Z

n
− γ

r

(
Z

n

)2

+

(
v − 2

γ

r

Z

n

)(
z − Z

n

)
− γ

r

1− 2a∆γ/r

n− 1

(
z − Z

n

)2

. (19)

Organizing the terms, we get

E(U b | Fy, Sb) = −p̄y + v(Sb + y)− γ

r
C(Sb + y)2 + 2

γ

r
(C − 1) (Sb + y)

E(Z | Fy, Sb)
n

− γ

r
(C − 1)

E(Z2 | Fy, Sb)
n2

, (20)

where

C =
1− 2a∆γ/r

n− 1
. (21)

Substituting the expressions that we have shown above for E(Z |Fy, Sb) and E(Z2 |Fy, Sb)
into this expression for E(U b |Fy), we get

g(y) ≡ dE(U b |Fy, Sb)
dy

= v − p̄− 2
γ

r
C(Sb + y) + 2

γ

r
(C − 1)

1

n

(
2(Sb + y) +Ms +

1

µ

)
− γ

r
(C − 1)

1

n2

(
2(Sb + y +Ms) +

2

µ

)
. (22)

The derivative g(y) is everywhere strictly decreasing in y. Following the conjectured

equilibrium, an optimal dropout quantity Mb for the buyer’s residual inventory, if the

optimum is interior (which we assume for now and then validate), is obtained at a level

of y for which this derivative g(y) is equal to zero, and by taking Sb + y = −Mb. That is,

0 = v − p̄− 2
γ

r
C(−Mb) + 2

γ

r
(C − 1)

1

n

(
2(−Mb) +Ms +

1

µ

)
− γ

r
(C − 1)

1

n2

(
2(−Mb +Ms) +

2

µ

)
. (23)

By completely analogous reasoning, the first-order conditions for the seller’s optimal

dropout threshold Ms is given by

0 = p̄− v + 2
γ

r
CMs + 2

γ

r
(C − 1)

1

n

(
−2Ms +Mb +

1

µ

)
− γ

r
(C − 1)

1

n2

(
−2(Ms −Mb) +

2

µ

)
. (24)
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The Equilibrium Dropout Thresholds. The unique solution to the two first-order

necessary and sufficient conditions (23) and (24) is

Mb =
n− 1

n+ n2C/(1− C)

1

µ
+ δ = M + δ, (25)

Ms =
n− 1

n+ n2C/(1− C)

1

µ
− δ = M − δ, (26)

where

M ≡ n− 1

n+ n2C/(1− C)

1

µ
. (27)

is the dropout quantity for the unbiased price p̄ = v, and where

δ =
r

2γ

p̄− v
C + (1− C)(3n− 2)/n2

. (28)

As we see later, the symmetric solution M plays an important role in calculating the

comparative statics. To be consistent with the initial conjecture that the equilibrium is

interior, that is, Mb > 0 and Ms > 0, the workup price p̄ must have the property that

|δ| ≤M , or equivalently,

|p̄− v| ≤ 2γM [C + (1− C)(3n− 2)/n2]

r
. (29)

We will only treat prices satisfying this interior-dropout condition.

It is intuitive that a biased workup price causes asymmetric dropout behavior. If p̄ > v,

the workup price is less favorable than the double auction price for the buyer, but more

favorable for the seller. Thus, the buyer is more cautious than the seller in the workup,

in that the buyer’s dropout level is higher than the seller’s. The opposite is true if p̄ < v.

This result is summarized by the following proposition.

Proposition 3. Suppose that the workup price p̄ satisfies (29). The workup session has a

unique equilibrium in deterministic dropout-inventory strategies. The buyer’s and seller’s

dropout levels, Mb and Ms, for residual inventory are given by (25) and (26), respectively.

That is, in equilibrium, the buyer and seller allow the workup quantity to increase until

the magnitude of their residual inventories reach Mb or Ms, respectively, or until the other

trader has dropped out, whichever comes first.

Figure 2 illustrates the impact of the workup on the undesired inventory levels of

two traders. In this simple example, there are n = 5 traders and one bilateral workup

session. The workup price is p̄ = v. The two workup participants have mean inventory

size 1/µ = 1. We calculate the equilibrium outcome of the workup when the outcome of

the workup buyer’s pre-workup inventory Sb is −2, the outcome of the workup seller’s pre-

workup inventory Ss is 1.5, and the outcomes of all of the other traders’ initial inventories
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are zero. The outcome for the efficient allocation of all traders is Z/n = −0.1. We focus on

the continuous-time sequential-double-auction market. The equilibrium workup dropout

quantity is in this case M = 0.3. Because we have the outcome that |Sb| > |Ss|, the

seller exits the workup first, after executing the quantity 1.5 − 0.3 = 1.2. The seller’s

inventory after the workup is 0.3, whereas the buyer’s inventory after the workup is

−(2− 1.2) = −0.8.

Time
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Large buyer, no workup
Large buyer, add workup
Large seller, no workup
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Efficient inventory

Figure 2: Immediate inventory imbalance reduction by workup. Parameters: n = 5, µ = 1, r = 0.1, γ = 0.05,
∆ = 0, Sb = −1.5, Ss = 2. The outcomes of the inventories of traders not entering workup are zero.

Proposition 3 shows that as long as the workup price is not too biased, the two workup

participants do not generally attempt to liquidate all of their inventories during the workup

(in that Mb > 0 and Ms > 0). Their optimal target inventories are determined by two

countervailing incentives. On one hand, because of the slow convergence of a trader’s

inventory to efficient levels during the subsequent double-auction market, each trader has

an incentive to execute large block trades in the workup. On the other hand, a trader

faces adverse selection regarding the total inventory Z and the double-auction prices. For

example, if the buyer’s expectation of the future auction price is lower than the workup

price p̄, the buyer would be better off buying some of the asset in the subsequent auction

market, despite the associated price impact. This incentive encourages inefficient “self-

rationing” in the workup. A symmetric argument holds for the seller. Depending on a

trader’s conditional expectation of the total market excess inventory Z, which changes as
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the workup progresses, the trader sets an endogenous dropout inventory threshold such

that the two incentives are optimally balanced. In setting his optimal target inventory,

a trader does not attempt to strategically manipulate the other trader’s inference of the

total inventory Z, because optimal auction strategies do not depend on conditional beliefs

about Z.

4.3 Properties of the workup equilibrium

We now describe additional properties of the workup equilibrium of Proposition 3.

Pareto improvement in efficiency. Although adding workups does not lead to the

efficient allocation, it causes a sudden and beneficial reduction in inventory imbalances.

Because workup participation is voluntary, traders can only increase their utilities (at least

weakly) by participating in workups. Traders suffer no loss in expected net benefit (relative

to a market without workup) from not participating in workups, as can be checked from

(13). Thus, adding workup sessions is a Pareto improvement among all traders, and offers

a strict improvement to those who, in expectation, execute a strictly positive quantity in

a workup. There is generally a non-trivial welfare improvement associated with adding

workups, measured by the increase in the sum of the total of trades’ ex-ante expected net

payoff.

Proposition 4. Adding workup sessions before the sequential-double-auction market is a

Pareto improvement. That is, every trader’s ex-post utility is increased, and the ex-post

utility of participating traders who, in expectation, execute strictly positive workup quanti-

ties is strictly increased, over that associated with a sequential-double-auction market that

is not preceded by workup.

Equilibrium outcomes. Now we discuss the outcomes of the bilateral workup equi-

librium, including the probability of active workup participation, the expected trading

volume, and welfare improvement between the buyer and the seller. We further show that

these quantities are invariant to variation in the workup price p̄ provided that p̄ is in the

interval satisfying condition (29).

The probability of triggering an active workup is

P (Ss > Ms, |Sb| > Mb) = e−µ(M+δ)e−µ(M−δ) = e−2µM , (30)

which is decreasing in M and does not depend on p̄, within the range of interior solutions.

Moreover, by substituting in (27), we obtain:

P (Ss > Ms, |Sb| > Mb) = exp

(
− 2(n− 1)

n+ n2C/(1− C)

)
. (31)
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That is, the probability of having an active workup does not depend on the average

inventory sizes in the market. This probability of active workup depends instead on the

competitiveness of the double-auction market (which is captured by the number n of

traders), the mean arrival rate r of price-relevant information, and the auction-market

frequency (1/∆). We will discuss these comparative statics in detail shortly.

Similarly, the expected trading volume in the workup is

E
[
max

(
min

(
|Sb| −Mb, S

s −Ms

)
, 0
)]

=

∫ ∞
x=M+δ

∫ ∞
y=M−δ

µe−µxµe−µy min(x− (M + δ), y − (M − δ)) dx dy. (32)

By the change in variables u = x − M − δ and w = y − M + δ, the integral can be

re-expressed as ∫ ∞
u=0

∫ ∞
w=0

µe−µ(u+M+δ)µe−µ(w+M−δ) min(u,w) du dw

= e−2µM

∫ ∞
u=0

∫ ∞
w=0

µe−µuµe−µw min(u,w) du dw, (33)

which is decreasing in M and is invariant to δ in the interval [0,M ]. Thus, within the

range of workup prices at which dropout thresholds are interior, the expected workup

trade volume does not depend on the workup price p̄.

By a similar but slightly longer calculation, Appendix C shows that for δ ∈ [0,M ],

the fraction of the total inefficiency costs of the buyer and the seller that is eliminated by

their participation in the bilateral workup is

R =
n

2(n− 1)
e−2Mµ(1 +Mµ). (34)

Because e−2Mµ(1 + Mµ) is decreasing in M , which in turn is increasing in n, this pro-

portional cost reduction R decreases with the number n of market participants. That is,

in terms of its relative effectiveness in eliminating inventory-cost inefficiencies caused by

imperfect competition in price-discovery markets, workup is more valuable for markets

with fewer participants.

For the continuous-time version of the double-auction market (or in the limit in ∆

goes to zero), we have simply

R =
3n− 2

4(n− 1)
e−(n−2)/n. (35)

For n = 3, this cost-reduction ratio is R = 0.627. As n gets large, R → 0.75e−1 = 0.276.

So, buyers and sellers participating in bilateral workup eliminate between 27.6% and 62.7%

of the inefficiency costs caused by imperfect competition and avoidance of price impact.
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Figure 3 shows how R declines with the number n of market participants.
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Figure 3: The proportional welfare improvement of traders participating in workup. The plot shows the fraction
R of the total inefficiency cost of the buyer and the seller that is eliminated by their participation in bilateral
workup.

Comparative statics. We have just shown that the probability of triggering an active

workup and the expected workup trading volume are decreasing in the workup inventory

dropout threshold M . Now, we discuss how M varies with respect to ∆, r, and n. These

comparative statics reveal how the attractiveness of the size-discovery workup mechanism

varies with market conditions.

We have

ζ(∆) ≡ 1− 2a∆
γ

r
=

√
(n− 1)2(1− e−r∆)2 + 4e−r∆ − (n− 1)(1− e−r∆)

2e−r∆
. (36)

By Proposition 2, ζ(∆) is the fraction of excess inventory that remains after each successive

double auction. The smaller is this quantity, the more aggressive are traders’ submitted

demand schedules. The constant γ that scales the quadratic inventory cost does not in

itself affect ζ(∆) or M . This is perhaps surprising, and applies in light of the fact that

the aggressiveness of demand schedules fully offsets the effect of γ, causing a∆γ to be

invariant to γ.

By calculation,

ζ ′(∆) =
rer∆(n− 1)

2


√

(n− 1)2(er∆ − 1)2 + 4er∆ − 4
(

1− 1
(n−1)2

)
√

(n− 1)2(er∆ − 1)2 + 4er∆
− 1

 < 0. (37)

Because M is decreasing in C = ζ(∆)/(n−1), M is therefore increasing in ∆. That is, the
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smaller is ∆ (the more frequent the double auctions), the smaller is M , and the more active

is workup. Intuitively, a small ∆ discourages aggressive trading in the double auctions

because traders have frequent opportunities to trade, which implies that the convergence

to efficient inventory levels is slow. (This welfare cost of fast trading is also discussed by

Vayanos (1999) and Du and Zhu (2015).) Workup is therefore more attractive to “large

traders,” that is, those tending to have large inventory imbalances, because workup can

lead to more dramatic reductions in excess inventories, despite the adverse-selection effect

of workup.

As the double auctions become more frequent, that is as ∆ goes to zero, we know

that a∆ → 0 and thus C → 1/(n − 1). In this case, M converges downward to the

continual-auction limit
n− 2

2n

1

µ
, (38)

and the probability of triggering a workup becomes maximal, at exp(−(n−2)/n). At this

continuous-time limit, which is the same as the behavior of the corresponding continuous-

auction model shown in Appendix B, the probability of triggering a workup decreases

in n. Intuitively, the double auction market becomes more efficient as the number n of

participants grows, getting closer and closer to price-taking competitive behavior. Hence,

as n grows, there is less allocative benefit from size discovery. In fact, we can show that

M increases with n regardless of the model parameters. (For details, see Appendix A.3.)

For example, in a market with n = 20 traders, if workup is preceded by a continuous-

time auction market, the probability of active workup is e−18/20 ≈ 0.41. With only n = 5

traders, this active-workup probability increases to e−3/5 ≈ 0.55.

We also have
d

dr

(
1− 2a∆

γ

r

)
< 0. (39)

That is, the lower is the mean arrival rate of the asset payoff information, the smaller is M ,

and the more likely it is that an active workup is triggered. Intuitively, the more delayed

is the final determination of asset payoffs, the less aggressive are traders in their double-

auction demand schedules, which in turn increases the attractiveness of using workup to

quickly reduce inventory imbalances.

These comparative statics are summarized by the following proposition.

Proposition 5. All else equal, the probability of triggering a workup and the expected

workup trade volume are higher (that is, M is lower) if:

1. The frequency of subsequent double auctions is higher (∆ is smaller).

2. The number n of traders is lower.

3. The mean arrival rate of asset payoff news r is lower.
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4.4 Empirical implications

The most direct empirical implication of our results is that size-discovery mechanisms

are more likely to be active in markets with highly concentrated position imbalances,

and especially in markets with relatively few active market participants. Workup and

matching-session mechanisms exist in practice under just these circumstances. In partic-

ular, interdealer markets for Treasuries and swaps are populated by a small number of

major dealers whose role as market makers is to take large positions from their customers

and then to lay off net position imbalances with other major dealers, some of whom are

likely to have large position imbalances of the opposite sign. Likewise, corporate bond

and CDS markets tend to have very few active market participants at a given time, and

position imbalances tend to be large relative to daily trade volume.

Within a given market, our results predict that the fraction of total trade volume that

is executed by size discovery is increasing in the degree of large position imbalances. In

Treasury markets, for example, our results suggest that workups would be particularly

active immediately following a Treasury auction, in which some dealers are awarded much

larger amounts of a newly issued security than the net trade requests of their clients,

while other dealers are awarded much smaller positions than the net demand of their own

clients.

For illustrative simplicity, consider the continuous-time version of our model in Ap-

pendix B without periodic inventory shocks. The total absolute quantity of position

imbalances at a given time t is D(t) =
∑

i |zit − Z/n|, where zit is the position of dealer

i at time t. Using (150), this aggregate position imbalance D(t) can be calculated from

the equilibrium (one-sided) trade volume

q(t) =
1

2

∑
i

∣∣ d
dt
zit
∣∣ =

(n− 2)r

4
D(t). (40)

A slightly more complicated but similar linear expression applies in discrete time, or with

random inventory shocks.

Because the incentive to conduct size discovery is (weakly) increasing in the dispersion

measure D(t), it follows from (40) that size discovery is more likely to be active when

central-limit-order-book (CLOB) volume is high. Indeed, this is consistent with the ev-

idence shown in Table 9 of Fleming and Nguyen (2015), that workup is more likely on

BrokerTec if trade volume is higher. Likewise, in our model, expected workup volume is

increasing in immediately subsequent CLOB trade volume. Fleming and Nguyen (2015)

also find that workup is more likely to happen if the pre-workup CLOB has a higher

depth and a lower spread, which is consistent with the rationale that wider dispersion of

undesirable inventories creates two-way trading interests and better liquidity on CLOB.

(Although their evidence is consistent with the prediction of our model for the case of a
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single round initial of workup, our model does not incorporate dynamic choice of workup.)

This positive correlation between workup activity and CLOB trade volume (and other

measures suggesting better liquidity) might not be apparent from a partial-equilibrium

perspective, by which traders would purportedly see less advantage in conducting size

discovery whenever they note that they can take advantage of high CLOB volume to reduce

their position imbalances quickly. Our equilibrium model reflects the correct causality,

namely that high position imbalances induce higher volumes in both size-discovery and

price-discovery mechanisms.

5 Multilateral Workups

In Section 4 we solved the equilibrium for bilateral workup sessions, and showed that

workup provides size-discovery welfare benefits. This section extends our results to dy-

namic multilateral workups, which are more commonly used in practice, for example on

electronic trading platforms. The intuition for the allocative efficiency benefits of size-

discovery is similar to that for the simpler case of bilateral workup. Moreover, additional

insights are gained from the equilibrium dynamic dropout policies in multilateral workups.

We take the numbers Nb of buyers and Ns of sellers to be initially unobservable, inde-

pendent, and having the same geometric distribution. Specifically, for any non-negative

integer k,

P (Nb = k) = P (Ns = k) = f(k) ≡ qk(1− q), (41)

for some q ∈ (0, 1). We have E(Nb) = E(Ns) = q/(1− q). The interpretation is that after

each buyer exits the workup, there is a new buyer with probability q, and likewise for

sellers. (The multilateral workup model is difficult to solve with a deterministic number

of traders.9)

Although it is natural that the number of institutional investors and financial in-

termediaries seeking to trade large positions is unobservable and stochastic, as we have

assumed here, we are forced for reasons of tractability to assume that once trading in the

double-auction market begins, the total number of market participants is revealed to all.

(Otherwise, the analysis of the double auction market would be overly complicated.)

Pre-workup inventories are positive for sellers and negative for buyers. For both buyers

and sellers, the absolute magnitudes of pre-workup inventory sizes are iid exponentially

distributed, with parameter µ, thus with mean 1/µ. The numbers of buyers and sellers

and the pre-workup inventory sizes are independent. Before participating in workup, each

trader observes only his own inventory.

9The bilateral workup model can be solved if the number of buyers and the number of sellers are geometrically
distributed. The explicit calculations are more involved but available upon request.

26



It follows from the independence assumptions and the memoryless property of the

geometric distribution that, conditioning on all information available to a trader during

his turn at workup, the conditional distribution of the numbers of buyers and sellers that

have not yet entered workup retain their original independent geometric distributions.

As in Section 4, the workup session takes place before the start of the double-auction

market. The workup begins by pairing the first buyer and first seller. During the workup,

the exit from workup of the i-th buyer causes the (i + 1)-st buyer to begin workup,

provided Nb > i. The (i + 1)-st buyer can then choose whether to begin actively buying

or to immediately drop out without trading. Similarly, when seller j exits, he is replaced

with another seller if Ns > j. The exit of a trader, whether a buyer or a seller, and

the replacement of the trader is observable to everyone when it occurs. (The identities

of the exiting traders are irrelevant, and not reported, beyond whether they are buyers

or sellers.) The quantities executed by each departing trader are also observable. In

particular, the event that a trader drops out of workup without executing any quantity

is also observable. The workup ends when buyer number Nb exits or when seller number

Ns exits, whichever is first.

Throughout this section, we assume for simplicity that the workup price p̄ is set at the

expectation of the subsequent auction price p0, which is v.

We will show that at any given point during the workup, the state vector on which

the equilibrium strategies depend is of the form (m,X, y), where:

m is the total number of buyers and sellers that have already entered workup, including

the current buyer and seller.

X is the total conditional expected inventory held by previously exited participants,

given all currently available information. Given our information structure, this con-

ditional expectation is common to all workup participants.

y is the quantity that the current workup pair has already executed. We emphasize

that y = 0 corresponds to a state in which the current workup pair have yet to

execute any trade, allowing for the positive-probability event that at least one of

them may drop out of workup without executing any quantity.

We let Mb(m,X) > 0 and Ms(m,X) > 0 denote the conjectured dropout thresholds

of the current buyer and seller, respectively, in a workup state (m,X, y) that is active,

meaning y > 0. That is, we conjecture that, when the workup state is active, the current

buyer drops out once the absolute magnitude of his remaining inventory has been reduced

to Mb(m,X). We conjecture and later verify an equilibrium in which these thresholds

depend only on (m,X), and not on a trader’s current inventory or on other aspects of the

observable history of the game. We call any equilibrium of this form an “equilibrium in

Markovian threshold dropout strategies.”

27



The distinction between an active workup pair (y > 0) and a matched but currently

inactive pair (y = 0) is important to the equilibrium policies. Suppose, for example, that

we are in an active state for the first buyer and first seller. That is, the first buyer and

the first seller have executed a positive quantity y in the workup, and nothing else has

yet happened. As we will show later, because X = 0, the buyer and the seller use a

common dropout threshold, say M0. If, for example, the buyer exits, then every workup

participant infers that the buyer’s residual inventory level is −M0. By contrast, at an

inactive state, if the buyer immediately exits, then everyone else learns that the buyer’s

inventory size is at mostM0, and in particular is distributed with a truncated exponential

distribution, with the conditional expectation ν(M0), where, for any positive number y,

ν(y) ≡
∫ y
x=0 xµe

−µx dx

1− e−µy
< y. (42)

Thus, whether a trader exits without trading a strictly positive amount affects the infer-

ence of all traders.

The key step to solving the equilibrium is to calculate the dropout thresholdsMb(m,X)

andMs(m,X). For this, we first consider the problem of the current active buyer, whose

initial inventory is Sb, on the event that the buyer has to this point executed some quan-

tity y > 0 and the active seller has not yet exited. Let nb and ns denote the number of

buyers and the number of sellers yet to enter the workup, respectively, excluding the cur-

rent pair. We will calculate the first-order optimality conditions by artificially including

the residual queue sizes nb and ns in the buyer’s conditioning information, and then later

averaging with respect to the conditional distribution of (nb, ns). By the same logic used

in Section 4, the buyer has conditional mean and variance10 of aggregate market-wide

inventory given by

E(Z | Sb,m,X, y, nb, ns) = Sb + y +Ms(m,X) +
1

µ
+X + (ns − nb)

1

µ
, (43)

E(Z2 | Sb,m,X, y, nb, ns) = (Sb + y +Ms(m,X))2 + 2(Sb + y +Ms(m,X))
1

µ

+ Γb(nb, ns), (44)

where Γb(nb, ns) is a quantity that does not depend on y. Relative to the calculation

(16) for the case of bilateral workup, the conditional mean E(Z | m,X, y, nb, ns) includes

the extra terms X and (ns − nb)/µ. The exact level of the second moment E(Z2 |
m,X, y, nb, ns) does not affect the equilibrium threshold, because it plays no role in the

first-order optimality condition for the choice of y at which the buyer drops out.

10The event of executing y units has probability zero, but the stated conditional moments make sense when
applying a regular version of the conditional distribution of Z given the executed quantity and given X.
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Omitting the arguments of Ms and Mb, we have

dE(U b |Sb,m,X, y, nb, ns)
dy

= v − p̄− 2
γ

r
C(n)(Sb + y)

+ 2
γ

r
(C(n)− 1)

1

n

(
2(Sb + y) +Ms +

1

µ
+X + (ns − nb)

1

µ

)
− γ

r
(C(n)− 1)

1

n2

(
2(Sb + y +Ms) +

2

µ

)
, (45)

where n = m+ nb + ns and where

C(n) =
1− 2a∆γ/r

n− 1
. (46)

By the law of iterated expectations, we can average with respect to the product dis-

tribution of (nb, ns), to obtain

dE(U b |Sb,m,X, y)

dy
= v − p̄−

∞∑
k=0

∞∑
`=0

f(k)f(`)2
γ

r
C(n)(Sb + y)

+
∞∑
k=0

∞∑
`=0

f(k)f(`)2
γ

r
(C(n)− 1)

1

n

(
2(Sb + y) +Ms +

1

µ
+X + (`− k)

1

µ

)

−
∞∑
k=0

∞∑
`=0

f(k)f(`)
γ

r
(C(n)− 1)

1

n2

(
2(Sb + y +Ms) +

2

µ

)
, (47)

where n = m+ k + `.

The first-order condition for optimal y should hold with equality if Sb + y = −Mb,

that is,

0 =
dE(U b |Sb,m,X, y)

dy

∣∣∣
Sb+y=−Mb

= v − p̄−
∞∑
k=0

∞∑
`=0

f(k)f(`)2
γ

r
C(n)(−Mb)

+

∞∑
k=0

∞∑
`=0

f(k)f(`)2
γ

r
(C(n)− 1)

1

n

(
2(−Mb) +Ms +

1

µ
+X + (`− k)

1

µ

)

−
∞∑
k=0

∞∑
`=0

f(k)f(`)
γ

r
(C(n)− 1)

1

n2

(
2(−Mb +Ms) +

2

µ

)
, (48)

where n = m+ k + `.

By a completely analogous calculation, the seller, whose initial inventory is Ss, stays in

workup until the buyer has exited or the workup quantity has reached a level y satisfying

the seller’s first-order condition, whichever comes first. This occurs when the seller’s

remaining inventory reaches the threshold Ss − y = Ms. Thus, the first-order condition
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for y takes the form

0 =
dE(U s |Ss,m,X, y)

dy

∣∣∣
Ss−y=Ms

(49)

= p̄− v +

∞∑
k=0

∞∑
`=0

f(k)f(`)2
γ

r
C(n)Ms

+

∞∑
k=0

∞∑
`=0

f(k)f(`)2
γ

r
(C(n)− 1)

1

n

(
−2Ms +Mb +

1

µ
−X − (`− k)

1

µ

)

−
∞∑
k=0

∞∑
`=0

f(k)f(`)
γ

r
(C(n)− 1)

1

n2

(
−2(Ms −Mb) +

2

µ

)
,

where n = m+ k + `. As the sum of two iid geometric random variables, nb + ns has the

negative binomial conditional distribution11 with mass function

g(k) = (k + 1)qk(1− q)2. (50)

Substituting in p̄ = v, the pair of linear first-order necessary and sufficient conditions

for optimality, (48) and (49), have the unique solutions

Mb(m,X) = M∗(m) + L(m)X, (51)

Ms(m,X) = M∗(m)− L(m)X, (52)

where, taking n = m+ k,

M∗(m) =
1

µ

∑∞
k=0 g(k)(1− C(n))n−1

n2∑∞
k=0 g(k)

(
C(n) + 1−C(n)

n

) (53)

and

L(m) =

∑∞
k=0 g(k)1−C(n)

n∑∞
k=0 g(k)

(
C(n) + (1−C(n))(3n−2)

n2

) . (54)

The symmetric and opposite roles of X for the buyer and the seller thresholds is

intuitive. In a multilateral workup, the role of the conditional expected total inventory X

of those traders who have already exited workup is similar to the role of the workup price

“bias” p̄− v in the bilateral workup equilibrium described by Proposition 3. For example,

an increase in X makes the current buyer more cautious, setting a higher dropout quantity,

and makes the current seller more aggressive, setting a lower dropout quantity. This is

so because as X rises, the conditional expected market-clearing price of the subsequent

double auctions falls. This encourages the current buyer to wait for the double-auction

market to cover his inventory shortfall, and encourages the seller to reserve less inventory

11This can be shown from the fact g( · ) is the convolution f ∗ f .
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for sale in the double-auction market. The opposite is true for a decrease in X.

In order for the above conjectured strategies to be consistent, we need to prove that the

thresholds of incumbents are weakly increasing with each dropout, and that the thresholds

are always nonnegative. That is, we want to show that

Mb(m+ 1, X ′) ≥Mb(m,X), (55)

Ms(m+ 1, X ′) ≥Ms(m,X), (56)

Mb(m,X) ≥ 0, (57)

Ms(m,X) ≥ 0, (58)

for any possible successive outcomes X and X ′ of the conditional expected inventory

of departed workup participants (before and after a dropout). If these conditions fail,

a trader’s optimal dropout threshold may depend on his current inventory or the past

threshold of his counterparty, among possibly other variables. These complications would

render the problem intractable.

The monotonicity and positivity properties of (55)–(58) are satisfied if e−r∆ > 1/2,

a relatively unrestrictive condition. For example, taking a day as the unit of time, if

payoff-relevant information arrives once per day (r = 1) and the double auctions are held

at least twice per day (∆ ≤ 0.5), we would have e−r∆ ≥ e−0.5 ≈ 0.61 > 0.5, and (55)–(58)

are satisfied.12

Proposition 6. The coefficients M∗(m) and M∗(m)/L(m) are always weakly increasing

in m for m ≥ 2. If e−r∆ > 1/2, then L(m) is also weakly increasing in m for m ≥ 2. If

e−r∆ > 1/2, the monotonicity and nonnegativity conditions of (55)–(58) are satisfied.

The property that M∗(m) and L(m) are increasing in m is intuitive. As more traders

drop out (that is, as m increases), the expected total number of traders in the subsequent

double-auction market goes up, by the memoryless property of the geometric distribution.

Since the double-auction market becomes more competitive as more traders participate,

and the associated inefficiency related to price impact thus becomes smaller, there is less

advantage to using workup, so M∗(m) goes up.

In addition, traders who have already exited the workup will enter the double-auction

market with their residual inventories, causing a predictable shift in the double-auction

price relative to the workup price. For example, if the conditional expected inventory X of

past workup participants is positive, then the double-auction price is expected to be lower

than v, a favorable condition for the workup buyer. Again, because a larger number m of

past and current workup participants makes the double-auction market more competitive

12We have also checked that if ∆ is large enough, then L(m) is not monotone increasing in m. Although the
non-monotonicity of L(m) for large ∆ blocks our particular proof method when ∆ is sufficiently large, it does
not necessarily rule out other approaches to demonstrating equilibria in threshold strategies for large ∆.
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in expectation, those who have already exited the workup will be more aggressive in

liquidating their residual inventories, thus front-loading their sales in the relatively early

rounds. The workup buyer, therefore, expects to purchase the asset in the double-auction

market sooner and at more favorable prices. Consequently, the buyer will set an even

higher dropout threshold. By a symmetric argument, conditional on X > 0, a higher m

means that the seller sets an even lower threshold. That is, a higher m means a higher

sensitivity of the thresholds Mb and Ms to the total expected inventory X of those who

have already exited workup.

The monotonicity of the thresholds, (55)–(56), means that after the exit of a trader,

his counterparty’s dropout threshold (weakly) increases. For example, if the current seller

j exits before the current buyer i, then X goes up, so the new threshold M∗(m) +L(m)X

of buyer i goes up. Likewise, after each exit of a buyer, X goes down, and the dropout

threshold of the seller who remains in the workup increases. Thus, after the exit of a coun-

terparty, the incumbent either drops out immediately because of his increased threshold,

or he stays in despite his new higher threshold. Conditional on the latter event, for other

traders, the incumbent’s remaining inventory in excess of his new, increased threshold

is again an exponentially-distributed variable with mean 1/µ. The non-negativity of the

thresholds, (57)–(58), implies that no trader wishes to “overshoot” across the zero inven-

tory boundary. These properties ensure stationarity and are in fact needed for tractability

of this general approach to solving for equilibria.

Summarizing, the following proposition provides a complete description of Markovian

workup equilibrium.13 The equilibrium workup strategy of each player depends on that

player’s privately observed pre-workup asset inventory and on the publicly observable

Markov process14 (m,X, y).

13Because of the continuum of agent types and actions, we cannot formally apply the standard notion of perfect
Bayesian equilibrium for dynamic games with incomplete information, because that would call for conditioning
on events that have zero probability, such as a counterparty dropping out of workup after executing a trade of
a specific size. In our setting, actions are commonly observable and there is no issue concerning off-equilibrium-
path conjectures, so almost any natural extension of simple perfect Bayesian equilibrium to our continuum
action and type spaces leads to our equilibrium. For example, we could apply the notion of open sequential
equilibrium of Myerson and Reny (2015). For the present draft of the paper, we refer simply to an “equilibrium”
in the sense that every agent applies Bayes’ Rule based on a regular version of the conditional distribution of Z
given the observed variables, in order to compute its optimal threshold strategy, given the threshold strategies
of other agents. As stated, there is a unique such equilibrium in threshold strategies because: (i) given the
other traders’ threshold strategies, a given trader’s threshold strategy is uniquely determined by its first order
necessary condition for optimality (which is sufficient because of concavity), and (ii) there is a unique solution
for the pair of first-order conditions for the equations for the threshold strategies Mb and Ms.

14 Specifically, (m,X, y) = (mt, Xt, yt)(t≥0) is a continuous-time Markov process with state space N×R×R,
where N is the space of natural numbers. To be precise, one can add an artificial independent exponential “wait
time” after each transition to an inactive state. This ensures that the state cannot jump twice at the same time
on the workup clock when making a transition from an inactive state to an inactive state after an immediate
dropout.
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Proposition 7. Suppose that e−r∆ > 1/2. The multilateral dynamic workup game asso-

ciated with workup price p̄ = v has a unique equilibrium in Markovian threshold dropout

strategies. This equilibrium is characterized by the following recursive determination of

the workup state and of traders’ equilibrium dropout strategies. Here, zbi and zsj denote

the pre-workup inventories of the i-th buyer and the j-th seller, respectively. The initial

workup state is (m,X, y) = (2, 0, 0).

1. At any inactive workup state (m,X, 0):

(a) If |zbi | ≤ Mb(m,X) and zsj >Ms(m,X), where Mb(m,X) and Ms(m,X) are

given by (51) and (52) respectively, then the buyer, and only the buyer, exits

immediately (that is, without trading any quantity). Unless Nb = i, the workup

state then evolves to (m+ 1, X − ν(Mb(m,X)), 0).

(b) If |zbi | > Mb(m,X) and zsj ≤ Ms(m,X), then the seller, and only the seller,

exits immediately. Unless Ns = j, the workup state evolves to (m + 1, X +

ν(Ms(m,X)), 0).

(c) If |zbi | ≤ Mb(m,X) and zsj ≤ Ms(m,X), then both sides exit immediately,

without trading any quantity. Unless Nb = i or Ns = j, the workup state

evolves to (m+ 2, X − ν(Mb(m,X)) + ν(Ms(m,X)), 0).

(d) If |zbi | >Mb(m,X) and zsj >Ms(m,X), then the current buyer i and seller j

enter an active workup. That is, the workup state evolves to (m,X, 0).

(e) If, at any of the transitions above, Nb = i or Ns = j, then the workup ends.

2. At any active workup state (m,X, y), the current buyer i and seller j remain in the

workup as their traded quantity rises until the earlier of the two following events (a)

and (b):

(a) The remaining inventory of the buyer (which is negative) rises to the threshold

−Mb(m,X) = −(M∗(m) + L(m)X). At this point, the buyer exits. Unless

Nb = i, the workup state evolves to (m+ 1, X − (M∗(m) + L(m)X), 0).

(b) The remaining inventory of the seller falls to the thresholdMs(m,X) = M∗(m)−
L(m)X. At this point, the seller exits. Unless Ns = j, the state evolves to

(m+ 1, X +M∗(m)− L(m)X, 0).

(c) On the zero-probability event that (a) and (b) occur simultaneously, the state

evolves to (m+ 2, X − 2L(m)X, 0) unless Nb = i or Ns = j.

(d) If, at either or both of (a) or (b), we have Nb = i or Ns = j, then the workup

ends.
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6 Concluding Remarks

This paper demonstrates the welfare benefit of size discovery, and adds to the general

understanding of how market designs have responded in practice to frictions associated

with imperfect competition.

Price-discovery markets are efficient in an idealized price-taking competitive market,

for example one in which traders are infinitesimally small, as in Aumann (1964). The First

Welfare Theorem of Arrow (1951), by which market clearing allocations are efficient, is

based on the price-taking assumption. In many functioning markets, however, price tak-

ing is a poor approximation of trading behavior because of traders’ awareness of their own

price impact, and efficiency is lost. For instance, in inter-dealer financial markets, there

are often heavy concentrations of inventory imbalances among a relatively small set of

market participants. These are large dealers, hedge funds, and other asset managers that

are extremely conscious of their potential to harm themselves by price impact. In the case

of U.S. Treasury markets, for instance, government auctions often leave a small number of

primary dealers with significant position imbalances. Some dealers are awarded substan-

tially more bonds in the auction than needed to meet their customer commitments and

desired market-making inventories. Some receive significantly less than desired. Fleming

and Nguyen (2015) explain how dealers exploit workups to lay off their imbalances.

We have shown that under imperfect competition, adding a size-discovery mechanism

such as a workup improves allocative efficiency over a stand-alone price-discovery mecha-

nism, such as sequential double auctions. Precisely because a workup freezes the transac-

tion price, it avoids the efficiency losses caused by the strategic avoidance of price impact

in price-discovery mechanisms. Workup participants are therefore willing to trade large

blocks of an asset almost instantly, leading to a quick reduction of inventory imbalances

and improvement in allocative efficiency.

We have also shown that equilibrium optimal workup strategies trade off the benefit

of quickly eliminating large undesired positions against the cost of adverse selection asso-

ciated with information about the total market inventory. As a result, only traders with

large inventory imbalances actively participate in workups, and workup participants set

an endogenous threshold for the level of remaining inventory at which they drop out.

We emphasize that the welfare benefit of size discovery is higher if it is used in com-

bination with a price-discovery mechanism. In fact, if size discovery were the available

only trading mechanism, it would be even less efficient than a price-discovery-only market.

Appendix D shows that, in terms of (ex ante expected) welfare, the three possible market

structures can be ranked as follows:

workup + double auctions � double auctions only � workup only, (59)
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where “�” means “more efficient than,” in the sense of total social surplus.

It would be natural to extend our model so as to incorporate more general workup

timing and an endogenous workup price. In our current model, a single multilateral

workup (or multiple bilateral workups) is added before the opening of the sequential-

double-auction market. A natural interpretation is that the workup occurs at the begin-

ning of each trading day, say at the closing price of the previous day. We have shown

that this form of “low-frequency” size discovery improves welfare. A useful extension

would allow “higher-frequency size discovery,” for example a multilateral workup before

each double auction, at the previous double-auction price. (The first workup could be

done at the closing price of the previous day.) An extension of this sort is likely to be

extremely complex to analyze. For instance, this timing introduces an incentive for each

large trader to “manipulate” double-auction prices in order to profit from subsequent

workups. Indeed, the same challenge may apply to any extension in which the workup

price is endogenously “discovered” by strategic traders. Although it would be interesting

and useful to characterize the resulting equilibrium behavior, we have not yet found a

tractable way to do so.
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Appendix

A Proofs

This appendix contains proofs of results stated in the main text.

A.1 Proof of Proposition 1

As in the text, we simplify the notation by writing “xik” in place of “xik(pk; zik),” and
conjecture an equilibrium strategy of the form

xik = av − bpk + dzik. (60)

Under this conjecture, and because the inventory shocks have mean zero, the equilibrium
price pk is a martingale because the total inventory Zk is a martingale.

Trader i in round k effectively selects the optimal execution price pk. Adapting the
method of Du and Zhu (2015), we write the first-order optimality condition of trader i as

(n− 1)b

[ (
1− e−r∆

)v − 2γ

r
(xik + zik) +

∞∑
j=1

e−rj∆(1 + d)j(v − 2γ

r
Ek(zi,k+j + xi,k+j))


− pk −

∞∑
j=1

e−rj∆(1 + d)j−1dE(pk+j)

]
− xik = 0, (61)

where Ek( · ) denotes conditional expectation given zik and pk.
By the evolution equation for the inventory {zik}, we have, for all j ≥ 1,

zi,k+j + xi,k+j = (1 + d)j(zik + xik) +

j−1∑
l=1

(av − bpk+l + wi,k+l+1)(1 + d)j−l (62)

+ (av − bpk+j) + wi,k+1(1 + d)j . (63)

Since all shocks have mean zero and the prices are martingales, we have

Ek(zi,k+j + xi,k+j) = (1 + d)j(zik + xik) + (av − bpk)
(

(1 + d)j

d
− 1

d

)
. (64)

The above equation is linear in xik, v, pk, and zik. Matching the coefficients with those
of the conjectured strategy xik = av− bpk + dzik and solving the three equations, we have

b = a, (65)

d = −2γ

r
a, (66)

a = a∆ ≡
r

2γ

(
1 +

(n− 1)(1− e−r∆)−
√

(n− 1)2(1− e−r∆)2 + 4e−r∆

2e−r∆

)
. (67)
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A.2 Proof of Proposition 2

Our proof strategy consists of two steps. First, we calculate Vi,0+ under the assumption
that σw = 0 (that is, no periodic inventory shocks after time 0). This gives the first three
terms in the expression of Vi,0+. Then, we calculate the last term Θ, the contribution of
periodic inventory shocks to the indirect utility.

Step 1: No periodic inventory shocks. With wik = 0 for all i and k ≥ 1, and
given the equilibrium price p∗, we can write the law of motion of the inventory of trader
i as

zi,k+1 = zik + a∆

(
v − p∗ − 2γ

r
zik

)
= zik − a∆

2γ

r

(
zik −

Z

n

)
, (68)

which implies that

zi,k+1 −
Z

n
=

(
1− a∆

2γ

r

)(
zik −

Z

n

)
. (69)

We let

Vi,0+ =

∞∑
k=0

e−r∆kE

[
−xikp∗ + (1− e−r∆)

(
v(xik + zik)−

γ

r
(xik + zik)

2
) ∣∣∣∣ zi0, Z] . (70)

The inventories evolve according to

zi,k+1 −
Z

n
=

(
1− a∆

2γ

r

)(
zik −

Z

n

)
=

(
1− a∆

2γ

r

)k+1(
zi0 −

Z

n

)
. (71)

It follows that, in equilibrium,

xik = a∆
2γ

r

(
Z

n
− zik

)
= a∆

2γ

r

(
1− a∆

2γ

r

)k (Z
n
− zi0

)
. (72)

The price-related term in (70) is

∞∑
k=0

e−r∆kp∗xik =

∞∑
k=0

e−r∆k
(
v − 2γ

nr
Z

)
a∆

2γ

r

(
1− a∆

2γ

r

)k (Z
n
− zi0

)

=

(
v − 2γ

nr
Z

)(
Z

n
− zi0

)
a∆

2γ
r

1− e−r∆(1− a∆
2γ
r )
. (73)

In (70), the term that involves v is

v
∞∑
k=0

(
1− e−r∆

)
e−r∆k

[
Z

n
+

(
1− a∆

2γ

r

)k+1(
zi0 −

Z

n

)]

= v
Z

n
+

(1− a∆
2γ
r )
(
1− e−r∆

)
1− e−r∆(1− a∆

2γ
r )

v

(
zi0 −

Z

n

)
. (74)
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In (70), the term that involves γ is

− γ

r

∞∑
k=0

(
1− e−r∆

)
e−r∆k

[
Z

n
+

(
1− a∆

2γ

r

)k+1(
zi0 −

Z

n

)]2

= − γ

r

(
Z

n

)2

−
(1− a∆

2γ
r )
(
1− e−r∆

)
1− e−r∆(1− a∆

2γ
r )

2γZ

nr

(
zi0 −

Z

n

)
− γ

r

1− a∆
2γ
r

n− 1

(
zi0 −

Z

n

)2

.

(75)

Adding up the three terms, we get the first, second, and third term in the expression
for Vi,0+.

Step 2: Add the effect of periodic inventory shocks. We now calculate the
terms in the indirect utility caused by the extra terms {wik}, where k ≥ 1.

For any integer t ≥ 0, we let st be the coefficient of wil in the expression of zi,l+t and
let ut be the coefficient of wjl in the expression of zi,l+t, where j 6= i. Clearly, s0 = 1 and
u0 = 0.

For simplicity of expressions, write c∆ = a∆
2γ
r .

We can write (12) more explicitly as

zi,k+1 = (1− c∆) zik + c∆

zik +
∑

j 6=i zjk

n
+ wi,k+1. (76)

Thus, we get recursive equations of {ut} and {st}:

ut+1 = (1− c∆)ut + c∆

(
n− 1

n
ut +

1

n
st

)
=
(

1− c∆

n

)
ut +

c∆

n
st, (77)

and

st+1 = (1− c∆)st + c∆

(
n− 1

n
ut +

1

n
st

)
=

(
1− (n− 1)c∆

n

)
st +

(n− 1)c∆

n
ut. (78)

These recursive equations have the solution (using s0 = 1 and u0 = 0):

st =
1 + (n− 1)(1− c∆)t

n
, ut =

1− (1− c∆)t

n
. (79)

Fixing i: Let’s first calculate the difference caused by the w terms in the expression
of E [−xikpk | zi0, Z]. From (79) and the recursive equations for ut and st, we see that the
coefficient of wil (l ≤ k) in the expression of xik is

− c∆

(
sk−l −

sk−l + (n− 1)uk−l
n

)
= c∆

n− 1

n
(uk−l − sk−l), (80)

and the coefficient of wjl (l ≤ k) in the expression of xik is

− c∆

(
uk−l −

sk−l + (n− 1)uk−l
n

)
= c∆

1

n
(sk−l − uk−l). (81)
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Similarly, the coefficient of wil and wjl (l ≤ k, j 6= i) in the expression of pk is

− 2γ

r

sk−l + (n− 1)uk−l
n

. (82)

Since each w term has (conditional and unconditional) mean of zero, all expectation
terms linear in wil or wjl are zero. Moreover, because the inventory shocks are independent
of each other, all quadratic terms—expect those of the form w2

ml, where m ∈ {1, 2, ..., n}
and l ≤ k—are also zero. These imply that the contribution of the periodic inventory
shocks to E [−xikpk | zi0, Z] is:

k∑
l=1

−
(
c∆
n− 1

n
(uk−l − sk−l)

)(
−2γ

r

sk−l + (n− 1)uk−l
n

)
E
[
w2
il | zi0, Z

]
+

k∑
l=1

∑
j 6=i
−
(
c∆

1

n
(sk−l − uk−l)

)(
−2γ

r

sk−l + (n− 1)uk−l
n

)
E
[
w2
jl | zi0, Z

]
= σ2

w∆

(
−2γ

r

sk−l + (n− 1)uk−l
n

) k∑
l=1

[
−c∆

n− 1

n
(uk−l − sk−l)− (n− 1) · c∆

1

n
(sk−l − uk−l)

]
= 0. (83)

Obviously, the w terms make no difference to the term E [(xik + zik) | zi0, Z] because
the inventory shocks have mean zero.

Now let’s turn to the difference caused by the w terms in the expression of E
[
(xik + zik)

2 | zi0, Z
]
.

From (80), the coefficient of wil (l ≤ k) in the expression of xik + zik is

c∆
n− 1

n
(uk−l − sk−l) + sk−l,

and from (81), the coefficient of wjl (l ≤ k) in the expression of xik + zik is

c∆
1

n
(sk−l − uk−l) + uk−l.

Again, because the w terms have mean zero and are mutually independent, the difference
caused by the w terms in the expression of E

[
(xik + zik)

2 | zi0, Z
]

is:

k∑
l=1

[
c∆
n− 1

n
(uk−l − sk−l) + sk−l

]2

E
[
w2
il | zi0, Z

]
+

k∑
l=1

∑
j 6=i

[
c∆

1

n
(sk−l − uk−l) + uk−l

]2

E
[
w2
jl | zi0, Z

]
= σ2

w∆

(
k−1∑
t=0

[
c∆
n− 1

n
(ut − st) + st

]2

+ (n− 1)
k−1∑
t=0

[
c∆

1

n
(st − ut) + ut

]2
)
.
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Thus, the difference caused by the w terms in the expression of Vi,0+ is

Θ ≡ −σ2
w∆

γ

r
(1− e−r∆) (84)

·
∞∑
k=1

e−r∆k

(
k−1∑
t=0

[
c∆
n− 1

n
(ut − st) + st

]2

+ (n− 1)

k−1∑
t=0

[
c∆

1

n
(st − ut) + ut

]2
)
,

which is a constant that does not depend on {zi0} or Z.

A.3 Proof of Proposition 5

The comparative statics of M with respect to r and ∆ are provided in the text. The only
item left is to show that M increases in n.

Define

A ≡ 2e−r∆

1− e−r∆
, (85)

B ≡ 4e−r∆

(1− e−r∆)2
, (86)

αn = (n− 1) +A+
√

(n− 1)2 +B. (87)

Then, we can write

C(n) =
1

n− 1

(
1− 2(n− 2)

αn

)
. (88)

To show that M increases in n, it is equivalent to show that

n
(

1 + nC(n)
1−C(n)

)
n− 1

>
(n+ 1)

(
1 + (n+1)C(n+1)

1−C(n+1)

)
n

, (89)

which, after simplification, is equivalent to

(n+ 1)2

n− 1

1

1 + 2
αn+1

− n2

n− 2

1

1 + 2
αn

< 1. (90)

Note that αn is increasing n, fixing other parameters. So,

αn+1 − αn = 1 +
√
n2 +B −

√
(n− 1)2 +B < 1 +

(2n− 1)

2
√

(n− 1)2 +B
<

4n− 3

2(n− 1)
. (91)

Using the above inequality, we can show that

1

1 + 2
αn+1

− 1

1 + 2
αn

<
1

(αn + 2)2

4n− 3

n− 1
. (92)
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Applying the above inequality, we can show that the left-hand side of (90) satisfies:

(n+ 1)2

n− 1

1

1 + 2
αn+1

− n2

n− 2

1

1 + 2
αn

<
n2 − 3n− 2

(n− 1)(n− 2)

αn
αn + 2

+
(n+ 1)2(4n− 3)

(n− 1)2

1

(αn + 2)2
≡ ψ(αn). (93)

We have

ψ′(αn) =
2

(αn + 2)2

[
n2 − 3n− 2

(n− 1)(n− 2)
− 1

αn + 2

(n+ 1)2(4n− 3)

(n− 1)2

]
︸ ︷︷ ︸

λ(∆)

. (94)

We now fix n and r, and consider changes in αn through the changes in ∆ > 0. For
any fixed n and r, αn and λ(∆) decrease in ∆. In particular, as ∆→ 0, we have αn →∞,
and λ(0) > 0. But as ∆→∞, we have αn ↓ 2(n− 1), and λ(∆) converges to

n2 − 3n− 2

(n− 1)(n− 2)
− 1

2n

(n+ 1)2(4n− 3)

(n− 1)2
< 0. (95)

Therefore, as a function of αn and in the domain [2(n − 1),∞), ψ(αn) first decreases
in αn and then increases in αn. To show that ψ(αn) < 1, it suffices to verify that
limαn→∞ ψ(αn) < 1 and ψ(2(n− 1)) < 1. As αn →∞, the second term of ψ(αn) vanishes

and the first term converges to n2−3n−2
(n−1)(n−2) < 1. At αn = 2(n− 1),

ψ(2(n− 1)) =
n2 − 3n− 2

(n− 1)(n− 2)

n− 1

n
+

(n+ 1)2(4n− 3)

(n− 1)2

1

4n2

= 1 +
1

n

(
(n+ 1)2(4n− 3)

4n(n− 1)2
− n+ 2

n− 2

)
< 1 +

1

n

(
(n+ 1)2

(n− 1)2
− n+ 2

n− 2

)
= 1 +

1

n

(
4n

(n− 1)2
− 4

n− 2

)
< 1.

This completes the proof.

A.4 Proof of Proposition 6

Monotonicity of M∗(m), L(m), and M∗(m)/L(m)

We first prove the following lemma.

Lemma 1. If for positive real numbers {λi, αi, βi : i ≥ 0}, we have λi
λi+1

< λi+1

λi+2
and

αi
βi
< αi+1

βi+1
, then for any positive integer k,∑k

i=0 λiαi∑k
i=0 λiβi

<

∑k
i=0 λiαi+1∑k
i=0 λiβi+1

.
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Proof. Because αi
βi
< αi+1

βi+1
for i ≥ 0, it is easy to see that

∑k−1
i=0 λiαi+1∑k−1
i=0 λiβi+1

=

∑k−1
i=0 λiβi+1

αi+1

βi+1∑k−1
i=0 λiβi+1

≤
∑k−1

i=0 λiβi+1
αk
βk∑k−1

i=0 λiβi+1

=
αk
βk
,

which implies

αk+1

βk+1
>
αk
βk
≥
∑k−1

i=0 λiαi+1∑k−1
i=0 λiβi+1

. (96)

From (96) we have∑k
i=0 λiαi+1∑k
i=0 λiβi+1

=

∑k−1
i=0 λiαi+1 + λkβk+1

αk+1

βk+1∑k−1
i=0 λiβi+1 + λkβk+1

≥

∑k−1
i=0 λiαi+1 + λkβk+1

∑k−1
i=0 λiαi+1∑k−1
i=0 λiβi+1∑k−1

i=0 λiβi+1 + λkβk+1

=

∑k−1
i=0 λiαi+1∑k−1
i=0 λiβi+1

. (97)

Similarly, we can prove that ∑k
i=0 λiαi∑k
i=0 λiβi

≤
∑k

i=1 λiαi∑k
i=1 λiβi

. (98)

Equations (97) and (98) imply that in order to prove Lemma 1 we only need to show that∑k
i=1 λiαi∑k
i=1 λiβi

<

∑k−1
i=0 λiαi+1∑k−1
i=0 λiβi+1

,

which is equivalent to ∑k
i=1 λiαi∑k
i=1 λiβi

<

∑k
i=1 λi−1αi∑k
i=1 λi−1βi

. (99)

Notice that∑k
i=1 λi−1αi∑k
i=1 λi−1βi

−
∑k

i=1 λiαi∑k
i=1 λiβi

=

(∑k
i=1 λi−1αi

)(∑k
i=1 λiβi

)
−
(∑k

i=1 λiαi

)(∑k
i=1 λi−1βi

)
(∑k

i=1 λi−1βi

)(∑k
i=1 λiβi

) .

(100)
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So it suffices to prove the numerator of (100) is positive. By expansion we have(
k∑
i=1

λi−1αi

)(
k∑
i=1

λiβi

)
−

(
k∑
i=1

λiαi

)(
k∑
i=1

λi−1βi

)

=
∑

1≤s<t≤k
(λs−1αsλtβt + λt−1αtλsβs) +

k∑
i=1

λi−1αiλiβi

−
∑

1≤s<t≤k
(λsαsλt−1βt + λtαtλs−1βs)−

k∑
i=1

λi−1βiλiαi

=
∑

1≤s<t≤k
(λs−1αsλtβt + λt−1αtλsβs − λsαsλt−1βt − λtαtλs−1βs) . (101)

Because, for all s < t,

λs−1αsλtβt + λt−1αtλsβs − λsαsλt−1βt − λtαtλs−1βs

= λsλtβsβt

(
λs−1

λs

αs
βs

+
λt−1

λt

αt
βt
− λt−1

λt

αs
βs
− λs−1

λs

αt
βt

)
= λsλtβsβt

(
λs−1

λs
− λt−1

λt

)(
αs
βs
− αt
βt

)
> 0, (102)

the right side of (101) is positive, and the proof of the Lemma is complete.

Letting k →∞ in Lemma 1, we get∑∞
i=0 λiαi∑∞
i=0 λiβi

≤
∑∞

i=0 λiαi+1∑∞
i=0 λiβi+1

. (103)

Letting λi = g(i) = (i+ 1)qi(1− q)2, we have

λi
λi+1

=
(i+ 1)

(i+ 2)q
<

(i+ 2)

(i+ 3)q
=
λi+1

λi+2
. (104)

Monotonicity of M∗(m). Given Lemma 1, to show that M∗(m) ≤ M∗(m + 1), it
suffices to show that

(1− C(n))n−1
n2

C(n) + 1−C(n)
n

(105)

is increasing in n for n ≥ 2.
In the continuous-time double-auction market of Appendix B, we have ∆ = 0 and

C(n) = 1/(n− 1), so the ratio (105) simplifies to

n− 2

2n
,

which is increasing in n.
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For ∆ > 0, we denote

D(n) = 2− 2(n− 2)

(n− 1) + 2e−r∆

1−e−r∆ +
√

(n− 1)2 + 4e−r∆

(1−e−r∆)2

. (106)

It is easy to see that D(n) is decreasing in n. Using C(n) = (1 − 2a∆γ/r)/(n − 1), we
have

(1− C(n))n−1
n2

C(n) + 1−C(n)
n

=
1−D(n)/n

D(n)
=

1

D(n)
− 1

n
. (107)

Since D(n) is decreasing in n, the right-hand side of the above expression is increasing in
n, and the proof for the monotonicity of M∗(m) is complete.

Monotonicity of L(m) if e−r∆ > 1/2. Given Lemma 1, to show that L(m) ≤
L(m+ 1), it suffices to show that

1−C(n)
n

C(n) + (1−C(n))(3n−2)
n2

(108)

is increasing in n for n ≥ 2.
In the continuous-time double-auction market, with ∆ = 0 and C(n) = 1/(n− 1), the

ratio (108) simplifies to
(n− 2)n

4(n− 1)2
,

which is indeed increasing in n.
For ∆ > 0, we define

t =
2e−r∆

1− e−r∆
, (109)

and

R(n) =

√
(n− 1)2 +

4e−r∆

(1− e−r∆)2
− (n− 1). (110)

Now we can write

C(n) =
1

n− 1

(
1− 2(n− 2)

n− 1 + t+ n− 1 +R(n)

)
. (111)

We claim that
0 ≤ R(n) ≤ t, and R(n) decreases in n. (112)

It is obvious that R(n) is non-negative and decreases in n. To see that R(n) ≤ t, we can
directly calculate

4e−r∆

(1−e−r∆)2√
(n− 1)2 + 4e−r∆

(1−e−r∆)2 + n− 1
≤

4e−r∆

(1−e−r∆)2√
1 + 4e−r∆

(1−e−r∆)2 + 1
= t.
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Using (109) and (110), we can write

(1−C(n))
(n)(

C(n) + (1−C(n))(3n−2)
(n)2

) =
(n− 2)n(2n+ t+R(n))

2(n− 1)(3n2 + 2n(t− 2)− 2t+ 2(n− 1)R(n))
. (113)

We denote the numerator and denominator of the right-hand side of (113) by Y1(n) and
Y0(n), respectively. To show monotonicity, it is enough to prove that

Y1(n+ 1)Y0(n)− Y1(n)Y0(n+ 1) > 0.

After expansion, we get

Y1(n+ 1)Y0(n)− Y1(n)Y0(n+ 1)

= 2(R(n)−R(n+ 1))n5 + 2(t− 2 +R(n+ 1))n4

+ (24− 4t− 6R(n) + 2R(n+ 1))n3 + 2(6 + 13t+ 6R(n) + 7R(n+ 1))n2

+8(−2 + t2 + (t− 1)R(n+ 1) +R(n)(t+ 1 +R(n+ 1)))n

−4(t+R(n))(t+ 2 +R(n+ 1)). (114)

Using (112), lower bounds on the coefficients of each term in the polynomial on the
right-hand side are as follows:

n5 : 2(R(n)−R(n+ 1)) ≥ 0. (115)

n4 : 2(t− 2 +R(n+ 1)) ≥ 2(t− 2). (116)

n3 : 24− 4t− 6R(n) + 2R(n+ 1) ≥ 24− 10t. (117)

n2 : 2(6 + 13t+ 6R(n) + 7R(n+ 1)) ≥ 2(6 + 13t). (118)

n : 8(−2 + t2 + (t− 1)R(n+ 1) +R(n)(t+ 1 +R(n+ 1))) ≥ 8(t2 − 2). (119)

Constant : − 4(t+R(n))(t+ 2 +R(n+ 1)) ≥ −8t(2t+ 2). (120)

With the above inequalities, we get

Y1(n+ 1)Y0(n)− Y1(n)Y0(n+ 1) (121)

≥ 2(t− 2)n4 + (24− 10t)n3 + 2(6 + 13t)n2 + 8(t2 − 2)n− 8t(2t+ 2)

= 2(t− 2)n2(n2 − 5n+ 6.5) + 4n3 + (38 + 13t)n2 + 8(t2 − 2)n− 8t(2t+ 2)

= 2(t− 2)n2
(
(n− 2.5)2 + 0.25

)
+ 4n3 + 38n2 − 16n+ t2(8n− 16) + t(13n2 − 16).

Under the condition e−r∆ > 1
2 , we have t > 2. It is easy to see the right-hand side of

(121) is positive for n ≥ 2.

Monotonicity of M∗(m)/L(m). We can write

M∗(m)

L(m)
=

1

µ

∑∞
k=0 g(k)(1− C(n))n−1

n2∑∞
k=0 g(k)1−C(n)

n

·

∑∞
k=0

(
C(n) + (1−C(n))(3n−2)

n2

)
∑∞

k=0 g(k)
(
C(n) + 1−C(n)

n

) . (122)
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Given Lemma 1, to show that M∗(m)/L(m) increases in m, it suffices to show that

(1− C(n))n−1
n2

1−C(n)
n

and
C(n) + (1−C(n))(3n−2)

n2

C(n) + 1−C(n)
n

are both increasing in n.
Monotonicity in n of the first expression is obvious, for

(1− C(n))n−1
n2

1−C(n)
n

= 1− 1

n
.

The second expression can be expressed as

C(n) + (1−C(n))(3n−2)
n2

C(n) + 1−C(n)
n

= 1 + 2
(1− C(n))n−1

n2

C(n) + 1−C(n)
n

. (123)

The last term in the above expression is increasing in n, as shown in the proof of mono-
tonicity of M∗(m).

Proof of (55)–(58)

Suppose that e−r∆ > 1/2. We have shown that in this caseM∗(m), L(m) andM∗(m)/L(m)
are all increasing in m for m ≥ 2. We now prove (55)–(58) by induction. We let Xi,j

denote the X element of the state vector (m,X, y) that applies for buyer i and seller j.

At i = j = 1 and X1,1 = 0. Clearly, both thresholds are equal to M∗(2) and are
positive at this initial state. Moreover, if the buyer exits, then X2,1 < 0, and

Ms(3, X2,1) = M∗(3)− L(3)X2,1 > M∗(2) =Ms(2, X1,1). (124)

If the seller exits, then X1,2 > 0, and

Mb(3, X1,2) = M∗(3) + L(3)X1,2 > M∗(2) =Mb(2, X1,1). (125)

At generic (i, j) and Xi,j. By symmetry, it suffices to prove these inequalities for
the exit of seller j. By the conjectured update rule,

Xi,j+1 −Xi,j =

{
M∗(i+ j)− L(i+ j)Xi,j , if seller j traded positive quantity

ν(M∗(i+ j)− L(i+ j)Xi,j), if seller j traded zero quantity
,

where the last line follows from the induction step

Ms(i+ j,Xi,j) = M∗(i+ j)− L(i+ j)Xi,j ≥ 0.

In this case, we want to show that

M∗(i+ j + 1) + L(i+ j + 1)Xi,j+1 ≥M∗(i+ j) + L(i+ j)Xi,j , (126)

M∗(i+ j + 1)− L(i+ j + 1)Xi,j+1 ≥ 0. (127)
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If established, the first inequality (126) would imply that the incumbent buyer’s new
threshold remains positive if the old threshold is positive. Since it is the seller who exited,
the inequality for the “incumbent seller” is irrelevant.

To show (126), we calculate

M∗(i+ j + 1) + L(i+ j + 1)Xi,j+1 −M∗(i+ j)− L(i+ j)Xi,j

≥M∗(i+ j + 1)−M∗(i+ j) + (L(i+ j + 1)− L(i+ j))Xi,j

≥M∗(i+ j)
L(i+ j + 1)

L(i+ j)
−M∗(i+ j) + (L(i+ j + 1)− L(i+ j))Xi,j

=
L(i+ j + 1)− L(i+ j)

L(i+ j)
(M∗(i+ j) + L(i+ j)Xi,j) ≥ 0, (128)

where the last inequality follows from the induction step thatMb(i+ j,Xi,j) ≥ 0 and the
monotonicity of L(m), and the penultimate inequality follows from the monotonicity of
M∗(m)/L(m).

To show (127), we calculate

M∗(i+ j + 1)− L(i+ j + 1)Xi,j+1

≥M∗(i+ j + 1)− L(i+ j + 1) (Xi,j +M∗(i+ j)− L(i+ j)Xi,j)

≥M∗(i+ j)
L(i+ j + 1)

L(i+ j)
− L(i+ j + 1)M∗(i+ j)− L(i+ j + 1)(1− L(i+ j))Xi,j

=
L(i+ j + 1)(1− L(i+ j))

L(i+ j)
(M∗(i+ j)− L(i+ j)Xi,j) ≥ 0, (129)

where the last inequality follows from the induction step thatMs(i+ j,Xi,j) ≥ 0 and the
fact15 that L( · ) < 1/2, and the penultimate inequality follows from the monotonicity of
M∗(m)/L(m).

B Continuous-Time Double-Auction Market

This appendix states the continuous-time limit of the discrete-time double auction market,
and independently solves for the equilibrium in the corresponding continuous-time double
auction market. We thereby show that these two settings have identical equilibrium
behavior. Since the periodic inventory shocks after time 0 merely add a constant to
a trader’s indirect utility at time 0 (see Proposition 2), these shocks do not affect the
equilibrium strategies in the workup or double auctions. Consequently, in the calculations
below we will avoid introducing inventory shocks after time zero.

15The ratio of a pair of terms in the numerator and denominator in the expression of L(m) is

1
n

C(n)
1−C(n) + 3n−2

n2

<
1
n

3n−2
n2

=

(
3− 2

n

)−1

≤ 1

2

for any n ≥ 2. Thus, L(m) < 1/2.
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Continuous-time limit of the discrete-time double auction market

Corollary 1. Suppose that the inventory shocks are zero after time 0. As ∆ → 0, the
equilibrium of Proposition 1 converges to the following continuous-time limit.

1. The limit demand schedule16 of trader i at time t is

x∞it (p; z∞it ) = a∞
(
v − p− 2γ

r
z∞it

)
, (130)

where

a∞ =
(n− 2)r2

4γ
(131)

and where the limiting inventory position of trader i at time t is

z∞it =
Zt
n

+ e−(n−2)rt/2

(
zi0 −

Z

n

)
. (132)

The equilibrium price at time t is

p∗ = v − 2γ

nr
Z. (133)

2. The limiting expected net payoff of trader i at time 0, conditional on zi0 and the
initial auction price p∗, is

V∞i,0+ = v
Z

n
− γ

r

(
Z

n

)2

+

(
v − 2γ

r

Z

n

)(
zi0 −

Z

n

)
− γ

r(n− 1)

(
zi0 −

Z

n

)2

. (134)

Proof. The only nontrivial part of the proof is the limit of the convergence rate. Because
1−a∆2γ/r is the convergence factor per auction period, the associated convergence factor
per unit of time is (

1− a∆
2γ

r

)1/∆

.

Here, we ignore the effect of partial integer periods per unit of time, which is irrelevant
in the limit as ∆ goes to zero. Finally, we have the limiting convergence rate

lim
∆→0

log(1− a∆
2γ
r )

∆
= − lim

∆→0

a∆
2γ
r

∆
= −(n− 2)r

2
. (135)

16In a continuous-time setting, a demand schedule at time t can be expressed by a demand “rate function”
Dt( · ), which means that if the time path of prices is given by some function φ : [0,∞)→ R, then the associated

cumulative total quantity purchased by time t is
∫ t

0
Ds(φ(s)) ds, whenever the integral is well defined. In our

case, the discrete-period demand schedule xik( · ; zik) has the indicated limit demand schedule, as a demand rate
function, because zi,K(t) → z∞it and because, for any fixed price p and fixed inventory level z,

lim
∆↓0

a∆

∆

(
v − p− 2γ

r
z

)
= a∞

(
v − p− 2γ

r
z

)
.

48



Continuous-time double auction market

We fix a probability space and the time domain [0,∞). The setup for the joint distribution
of the exponential payoff time T , the payoff π of the asset, and the initial inventories
z0 = (z10, z20, . . . , zn0) of the n ≥ 3 of traders is precisely the same as that for the
discrete-time auction model of Section 3. The initial information structure is also as in
Section 3. In our application of this model in Section 5, the number n of traders is an
outcome of the random workup population size Nb + Ns. The outcome of Nb + Ns is
publicly known when workup is complete. So, it is enough to solve the continuous-time
auction model for any fixed trader population size n.

In our new continuous-time setting, a demand schedule at time can be expressed by
a demand “rate function” D : R × R → R, representing the rate of demand Dt(p) of
asset per unit of time at time t and at price p. This means that if the time path of
prices is given in some state of the world by some function φ : [0,∞) → R, then by
time t the cumulative quantity purchased is

∫ t
0 Ds(φ(s)) ds and the total price paid is∫ t

0 φ(s)Ds(φ(s)) ds, whenever these integrals are well defined.
We will consider an equilibrium in which demand Dit(p) of trader i at time t and price

p is continuous in both t and p and strictly decreasing in p, and such that the market
clearing price φ(t) at time t, when well defined, is the solution in p of the market-clearing
equation: ∑

i

Dit(p) = 0. (136)

This market clearing price, when well defined, is denoted Φ(
∑

iDit).
An equilibrium is a collection (D1, . . . , Dn) of demand functions such that, for each

time t the market-clearing price Φ(
∑

iDit) is well defined and such that, for agent i, the
demand function Di solves the problem, taking D−i =

∑
j 6=iDj as given,

sup
D
E

[
zDi (T )π −

∫ T

0

[
γzDi (t)2 +Dt [Φ (Dt +D−i,t)] Φ (Dt +D−it)

]
dt

]
, (137)

where γ > 0 is a holding-cost parameter and

zDi (t) = zi0 +

∫ t

0
Ds [Φ (Ds +D−i,s)] ds

is the inventory of agent i at time t.
We will look for an equilibrium in which the initial price p(0) instantly reveals the

total market supply Z and in which the demand function of trader i depends only his
current inventory zit.

We will conjecture and verify the equilibrium given by

Dit(p) = a

(
v − p− 2γ

r
zit

)
, (138)

where

a =
(n− 2)r2

4γ
. (139)
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The unique associated market-clearing price at any time t is

p∗ = v − 2γ

nr
Z. (140)

From this, the inventory position of trader i at time t can be calculated as

zit =
Z

n
+ e−(n−2)rt/2

(
zi0 −

Z

n

)
. (141)

Given this conjectured equilibrium, for any agent i, the sum D−i,t of the demand
functions of the other agents at time t is

D−i,t(p) = D−i(p; zit, Z) ≡
∑
j 6=i

a

(
v − p− 2γ

r
zjt

)
= (n− 1)a(v − p)− 2aγ

r
(Z − zit).

Based on this calculation, the continuation utility V (z) for the inventory level of any trader
at any time t < T who has the inventory level z satisfies the Hamilton-Jacobi-Bellman
(HJB) equation

0 = sup
D

[
−D(Φ(D +D−i( · ; z, Z))Φ(D +D−i( · ; z, Z)) + V ′(z)D(Φ(D +D−i( · ; z, Z))

]
− γz2 + r(vz − V (z)). (142)

The first term on the right-hand side of (142) is the rate of cost of acquiring inventory
in auctions, that is, the quantity rate D(Φ(D + D−i( · ; z, Z)) multiplied by the price
Φ(D+D−i( · ; z, Z)). The second term is the marginal value V ′(z) of inventory multiplied
by the rate D(Φ(D+D−i( · ; z, Z)) of inventory accumulation. The sum of these first two
terms is optimized by choosing some demand function D. The next term accounts for the
rate of inventory holding cost, γz2. The final term is the product of the mean rate r of
arrival of the time of the asset payoff and the expected change vz − V (z) in the trader’s
indirect utility if that payoff were to occur immediately.

Because Z is constant and observable after time 0, the HJB equation does not pin
down a unique optimizing demand function D( · ). Instead, the HJB equation makes the
demand problem for agent i equivalent to picking the quantity x the agent wishes to buy,
and then submitting any demand function D( · ) with the property that D(p) = x, where p
solves x+D−i(p; z, Z) = 0. In order to avoid degenerate behavior of this type, we require
that the submitted demand function Di( · ) must depend only on the inventory zit trader
i and of course the price p. That is, we require that Dit(p) = ft(p, zit) for some function
ft : R × R → R. Nevertheless, in equilibrium, the resulting demand will turn out to be
optimal even if the class of demand functions is expanded to allow dependence on Z.

We will conjecture and verify that, in equilibrium,

V (z) = v
Z

n
− γ

r

(
Z

n

)2

+

(
v − 2

γ

r

Z

n

)(
z − Z

n

)
− γ

r

1

n− 1

(
z − Z

n

)2

. (143)

We use the fact that V is quadratic and concave, thus bounded above.

Proposition 8. Suppose, for a given trader i, that the demand function Dj for any
trader j 6= i is given by (138). The function V given by (143) satisfies the HJB equation
(142). Given this choice for V , the optimization problem posed within the HJB equation
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is satisfied by the demand function Dit of (138). The optimal demand problem (137) for
agent i is also solved by (138).

This result is shown as follows. With (143), the HJB equation, applied to agent i at
time t, is equivalent to solving, for each outcome of Z, the optimal demand

sup
x

[
−xD−1

−i (−x; zit, Z) + V ′(zit)x
]
, (144)

where D−1
−i (q; zit, Z) is the inverse total demand of the other agents at any quantity q,

meaning that price p for which

q = (n− 1)a(v − p)− 2aγ

r
(Z − zit).

Solving,

D−1
−i (q; zit, Z) = v − 1

a(n− 1)

[
q +

2aγ

r
(Z − zit)

]
.

Thus, the demand problem of agent i is

sup
x

[
−x
(
v − 1

a(n− 1)

[
−x+

2aγ

r
(Z − zit)

])
+ V ′(zit)x

]
. (145)

The first-order necessary condition for optimality of x∗ is

−v +
2γ

r(n− 1)
(Z − zit) + V ′(zit)− 2x∗

1

a(n− 1)
= 0,

where

V ′(zit) = v − 2
γ

r

Z

n
− 2

γ

r

1

n− 1

(
zit −

Z

n

)
.

The unique solution x∗ of this first-order condition also satisfies the second-order suffi-
ciency condition, and is given by

x∗ =
2aγ

r

(
Z

n
− zit

)
.

The associated market clearing price is

p∗ = D−1
−i (−x

∗; zit, Z) = v − 1

a(n− 1)

[
−x∗ +

2aγ

r
(Z − zit)

]
= v − 2

γ

r

Z

n
. (146)

We now verify that the postulated demand function Dit for agent i achieves the above
demand x∗, regardless of the outcome of Z. We have

Dit(p
∗) = a

(
v − p∗ − 2γ

r
zit

)
= a

(
v −

(
v − 2

γ

r

Z

n

)
− 2γ

r
zit

)
=

2aγ

r

(
Z

n
− zit

)
,

which is indeed equal to the optimal demand x∗.
In order to prove that the proposed indirect utility function V satisfies the HJB equa-

tion, we substitute our expressions for V (z), p∗, and Dit(p
∗) into the right-hand-side of

the HJB equation (142). To confirm that (142) is satisfied, we must show that for all real
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z and Z,

0 =− 2aγ

r

(
Z

n
− z
)(

v − 2
γ

r

Z

n

)
+ V ′(z)

2aγ

r

(
Z

n
− z
)

+ r(vz − V (z))− γz2. (147)

To see that (147) holds, note that

V ′(z)
2aγ

r

(
Z

n
− z
)

= v
2aγ

r

(
Z

n
− z
)
− 2

γ

r

Z

n

2aγ

r

(
Z

n
− z
)

+ 2
γ

r

1

n− 1

2aγ

r

(
Z

n
− z
)2

and that

r(vz − V (z)) = rvz − rvZ
n

+ r
γ

r

(
Z

n

)2

− r
(
v − 2γ

r

Z

n

)(
z − Z

n

)
+ r

γ

r(n− 1)

(
z − Z

n

)2

= r
γ

r

(
Z

n

)2

+ r
2γ

r

Z

n

(
z − Z

n

)
+ r

γ

r(n− 1)

(
z − Z

n

)2

. (148)

The right-hand side of (147) is thus computed as

−2aγ

r

(
Z

n
− z
)(

v − 2
γ

r

Z

n

)
+ V ′(z)

2aγ

r

(
Z

n
− z
)

+ r(vz − V (z))− γz2

=
4aγ

r

(
Z

n
− z
)
γ

r

Z

n
+−2

γ

r

Z

n

2aγ

r

(
Z

n
− z
)

+ 2
γ

r

1

n− 1

2aγ

r

(
Z

n
− z
)2

+ γ

(
Z

n

)2

+ 2γ
Z

n

(
z − Z

n

)
+

γ

n− 1

(
z − Z

n

)2

− γz2.

Substituting a = (n− 2)r2/4γ, we have

−2aγ

r

(
Z

n
− z
)(

v − 2
γ

r

Z

n

)
+ V ′(z)

2aγ

r

(
Z

n
− z
)

+ r(vz − V (z))− γz2

= (n− 2)γ

(
Z

n
− z
)
Z

n
+−(n− 2)γ

Z

n

(
Z

n
− z
)

+
(n− 2)γ

n− 1

(
Z

n
− z
)2

+γ

(
Z

n

)2

+ 2γ
Z

n

(
z − Z

n

)
+

γ

n− 1

(
z − Z

n

)2

− γz2.

So, V satisfies the HJB equation because

(n− 2)

n− 1

(
Z

n
− z
)2

+

(
Z

n

)2

+ 2
Z

n

(
z − Z

n

)
+

1

n− 1

(
z − Z

n

)2

− z2 = 0.

Thus, using the fact that the demand function Dit solves the maximization problem
of the HJB equation, and using the fact that V solves the HJB equation, an application
of Ito’s formula to the process J defined by J(t) = V (zit) for t < T, and by J(t) = πziT
for t ≥ T implies that

V (zi0) = E

[
ziT (T )π −

∫ T

0

[
γz2

it +Dit [Φ (Dit +D−i,t)] Φ (Dit +D−it)
]
dt

]
.
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For any other demand function D for agent i, the HJB equation and Ito’s formula
implies that implies that

V (zi0) ≥ E
[
zDi (T )π −

∫ T

0

[
γzDi (t)2 +Dt [Φ (Dt +D−i,t)] Φ (Dt +D−it)

]
dt

]
.

Thus Di is indeed optimal for trader i given D−i, and V (z) is indeed the indirect
utility of any agent with inventory z. This proves Proposition 8.

We can now recapitulate the main results of this section:

Proposition 9. An equilibrium of the continuous-time double-auction market is as fol-
lows.

1. The demand function Dit of trader i at time t is given by:

Dit =
(n− 2)r2

4γ

(
v − p− 2γ

r
zit

)
, (149)

where the equilibrium inventory of trader i at time t is

zit =
Z

n
+ e−(n−2)rt/2

(
zi0 −

Z

n

)
. (150)

The equilibrium price at time t is constant at

p∗ = v − 2γ

nr
Z. (151)

2. The indirect utility V (z) of any agent i for inventory z at any time t > 0 that is
before the asset payoff time T is given by

V (z) = v
Z

n
− γ

r

(
Z

n

)2

+

(
v − 2γ

r

Z

n

)(
z − Z

n

)
− γ

r(n− 1)

(
z − Z

n

)2

. (152)

C Welfare and Squared Asset Dispersion

A reallocation of the inventory vector (z10, . . . , zin) is an allocation z′ = (z′1, . . . , z
′
n) with

the same total Z. A reallocation z′ is a Pareto improvement if, when replacing zi0 with
z′i, the equilibrium utility E(Vi,0+) before entering the sequential-double-auction market
is weakly increased for every i and strictly increased for some i. We have the following
corollary of Proposition 2.

Corollary 2. The total expected ex-ante utility W (z0) =
∑n

i=1E(Vi,0+) is one-to-one
and strictly monotone decreasing (in fact linear) in the sum of mean squared excess asset
positions,

D(z0) = E

(
n∑
i=1

(
zi0 −

Z

n

)2
)
.

Thus, if a reallocation z′ = (z′1, . . . , z
′
n) is a Pareto improvement, then D(z′) < D(z0).

This result follows from the fact that W (z0) is a constant plus the product of D(z0)
and a negative constant.
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Because traders’ preferences are linear with respect to total net pecuniary benefits,
W ( · ) is a reasonable social welfare function. This follows from the fact that for any
allocations z′ and z with W (z′) > W (z), the allocation z′ is Pareto preferred to z after
allowing for transfer payments.

The magnitude of welfare improvement offered by the bilateral workup, conditional on
the double auctions, can be calculated explicitly. We focus on the welfare of the buyer and
the seller in the bilateral workup under consideration, and assume zero inventory shocks
after time 0. Start from any pre-workup inventory levels −x < 0 for the buyer and y > 0
for the seller, where x and y are exponentially distributed with mean 1/µ. The workup
volume is V ≡ max(0,min(x − (M + δ), y − (M − δ))), and the post-workup inventories
are −x + V and y − V . By Corollary 2, the ex-ante welfare improvement induced by a
single bilateral workup is proportional to (with multiplier (γ/r)C, by (13)) the reduction
in total mean-squared inventory dispersion for the buyer-seller workup pair, which is

E
[
(−x− Z/n)2 + (y − Z/n)2 − (−x+ V − Z/n)2 − (y − V − Z/n)2

]
= E

[
−2V 2 + 2(x+ y)V

]
=

∫ ∞
x=M+δ

∫ ∞
y=M−δ

µe−µxµe−µy(−2V 2 + 2(x+ y)V ) dx dy. (153)

A change of variables, taking u = x−M − δ and w = y−M + δ, allows one to re-express
the integral as∫ ∞

u=0

∫ ∞
w=0

µ2e−2µMe−µ(u+w)
[
−2 min(u,w)2 + 2(u+ w + 2M) min(u,w)

]
du dw. (154)

Further simplification reduces this integral to

2e−2Mµ(1 +Mµ)

µ2
, (155)

which is decreasing in M and invariant to δ in the interval [0,M ].
On the other hand, without the workup, the expected welfare cost of the buyer and

the seller that arises from strategic avoidance of price impact is proportional to (also with
multiplier (γ/r)C, by (13))

E[(−x− Z/n)2 + (y − Z/n)2]

=E

(−n− 1

n
x− 1

n
y − 1

n

n∑
i=3

zi0

)2

+

(
1

n
x+

n− 1

n
y − 1

n

n∑
i=3

zi0

)2


=
n− 1

n

4

µ2
, (156)

where we use the facts that E[x2] = E[y2] = E[z2
i0] = 2/µ2 and that (x, y, {zi0}) are

mutually independent.
Therefore, the fraction of welfare cost between the buyer and the seller that is elimi-

nated by the bilateral workup is

R =
n

2(n− 1)
e−2Mµ(1 +Mµ). (157)
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D Comparing Various Market Structures

In the main body of the paper we have shown that adding a single workup before the
sequential double auction market improves allocative efficiency. In this appendix, we
solve an alternative market structure with only a size discovery mechanism—bilateral
workups—at time 0. This size-discovery-only market presents an interesting tradeoff: the
lack of future trading opportunities rules out after-workup inventory rebalancing, but it
also encourages traders to work up more quantities during the workup. For simplicity, we
focus on the case with unbiased workup price, i.e., p̄ = v. We will also restrict attention
to zero periodic inventory shocks, since the presence of inventory shocks do not change
traders’ strategies (see Section 3).

No trading at all. It is easy to see that without any trading, the welfare of trader i
is given by an expression similar to (13), except that Θ = 0 and the penultimate term is

− γ

r

(
zi0 −

Z

n

)2

, (158)

rather than

− γ

r

1− 2a∆γ/r

n− 1

(
zi0 −

Z

n

)2

. (159)

This is our benchmark.

Only workup. If there is only a single workup and no double auctions, there would
be no price discovery. This means that the total inventory Z is never disclosed or anyone.
In this case, a trader’s expected utility after the workup, from holding inventory z, is

V(z) = vz − γ

r
z2. (160)

In a bilateral workup, the buyer’s utility is simply

U b = −p̄y + V(Sb + y) = vSb − γ

r
(Sb + y)2, (161)

where we have used p̄ = v. Note that the total inventory Z is irrelevant here because the
buyer has no further opportunities to trade. Taking the first-order condition with respect
to y and equating it to zero at Sb + y = −Mb, we get

Mb = 0. (162)

By a symmetric calculation, the seller’s dropout threshold is

Ms = 0. (163)

Zero dropout thresholds imply that self-rationing we saw in Section 4 does not happen
here, because there are no further trading opportunities. Thus, in this alternative struc-
ture, everyone who receives any inventory shock wishes to participate in bilateral workups.

Next, we calculate the welfare improvement of having a single workup, relative to the
no-trade benchmark. If the buyer’s inventory size is x > 0 and the seller’s inventory size is
y > 0, then the workup volume is V = min(x, y). The improvement in allocative efficiency
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(relative to the no-trading benchmark) for this pair is

E[x2 + y2 − (−x+ V )2 − (y − V )2]. (164)

Inspecting (153) of Appendix C, we see that the above expectation can be simplified by
taking the special case of Z = 0 and M = δ = 0 in (153), and the expectation simplifies
to 2/µ2. Since the coefficient in front of the squared inventory is γ/r, the improvement in
allocative efficiency for each buyer-seller pair is

γ

r

2

µ2
. (165)

Since there are n traders, we have at most bn/2c buyer-seller pairs. Thus, if bilateral
workups are the only opportunities to trade, the expected efficiency improvement, relative
to the no-trade benchmark, is at most

γ

r

2

µ2
bn

2
c. (166)

Only double auctions. If we only add the double auctions (and no workup), the
efficiency improvement (relative to the no-trading benchmark) is

γ

r

(
1− 1− 2a∆γ/r

n− 1

)
E

[∑
i

(
zi0 −

Z

n

)2
]

=
γ

r

(
1− 1− 2a∆γ/r

n− 1

)
(n− 1)

2

µ2
, (167)

where 2
µ2 is the variance of each zi0 term. Since a∆ ≥ 0, the efficiency improvement

brought by the double auctions has a lower bound of

γ

r

2

µ2
(n− 2). (168)

Comparison among market structures. Clearly, for all n ≥ 3, n−2 ≥ bn2 c. Thus,
a market structure with only double auctions weakly dominates the market structure with
only a single workup. This inequality is actually strict because in expectation, n traders
generate fewer than bn/2c bilateral workup pairs. Thus, we have the following ranking of
expected welfare:

workup + double auctions � double auctions only � workup only. (169)

56



References

Adrian, T., M. Fleming, O. Shachar, and E. Vogt (2015): “Has U.S. Corporate
Bond Market Liquidity Deteriorated?” Liberty Street Economics, Federal Reserve Bank
of New York.

Arrow, K. (1951): “An Extension of the Basic Theorems of Classical Welfare Eco-
nomics,” in Second Berkeley Symposium on Mathematical Statistics and Probability,
ed. by J. Neyman, Berkeley: University of California Press, 507–532.

——— (1979): “The Property Rights Doctrine and Demand Revelation Under Incomplete
Information,” in Economics and Human Welfare, ed. by M. Boskin, Academic Press.

Aumann, R. (1964): “Markets with a Continuum of Traders,” Econometrica, 32, 39–50.

Ausubel, L. M., P. Cramton, M. Pycia, M. Rostek, and M. Weretka (2014):
“Demand Reduction, Inefficiency and Revenues in Multi-Unit Auctions,” Review of
Economic Studies, 81, 1366–1400.

BGC (2015): “BGC Derivative Markets, L.P. Rules,” Tech. rep.

Boni, L. and C. Leach (2004): “Expandable Limit Order Markets,” Journal of Finan-
cial Markets, 7, 145–185.

Boni, L. and J. C. Leach (2002): “Supply Contraction and Trading Protocol: An
Examination of Recent Changes in the U.S. Treasury Market,” Journal of Money,
Credit, and Banking, 34, 740–762.

Buti, S., B. Rindi, and I. M. Werner (2011): “Diving into Dark Pools,” Working
paper, Fisher College of Business, Ohio State University.

——— (2015): “Dark Pool Trading Strategies, Market Quality and Welfare,” Working
paper, University of Toronto.

Collin-Dufresne, P., B. Junge, and A. B. Trolle (2016): “Market Structure and
Transaction Costs of Index CDSs,” Tech. rep., EPFL (to appear).

d’Aspremont, C. and L. Gérard-Varet (1979): “Incentives and Incomplete Infor-
mation,” Journal of Public Economics, 11, 25–45.

Degryse, H., M. Van Achter, and G. Wuyts (2009): “Dynamic Order Submission
Strategies with Competition between a Dealer Market and a Crossing Network,” Journal
of Financial Economics, 91, 319–338.

Du, S. and H. Zhu (2015): “Welfare and Optimal Trading Frequency in Dynamic Double
Auctions,” NBER working paper 20588.

Duffie, D. (2010): “Presidential Address: Asset Price Dynamics with Slow-Moving
Capital,” Journal of Finance, 65, 1237–1267.
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