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Abstract. This paper studies the empirical relationship between firms’ asset growth

and idiosyncratic stock return volatility. In the cross-section, firms’ idiosyncratic return

volatility is V-shaped with respect to their lagged asset growth rates: the volatility is

higher for firms with extreme (either high or low) asset growth rates than for firms with

moderate growth rates. In the time series, a higher dispersion across firms in asset growth

rates predicts a higher average idiosyncratic return volatility. Moreover, the dispersion

in asset growth rates has the strongest time series predictive power among alternative

explanations of the average idiosyncratic return volatility, such as cash flow volatility and

growth options. These findings indicate the importance of nonlinearity in studying the

cross-sectional return volatility and provide a new explanation of the idiosyncratic return

volatility that is significant in both the cross-section and the time series.
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1 Introduction

Idiosyncratic return volatility, which measures idiosyncratic risk, is important in under-

standing portfolio diversification, risk management, and valuation of stock options.1 The

average idiosyncratic return volatility of U.S. stocks shows an interesting movement over

time. In particular, Campbell, Lettau, Malkiel, and Xu (2001) document that over the pe-

riod from 1962 to 1997, there was a noticeable increase in the average idiosyncratic return

volatility relative to the reasonably stable market volatility. On the other hand, Brandt,

Brav, Graham, and Kumar (2010) show that the upward trend has been reversed by 2007,

and the average volatility falls below pre-1990s levels. These findings have inspired exten-

sive studies that attempt to explain idiosyncratic return volatility in both the cross-section

and the time series.2 However, the proposed explanations in the cross-section are quite

different from that in the time series. More importantly, none of the existing explanations

shows robust explanatory power in both cross-section and time series dimensions.

This paper fills this gap and shows that firms’ asset growth rates have robust explana-

tory power for idiosyncratic return volatility in both dimensions. The motivation behind

using asset growth to explain idiosyncratic return volatility is as follows. First, asset growth

rates should contain useful information on the idiosyncratic return volatility across firms.

For example, firms with a large growth in their total assets are more likely to experience

large idiosyncratic uncertainties to the value of their new investment, and therefore they

should have higher idiosyncratic return volatility. Similarly, firms with a negative growth

are more likely to have higher uncertainties regarding the value of their existing asset-

1 Recent empirical studies also emphasize the importance of idiosyncratic return volatility
in stock returns. See, for example, Ang, Hodrick, Xing, and Zhang (2006, 2009) and Fu
(2009).
2 Existing explanations of the upward trend in the average idiosyncratic volatility include
institutional ownership (Malkiel and Xu (2003), Bennett, Sias, and Starks (2003)), mar-
ket composition of firms (Bennett and Sias (2006)), new listings (Brown and Kapadia
(2007), Fink, Fink, Grullon, and Weston (2010)), growth options (Cao, Simin, and Zhao
(2008)), product market competition (Gaspar and Massa (2006)), idiosyncratic volatil-
ity of fundamentals (Wei and Zhang (2006), Irvine and Pontiff (2009)), and financial
reporting quality (Rajgopal and Venkatachalam (2011)). In addition, the cross-sectional
explanations of idiosyncratic volatility include long-term earnings growth (Malkiel and X-
u (2003)), idiosyncratic volatility of profitability (Pastor and Veronesi (2003)), and retail
trading (Brandt, Brav, Graham, and Kumar (2010)).
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s, and hence also have higher idiosyncratic return volatility. Second, the distribution of

growth rates across firms should contain useful information on the cross-sectional average

idiosyncratic volatility. Following the same argument as in the cross-section, if more firms

have large changes in their assets (either positive or negative), more firms will have higher

idiosyncratic volatility. Therefore, a higher dispersion in asset growth rates should predict

a higher cross-sectional average idiosyncratic return volatility.

I first document the empirical relationship between idiosyncratic volatility and asset

growth in the cross-section. Based on U.S. common stocks from 1963 to 2013, the id-

iosyncratic return volatility shows a V-shape with respect to firms’ lagged annual asset

growth rate. That is, stocks with extreme asset growth rates (either positive or negative)

have higher idiosyncratic volatility in the following year than that of stocks with moder-

ate growth. In addition, the V-shape is asymmetric, with a much steeper slope for firms

with negative asset growth rates. The stocks with the lowest idiosyncratic volatility are

associated with firms that have a moderate asset growth rate of approximately 5% per

year.

I further document the robustness of the V-shaped relationship in the cross-section.

First, even though stock returns affect firms’ asset growth rate, the main findings still

hold after controlling for the past stock returns. Second, the relationship between asset

growth and idiosyncratic volatility is robust after controlling for firms’ credit risk. Third,

I also show that the main findings still hold using (i) alternative regression methods

(e.g., pooled cross-section vs. panel regressions with fixed effect); (ii) alternative measures

of volatility under different factor models; and (iii) alternative growth measures (e.g.,

investment-to-asset ratio).

I then compare the asset growth effect with three closely related alternative explana-

tions of idiosyncratic volatility in the cross-section: (i) cash-flow and its volatility, (ii)

growth options, and (iii) forecasted long-term earnings growth. The cross-sectional com-

parisons deliver two main findings. First, the asset growth effect is independent of all three

explanations. The V-shaped relationship between asset growth and idiosyncratic volatility

still hold even after controlling for these alternative explanations. Second, the asset growth



4 ZHONGZHI SONG

has comparable explanatory power as cash-flow measures, but higher explanatory power

than both the growth options measures and the long-term earnings growth.

Motivated by the V-shaped pattern in the cross-section, I document that in the time

series, the cross-sectional dispersion in annual asset growth rates positively predicts the

cross-sectional average idiosyncratic return volatility in the next year. In particular, the

asset growth dispersion captures both the increase in average idiosyncratic volatility before

year-2000 as documented by Campbell, Lettau, Malkiel, and Xu (2001) and subsequent

sharp decline as documented by Brandt, Brav, Graham, and Kumar (2010). Moreover, the

asset growth rate has a high explanatory power in the time series of the average return

volatility, with a univariate R-square of 57.5%.

The positive predictive power of the asset growth measure in the time series is also

robust. First, the asset growth measure is robust for an early sub-sample of time series

(1963–1995), while most of other explanations luck power in the same period. Second,

the predictive power of the asset growth measure is unaffected after controlling for the

market-wide investor sentiment. Third, I also show that the main findings still hold using

(i) alternative measures of volatility under different factor models and (ii) alternative

growth measures.

I also compare the asset growth measure with alternative explanations of average id-

iosyncratic volatility in the time series. The main findings of the comparisons are as follows.

First, the asset growth measure subsumes the explanatory power of cash-flow measures

in the time series. Second, the asset growth measure provides independent and higher

explanatory power than growth options measures in the full time series. In addition, for

the pre-1995 time series, the asset growth measure is still significant while the growth

options measures are not. Finally, I run a horse race between asset growth measure and

other alternative time series explanations that have significant explanatory power. The

asset growth measure is the most important predictor of the average idiosyncratic return

volatility. For example, in a multiple regression with four competing measures, the asset

growth measure accounts for 46% of the explained variation in the time series volatility

(with the market index volatility accounts for 37% and the other two explanations account

for the rest of 17%).



Asset Growth and Idiosyncratic Return Volatility 5

The contribution of this paper is threefold. First, this paper documents new empirical

patterns of idiosyncratic return volatility in the cross-section. The V-shaped relationship

between idiosyncratic return volatility and asset growth rate indicates the importance of

nonlinearity in studying the cross-sectional return volatility. Second, this paper provides

a unified explanation of return volatility in both the cross-section and time series. Finally,

this paper documents a new explanation of the average idiosyncratic volatility that has

the highest time series predictive power.

This paper is related to a substantial empirical literature on idiosyncratic volatility.

Note that the existing explanations of idiosyncratic volatility have two notable short-

comings.3 First, most explanations of the observed time trend in average idiosyncratic

volatility before 2000 have difficulty in explaining why average idiosyncratic volatility fall-

s during the period from 2000 to 2007.4 Second, none of the existing explanation shows

robust explanatory power in both time series and cross-section. For example, Rubin and

Smith (2011) find that the market-to-book ratio, which is used by Cao, Simin, and Zhao

(2008) to proxy for the growth options, is useful in the time-series context but lacks power

in the cross-section. They also find that most explanatory variables in the time series have

no power after controlling for the lagged volatility. In contrast, the asset growth expla-

nation in this paper overcomes both problems. In particular, the asset growth rate can

explain the up-and-then-down movement in the average volatility. Moreover, it has robust

explanatory power on the idiosyncratic return volatility in both cross-section and time

series.

This paper is also related to other recent empirical studies that involve asset growth

and/or idiosyncratic return volatility. Cooper, Gulen, and Schill (2008) find that firms

with higher annual asset growth rates will experience lower future returns.5 My findings

show that the asset growth is also related to the return volatility. Lam and Wei (2011) use

the idiosyncratic return volatility as a proxy for arbitrage risks to explain the effect of asset

3 Footnote 2 lists existing explanations of idiosyncratic volatility in both cross-section and
time series.
4 Bekaert, Hodrick, and Zhang (2012) also reject an upward trend in idiosyncratic volatil-
ity in 23 markets.
5 Also see Titman, Wei, and Xie (2004), Anderson and Garcia-Feijóo (2006), and Xing
(2008) on the relationship between investment and stock returns.
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growth on returns. They find that the asset growth effect is weaker for firms with lower

idiosyncratic return volatility, which they attribute to the lower arbitrage risk of these

firms (also see Lipson, Mortal, and Schill (2011)). My analysis suggests that idiosyncratic

return volatility in turn is also affected by the asset growth.

The paper proceeds as follows. Section 2 describes the data. Sections 3 and 4 present

the empirical analysis in the cross-section and time series, respectively. Section 5 concludes

the paper.

2 Data

In this section, I first describe the data sources in Section 2.1, and then show the patterns

of idiosyncratic return volatility with respect to the asset growth rate through sorting and

graphing in Section 2.2.

2.1 DATA SOURCES

The main analysis covers all U.S. common stocks (CRSP share-code of 10 or 11) from

1963 to 2013. Daily and monthly stock price and trading information are from CRSP and

the annual accounting data are from COMPUSTAT.

The main variable of interest is the annual idiosyncratic return volatility (IVol), which is

calculated from daily return residues within each month over every twelve non-overlapping

months. Specifically, for every year (from July to the next June) and for each stock, I

run a time series regression of daily returns on the four daily factors, that is, the three

Fama-French factors plus the momentum factor. I then calculate within each month the

variance of return residue from the factor regression. Finally, I average over the twelve non-

overlapping months to calculate the annual frequency of idiosyncratic return volatility.6

Note that the volatility measure is annualized, i.e., it is calculated by multiplying the daily

variance by 252. In order to minimize the influence of outliers in this analysis, I winsorize

the annual idiosyncratic volatility at the 99-percent level. To aggregate volatility, I use

6 I require at least 60 daily returns within one year to prevent the factor model from over-
fitting. In addition, at least 10 daily returns within one month are required to calculate
the variance for each month.
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value-weighting by using market capitalization as the weight. This generates a time series

of annual average idiosyncratic return volatility, which is the focus of the time series

analysis.

The central explanatory variable in this paper is the asset growth rate (gA), which is

calculated as the annual growth rate of a firm’s total book assets. In the data, there are

some extreme values of asset growth rate; this mostly occurs in the case of small stocks.

To deal with these extreme outliers, I winsorize the asset growth rate at the 99-percent

level.

To ensure that the asset growth effect on the idiosyncratic volatility is independent of

other effects, I control for a battery of variables that have been shown in the literature to be

related to idiosyncratic volatility. These variables include: size, market-to-book total assets

(MABA), variance of MABA (VMABA), firm age, share price, turnover, leverage, dividend

dummy (DD), return on equity (ROE), and variance of ROE (VROE). Specifically, size

is the market equity at the end of June. MABA is the fiscal year-end ratio of total book

assets minus book equity plus market equity to total book assets. VMABA is the variance

of MABA calculated using a past five-year rolling time series. Firm age is the number of

years since a firm first appeared in CRSP. Share price is the nominal price per share of the

stock. Turnover is the ratio of trading volume per month to outstanding shares. Leverage

is the ratio of long-term debt to total assets. DD equals one for stocks that pay dividends

and zero otherwise. ROE is the fiscal year-end ratio of earnings to book equity. VROE

is the variance of ROE calculated using a past five-year rolling time series. Note that in

regressions, I use the natural logarithms of both size and share price.

In the cross-sectional regressions, I assign accounting and price information to the

explanatory variables that become available no later than the time at which the depen-

dent variable becomes available. In particular, for regressions using average idiosyncratic

volatility from July year t to June year t+ 1, I use the asset growth rate over the period

t− 2 to t− 1, size at June t, MABA at t− 1, VMABA calculated over the period t− 5 to

t− 1, price at June t, average turnover during the past 12 months (July t− 1 to June t),7

leverage at t− 1, DD at t− 1, ROE at t− 1, and VROE calculated over the period t− 5

7 Rubin and Smith (2011) use the concurrent turnover and find significant coefficients in
both time-series and cross-sectional regressions. However, it is unclear which is the driving
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to t− 1. Thus, I use past information to explain and predict future return volatility. This

is very similar to the procedure used by Fama and French (1992) to predict stock returns.

The same timing applies to the time series analysis.

2.2 PATTERNS OF IDIOSYNCRATIC VOLATILITY

To show the relationship between idiosyncratic volatility and asset growth rate in the

cross-section, I form deciles sorted by the asset growth rate for each year. For each decile

and each year, I calculate the average idiosyncratic volatility and the average asset growth

rate, as well as other variables of interest. I then average these variables over time, which

yields time series averages of the asset growth rate, idiosyncratic volatility, and the other

variables for each decile. Table 1 shows the summary statistics for the asset growth sorted

deciles. Note that the raw returns of the deciles sorted by the asset growth rate are

decreasing in the asset growth rate, which is consistent with the evidence documented by

Cooper, Gulen, and Schill (2008).

Figure 1 plots the idiosyncratic volatility for each asset growth sorted deciles. The cross-

sectional return volatility has a nice V-shape with respect to the asset growth rate. For

example, the idiosyncratic volatility decreases from 0.180 at decile 1 to its lowest value

0.062 at decile 5, and then increases to 0.169 at decile 10. For the asset growth rate, it

increases from -19.3% at decile 1 to 6.9% at decile 5, and then increases dramatically to

108.6% at decile 10. The volatility at deciles 1 and 10 is more than two times higher than

that at decile 5. That is, the volatility decreases first and then increases as the asset growth

rate increases. This offers a guidance in choosing specifications of regression in Section 3.

To visualize the relationship between idiosyncratic volatility and asset growth rate in

the time series, I illustrate the time series of the average volatility and the aggregate

asset growth measure from 1963 to 2013 in Figure 2. The aggregate asset growth measure

(HMLgA) is the difference in average growth rates between high-growth and low-growth

firms, i.e., the difference in average asset growth rates between the two segments of the

V-shape (see Section 4 for more details on the construction of the aggregate asset growth

force. Intuitively, high volatility will induce high trading as well. Using past trading volume
mitigates such a concern.
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Table 1 Summary statistics for asset growth sorted deciles
The table reports summary statistics for portfolios sorted by asset growth rate. I first sort
firms into deciles according to the annual asset growth rate (gA) for each year from 1963
to 2013. I then calculate the average asset growth and the idiosyncratic volatility within
each decile for each year. Finally, I average each decile over time to calculate the time
series averages. All the other variables are calculated in the same manner. Idiosyncratic
volatility (IVol) is the annualized variance that is calculated from daily return residues
of the four-factor return regression; Return is the monthly stock raw return; Size is the
market equity measured in millions of dollars; Market assets to book assets (MABA) is
the ratio of book assets minus book equity plus market equity to book assets; VMABA
is the five-year rolling window variance of MABA; Age is the number of years since a
firm first appears in CRSP; Price is the nominal price per share; Turn is the turnover
rate calculated as the monthly trading volume divided by outstanding shares; Lev is the
leverage, calculated as long-term debts divided by total assets; DD is the dividend paying
dummy; ROE is the return on equity; and VROE is the five-year rolling window variance
of ROE. All variables, except Size, are value-weighted.

gA decile 1 2 3 4 5 6 7 8 9 10

gA -0.193 -0.048 0.003 0.037 0.069 0.104 0.148 0.222 0.371 1.086
IVol 0.180 0.105 0.075 0.062 0.062 0.063 0.070 0.088 0.115 0.169
Return 0.013 0.013 0.012 0.011 0.010 0.010 0.010 0.010 0.009 0.006
Size 330.3 770.5 1195 1598 1621 1840 1877 1494 1266 922.0
MABA 1.694 1.553 1.470 1.598 1.731 1.972 2.148 2.492 2.814 2.848
VMABA 1.621 0.910 0.387 0.303 0.396 0.336 0.541 0.720 1.228 2.708
Age 28.21 35.44 36.80 36.94 36.99 37.26 33.66 27.73 22.68 18.72
Price 35.79 38.04 42.82 344.0 463.9 250.5 273.6 593.0 253.5 160.9
Turn 0.096 0.085 0.073 0.064 0.066 0.066 0.072 0.087 0.109 0.134
Lev 0.224 0.209 0.202 0.198 0.186 0.168 0.166 0.160 0.182 0.215
DD 0.693 0.838 0.895 0.926 0.923 0.930 0.900 0.815 0.706 0.570
ROE -0.106 0.063 0.108 0.133 0.139 0.154 0.161 0.167 0.159 0.119
VROE 0.216 0.056 0.031 0.021 0.016 0.011 0.019 0.024 0.037 0.126

measure). Observe that the asset growth rate dispersion between high-growth and low-

growth firms matches the average idiosyncratic volatility very well, especially the rising

and then falling of the average idiosyncratic volatility around year 2000. One notable

outlier is the high average idiosyncratic volatility between 2008 and 2009, which involves

dramatic price movements during the 2008-09 financial crisis.

3 Cross-sectional Analysis

This section provides formal cross-sectional analysis on the relationship between asset

growth and idiosyncratic stock return volatility. Sections 3.1 presents the main findings,
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Fig. 1. Idiosyncratic volatility of asset growth deciles
The figure plots the empirical relationship between idiosyncratic return volatility
and asset growth rate. I first sort firms according to their asset growth rate into
deciles for each year (1963 to 2013). I then calculate the value-weighted averages
of asset growth (gA) and idiosyncratic volatility (IVol) within each decile for each
year. Finally, I average over time for each decile to calculate the time series averages.
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Fig. 2. Time series of average idiosyncratic volatility and asset growth
The figure plots the time series of the value-weighted average idiosyncratic volatility
and the aggregate asset growth measure for the period of 1963–2013. The annual
average idiosyncratic volatility (IVol) is the average of monthly volatility over 12
non-overlapping months. The monthly volatility is calculated from daily residual
returns from the four-factor return regression using a 12-month non-overlapping
window. The aggregate asset growth measure, denoted by HMLgA, is the difference
in average asset growth rates between high-growth firms and low-growth firms, with
the breaking growth rate of 5% for the two groups.
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Section 3.2 shows the robustness analysis, and Section 3.3 provides further comparisons

of asset growth with alternative explanations.

3.1 MAIN FINDINGS

To analyze the asset growth effect on stock return volatility, I adopt Fama and MacBeth’s

(1973) method for cross-sectional regressions. Specifically, for each year (which is averaged

over the months from July of year t to June of year t+ 1), I run cross-sectional regressions

of idiosyncratic stock return volatility (IVolt) on the previous year’s asset growth rate

(gAt−1). To maintain robustness, all t-statistics in the Fama-MacBeth regressions are

adjusted for the first order autocorrelation of the estimates from cross-sectional regressions.

Our preliminary analysis in Section 2 (see Figure 1) reveals that the idiosyncratic

volatility shows a nonlinear V-shaped relationship with asset growth. Therefore, the stan-

dard linear regression is obviously misspecified.8 To capture the V-shaped relationship,

I first estimate a piece-wise linear model with a free breaking point between low-growth

and high-growth rates. The coefficient of the low-growth segment is significantly negative,

and the coefficient of the high-growth segment is significantly positive, with the breaking

point around 5%. This confirms the V-shape of idiosyncratic volatility with respect to the

asset growth rate plotted in Figure 1.

For convenience in the multiple regressions, I transform the nonlinear regressions to

linear ones. I fix the breaking point at 5% and split the asset growth rate (gA) into two

variables, LgA and HgA. If the asset growth rate is lower than 5%, then LgA equals gA

minus 5%; otherwise, LgA equals zero. If the asset growth rate is higher than 5%, then

HgA equals gA minus 5%; otherwise, HgA equals zero. (Therefore, LgA + HgA ≡ gA −

5%.) These two variables, LgA and HgA, can capture the V-shape of volatility with respect

to the asset growth rate in standard linear models without using nonlinear estimations.

Specifically, the coefficient should be negative for LgA and positive for HgA.

For robustness, I also control for other variables that are related to return volatility, such

as size, age and price. Note that some variables considered in the following analysis are

8 In the simple linear regression, the coefficient of asset growth rate is insignificant, and
the R-square is extremely low (0.83%).
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highly correlated. For example, the correlation coefficient is 0.71 between price and size,

0.48 between price and dividend dummy, and -0.52 between ROE and VROE. Therefore,

it is not appropriate to include all variables in one regression. Instead, I control for the

lagged volatility as well as one other variable at a time. My goal here is to demonstrate the

significance of the asset growth rate in cross-sectional idiosyncratic volatility, and show

that the effect of asset growth on idiosyncratic volatility cannot be explained by any other

control variable combined with the lagged volatility.9

Table 2 presents the multiple cross-sectional regressions that use the Fama-MacBeth

approach. It first reports the pure asset growth effect and then controls for the lagged

idiosyncratic volatility and one of the remaining variables. There are three major findings.

First, the slope of the low-growth segment is about 10 times steeper than that of the high-

growth segment in regression (1). This is due to the fact that firms with extreme growth

rates have similar level of high volatility, but the magnitude of negative growth is much

smaller than that of positive growth (see e.g. Figure 1). The slopes of both segments of the

V-shape are highly significant with t-statistics of -6.05 and 11.3, which indicate that the

idiosyncratic volatility is an asymmetric V-shape with respect to the asset growth rate.

Second, the asset growth effect is still significant after controlling for the lagged volatility.

Third, and more important, the asset growth is a significant predictor of stock return

volatility in the cross-section even after the lagged volatility and other volatility related

variables are controlled for. The low-growth segment has a highly significant negative

coefficient, and the high-growth segment has a highly significant positive coefficient. The

only exception is the seventh regression when the price is added: while HgA is still highly

significant, LgA is insignificant (but still has a negative coefficient). This result is mainly

driven by stocks with low per-share prices. For example, if I restrict the sample to stocks

with per-share price higher than five dollars, then LgA is significantly negative and HgA

is significantly positive.

The controlling variables, except for MABA, Leverage, and volatility of ROE, are signif-

icant in terms of the t-statistic at the 5-percent level. The results show that (1) volatility

9 In the cross-sectional regression including all explanatory variables, HgA is still highly
significant, while LgA is insignificant. This still shows the explanatory power of asset
growth for at least high growth firms.
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Table 2 Cross-sectional regressions
The table reports Fama-MacBeth regressions in the cross-section for the period from
1963 to 2013. For each year t, I run multiple regressions: IV oli,t = αt + βL,tLgAi,t−1 +
βH,tHgAi,t−1 + βx,tXi,t−1 + εi,t. The table reports the time series average coefficients
(βL,t, βH,t, and βx,t) and the corresponding t-statistics. The dependent variable is the
idiosyncratic volatility of firm i in year t (IV oli,t). The two asset growth measures from
year t− 1 are: LgA equals gA - 5% for asset growth rate lower than 5%, and zero otherwise;
HgA equals gA - 5% for asset growth rate higher than 5%, and zero otherwise. The other
controlling variables (Xi,t−1) are: LagIVol is the lagged IVol; Size is the market equity in
June of year t measured in millions of dollars; MABA is the market assets to book assets
ratio for year t− 1; VMABA is the five-year rolling window (t− 6 to t− 1) variance of
MABA; Age is the number of years since a firm first appears in CRSP by t− 1; Price is
the nominal price per share in June of year t; Turn is the turnover rate calculated as the
monthly trading volume (from July t− 1 to June t) divided by outstanding shares in June
t; Lev is the leverage at t− 1, calculated as long-term debts divided by total assets; DD
is the dividend paying dummy at t− 1; ROE is the return on equity at t− 1; and VROE
is the five-year rolling window (t− 6 to t− 1) variance of ROE. Note that the natural
logarithms of both Size and Price are used. The t-statistics are adjusted for the first order
autocorrelation.

LgA HgA LagIVol Size MABA VMABA Age Price Turn Lev DD ROE VROE Adj.R2(%)

(1)
-1.662 0.160

9.58
(-6.05) (11.3)

(2)
-0.418 0.063 0.779

48.82
(-4.38) (5.83) (18.4)

(3)
-0.260 0.057 0.706 -0.056

52.52
(-3.27) (6.60) (18.0) (-3.59)

(4)
-0.408 0.060 0.784 0.001

48.83
(-4.18) (5.92) (18.3) (0.37)

(5)
-0.405 0.052 0.786 0.006

49.56
(-4.10) (7.43) (18.4) (4.46)

(6)
-0.411 0.049 0.764 -0.003

49.20
(-4.37) (5.81) (18.3) (-3.10)

(7)
-0.068 0.049 0.599 -0.158

55.42
(-1.14) (6.10) (16.5) (-3.79)

(8)
-0.399 0.072 0.798 -0.309

50.85
(-4.01) (5.39) (17.8) (-3.44)

(9)
-0.406 0.062 0.805 0.046

49.46
(-4.57) (4.40) (17.1) (1.97)

(10)
-0.352 0.038 0.730 -0.127

49.90
(-3.79) (5.65) (17.9) (-3.49)

(11)
-0.228 0.061 0.753 -0.112

49.59
(-3.99) (6.21) (17.9) (-7.63)

(12)
-0.385 0.058 0.771 0.141

49.05
(-4.24) (5.81) (18.3) (1.75)

is positively autocorrelated; (2) larger firms have lower volatility; (3) firms with highly

volatile MABA have high volatility; (4) older firms have lower volatility; (5) higher price-

per-share stocks have lower volatility; (6) dividend paying firms have lower volatility; and

(7) stocks with higher return-on-equity have lower volatility.

The result in Table 2 shows that the asset growth rate is significant in explaining the

idiosyncratic volatility in the multiple cross-sectional regressions. Other variables such as

price-per-share and the dividend dummy also have significant effects in the cross-section.

However, if these variables are valid explanations, they should be significant in the time
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series as well. I show later in Section 4 that only the asset growth rate is significant in

both the cross-section and time series.

3.2 ROBUSTNESS ANALYSIS

In this subsection, I provide some further robustness analysis on the main findings report-

ed above and show that the effect of asset growth on idiosyncratic volatility is robust.

Specifically, I show the robustness of asset growth effect after controlling for the past

return (Section 3.2.1), firms’ credit risk (Section 3.2.2), and under additional robustness

checks (Section 3.2.3).

3.2.1 Controlling for past stock returns

Arguably, the asset growth effect on idiosyncratic volatility can be driven by stocks with

extreme past returns, i.e., past “losers” and “winners.” The reasoning is as follows. Ex-

treme return stocks tend to have extreme concurrent asset growth and high concurrent

return volatility. Since the return volatility is highly persistent, stocks with extreme past

returns, and hence extreme past asset growth, will have higher future return volatility. In

other words, the asset growth effect documented in this paper might simply be a mechan-

ical result of volatility persistency.

Note first that I have taken into account the persistence of idiosyncratic volatility in

the multiple regression analysis in Section 3.1. Although I do find that the idiosyncratic

volatility is highly persistent with a first order autocorrelation of 0.8, the asset growth

measure is still highly significant when the lagged volatility is controlled for.

To further address this concern, I double sort stocks independently on the asset growth

rates and past returns. Specifically, I form portfolios for July of year t to June of year t+ 1

by using returns concurrent to the asset growth measure in year t− 1.10 For each past

return quintile, I then calculate the average idiosyncratic volatility for each asset growth

decile. Although the extreme losers have much higher idiosyncratic volatility, for each past

return quintile there is a V-shaped relationship between the idiosyncratic volatility and

the asset growth rate similar to Figure 1. This implies that the asset growth effect on the

10 Using returns from July t− 1 to June t yields the same inference.
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cross-sectional idiosyncratic volatility still exists even after the past returns are controlled

for.

Since there is a similar V-shaped relationship between return volatility and past returns,

I follow the same procedure to process the data as I did for the asset growth rate. In

particular, I separate the stocks into low and high past return groups, with the breaking

point of 0.9% in the monthly return. I then assign the two past return measures to each

stock accordingly.

Panel (a) of Table 3 shows that although the lagged returns have explanatory power

in the cross-section, the asset growth measures are still highly significant when both the

lagged return and lagged volatility are controlled for. However, the effect of past winners

is not robust, as the coefficient changes from positive in regression (1) to negative in

regressions (2) and (3).

3.2.2 Controlling for credit risk

Avramov, Chordia, Jostova, and Philipov (2013) explore the commonalities across anoma-

lies, focusing on the implications of financial distress. Particularly related to the current

study, they find that the return effect of both the asset growth and idiosyncratic volatility

in the cross-section is related to financial distress. This indicates that firms’ credit condi-

tions may be linked to both the asset growth and idiosyncratic volatility. Therefore, we

need to control for the credit risk when studying the relationship between asset growth

and idiosyncratic volatility.

I follow Stambaugh, Yu, and Yuan (2012) and use the Ohlson (1980) O-score as a

measure of credit risk. Panel (b) of Table 3 confirms the conjecture based on prior studies

that firms with higher credit risk (i.e., higher O-score) have a higher idiosyncratic volatility.

However, the result also shows that the asset growth effect is still highly significant even

after we control for the credit risk (with or without controlling for the lagged idiosyncratic

volatility).
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Table 3 Robustness analysis in the cross-section
The table reports results of the robustness analysis in the cross-section. The regression
procedure is the same as that of Table 2. I run the cross-sectional regressions with the
general form: IV oli,t = αt + βL,tLgAi,t−1 + βH,tHgAi,t−1 + βx,tXi,t−1 + εi,t. The two as-
set growth measures from year t− 1 are: LgA equals gA - 5% for asset growth rate lower
than 5%, and zero otherwise; HgA equals gA - 5% for asset growth rate higher than
5%, and zero otherwise. The regression may include the lagged IVol (LagIVol) and other
controlling variables (Xi,t−1). Panel (a) controls for the past returns. The two return mea-
sures, LReturn and HReturn, are similar to that of the two asset growth measures, except
that the breaking point for past return is set at 0.9%. Panel (b) controls for the credit
risk measured by O-score at t− 1. Panel (c) compares the asset growth with cash-flow
measures. ROE is the return on equity at t− 1 and VROE is the five-year rolling window
(t− 6 to t− 1) variance of ROE. Panel (d) compares the asset growth with growth options.
MABA is the market assets to book assets ratio for year t− 1 and VMABA is the five-year
rolling window (t− 6 to t− 1) variance of MABA. Panel (e) compares the asset growth
with long-term earnings growth. EPSLTG is the long-term growth in earnings-per-share
obtained from IBES. Panels (a-d) use data from 1963–2013, and panel (e) uses data from
1982–2013.

LgA HgA LagIVol LReturn HReturn Adj. R2(%)

(a) Past returns

(1)
-6.894 2.036

12.96
(-5.21) (10.9)

(2)
0.812 -1.865 -0.088

50.79
(19.2) (-4.06) (-0.53)

(3)
-0.278 0.062 0.794 -1.632 -0.306

51.30
(-4.55) (6.42) (18.9) (-3.95) (-2.13)

LagIVol LgA HgA O-score Adj. R2 (%)

(b) Credit risk

(4)
0.033

7.48
(7.40)

(5)
-1.252 0.129 0.027

13.47
(-7.42) (10.71) (5.56)

(6)
0.743 -0.293 0.056 0.012

48.54
(17.51) (-4.39) (6.11) (4.50)

LagIVol LgA HgA ROE VROE Adj. R2(%)

(c) Cash flows

(7)
-0.399 0.556

11.30
(-9.39) (1.12)

(8)
-1.040 0.148 -0.338 0.548

15.83
(-5.09) (10.3) (-8.69) (0.86)

(9)
0.750 -0.216 0.061 -0.122 0.131

49.73
(18.0) (-3.79) (6.34) (-7.69) (0.92)

LagIVol LgA HgA MABA VMABA Adj. R2(%)

(d) Growth options

(10)
-0.016 0.037

3.53
(-1.75) (6.08)

(11)
-1.606 0.134 -0.018 0.030

11.91
(-5.62) (9.07) (-2.14) (5.83)

(12)
0.785 -0.405 0.052 -0.004 0.007

49.68
(18.3) (-4.03) (7.02) (-1.10) (5.05)

LagIVol LgA HgA EPSLTG Adj. R2 (%)

(e) Long-term earnings growth

(13)
0.967

7.46
(3.04)

(14)
-1.005 0.050 0.896

11.37
(-5.77) (3.92) (3.04)

(15)
1.073 -0.163 0.022 0.014

40.13
(10.1) (-3.38) (3.24) (0.17)
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3.2.3 Additional robustness checks

I further consider three types of robustness checks. To save space, I report only the findings

without tabulating the results.

First, I consider alternative regression methods to the Fama-MacBeth regressions.

Specifically, I consider both pooled cross-section regressions and panel regressions with

fixed effects (both fixed firm and fixed year effects), where the standard errors in both

cases are calculated by double clustering by firm and year.11 Under these alternative cross-

sectional regression methods, the V-shaped relation between idiosyncratic volatility and

asset growth still holds.

Second, I repeat the analysis by using different time frequency of the volatility measure.

Specifically, I show that the main findings reported in Sections 3.1 still hold when monthly

frequency of volatility is used.

Finally, I consider alternative measures of both the volatility and the asset growth

measures. For the volatility, I consider four different measures: (i) Fama-French three-

factor model adjusted IVol, (ii) the CAPM adjusted IVol; and (iii) the market return

adjusted IVol (that is, the volatility of stock return in assess of market return), and

finally (iv) total volatility, which is model-free. For growth rate, I consider two alternative

measures: (i) the contemporaneous asset growth rate instead of the lagged growth rate

and (ii) the lagged investment-to-assets ratio as an alternative to the asset growth rate.

The main findings reported in Section 3.1 still hold.

3.3 COMPARISONS WITH ALTERNATIVE CROSS-SECTIONAL EXPLANATIONS

Next, I compare the asset growth effect in the cross-section with three closely related

alternative explanations: cash flows (Section 3.3.1), growth options (Section 3.3.2), and

long-term earnings growth (Section 3.3.3). The purpose of the comparison is to show that

the asset growth effect is independent of these alternatives and in most cases more robust

than these alternatives.

11 See Petersen (2009) for a comprehensive study that compares different approaches to
panel data regressions in the finance literature. See Cameron, Gelbach, and Miller (2011)
and Thompson (2011) for clustered standard errors in multiple dimensions.
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3.3.1 Asset growth versus cash flows

Pastor and Veronesi (2003) examine the idiosyncratic risk in a valuation model where

investors learn about profitability. They define profitability as the cash flow per dollar

book value of equity. They find that younger stocks, stocks that pay no dividends, and

high market-to-book equity stocks have more volatile returns. Wei and Zhang (2006) use

return-on-equity (ROE) and its time series variance (VROE) as the proxies of profitability

and its uncertainty.

Here I follow Wei and Zhang (2006)’s measures of cash flow (i.e., ROE) and volatility of

cash flow (i.e., VROE). The cross-sectional comparisons between asset growth and cash-

flow variables are reported in panel (c) of Table 3. Lower ROE firms have higher IVol,

but VROE is insignificant. The V-shaped relationship between IVol and asset growth rate

is still highly significant after controlling for either ROE and VROE or in addition the

lagged volatility.

I conclude that the asset growth effect is independent of the cash-flow effect. As I report

in the Section 4, the cash-flow measures do not have explanatory power in the time series

comparisons.

3.3.2 Asset growth versus growth options

Cao, Simin, and Zhao (2008) argue that firms with more growth options, proxied by

the market-to-book assets ratio (MABA), or with higher variations in growth options,

proxied by the time series variance of MABA (VMABA), should have higher idiosyncratic

volatility. However, they only test their explanation in a time series without showing cross-

sectional evidences. I conduct such a cross-sectional test with measures in Cao, Simin, and

Zhao (2008) and do not find strong support of their explanation. As shown in panel (d) of

Table 3, MABA is insignificant while VMABA is highly significant in the cross-sectional

regression. However, the R-square explained by MABA and VMABA is very low (3.53%).

Note that the asset growth measures are still significant in the cross-sectional regressions

after both MABA and VMABA are controlled for.12

12 It is worthwhile to point out that there also exists a V-shaped relationship between
the idiosyncratic volatility and the market-to-book assets ratio. However, the number of
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The above results show that the two measures used by Cao, Simin, and Zhao (2008)

(MABA and VMABA) in the time series lack explanatory power in the cross-section. In

contrast, after both measures are controlled for, the asset growth maintains its explana-

tory power in the cross-section. This indicates that the asset growth measure is a better

explanation for cross-sectional idiosyncratic volatility than MABA, the proxy of growth

options.

3.3.3 Asset growth versus long-term earnings growth

In this section, I distinguish between the asset growth measure and the expected long-

term growth, which Malkiel and Xu (2003) proxy with the expected growth of long-term

earnings, i.e., the earnings per share (EPS) growth as forecasted by IBES over the next

3 to 5 years. Although both the asset growth rate and EPS growth are growth measures,

they have obvious differences. First, the asset growth rate measures the total asset growth,

while the EPS growth is the growth of earnings per share. So if a firm grows by issuing

new shares without changing its EPS, the asset growth measure still captures this growth

while EPS does not. Second, the asset growth is the realized past asset growth, while

EPS growth is the forecasted future growth. Compared to the realized asset growth rate,

the forecasted EPS growth can have substantial noises. Third, the asset growth measure

is available for almost all public firms since 1963, while EPS long-term growth is only

available from early 1980s and for relatively large stocks.

Nevertheless, I still separate the two types of growth in the cross-sections where both

measures are available. I collect long-term EPS growth from IBES for the period from

1982 to 2013. I use the median of monthly forecasts to calculate the annual average of the

forecasted EPS long-term growth. I then match the long-term growth rate calculated from

July of year t− 1 to June of year t based on IBES forecasts with the average monthly

firms in the two segments of the V-shape is quite different. In the case of the asset growth
rate, the two segments of the V-shape have almost the same number of stocks, with the
breaking point in decile 5 (see Table 1). However, in the case of MABA, the left segment
has much fewer stocks and the breaking point is in decile 3. Moreover, taking into account
the nonlinearity, the MABA effect on the idiosyncratic volatility only delivers a relatively
low R-square of 3.11%. Recall from Table 2 that the pure asset growth effect has an
R-square of 9.58%.
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volatility from July of year t to June of year t+ 1. The pooled cross-sectional correlation

between the asset growth rate and long-term EPS growth is only 0.37, indicating that the

two are not highly correlated.13

Panel (e) of Table 3 reports results with the long-term earnings growth. First, the

long-term earnings growth is not significant once lagged volatility is added to regression

(15). Note, however, that the asset growth is highly significant in this smaller sample in

regressions (14) and (15). More important, the asset growth effect has the same asymmetric

V-shape as in the main analysis. This shows that the past realized asset growth has

explanatory power for idiosyncratic volatility in additional to the forecasted long-term

earnings growth.14

4 Time-series Analysis

This section provides formal time series analysis on the relationship between asset growth

and idiosyncratic stock return volatility. Section 4.1 presents the main findings. Sections

4.2 and 4.3 provide robustness analysis and compare asset growth with alternative time

series explanations.

4.1 MAIN FINDINGS

To assess the time series effect of the asset growth rate on return volatility, I form time

series based on both the aggregate asset growth measure and the aggregate idiosyncratic

volatility. Inspired by the cross-sectional result that the volatility has a V-shaped relation-

ship in the asset growth rate, I adopt the dispersion of the cross-sectional asset growth

13 Note that the idiosyncratic volatility in Malkiel and Xu (2003) is calculated using
returns in three years (one year before and two years after the IBES statistic period). My
idiosyncratic volatility measure is calculated using returns of 12 months after the asset
growth rate is known.
14 It is worth noting that Malkiel and Xu (2003) also find an asymmetric V-shaped re-
lationship between the idiosyncratic volatility and long-term earnings growth. However,
I find that introducing the V-shape generates a very small gain in R-square relative to a
simple linear model. This contrasts with my results, which show that both the low-growth
and high-growth segments are very important in the cross-sectional idiosyncratic volatility
regressions.
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rate between high-growth and low-growth firms as the annual aggregate asset growth mea-

sure. The dispersion, denoted by HMLgA, is calculated as the average of HgA minus the

average of LgA.15

As in the cross-sectional analysis, I also control for other variables that are related to

return volatility in the time series. I construct the other aggregate variables in a similar

manner as I did for the aggregate volatility. For example, the aggregate market-to-book

assets measure is calculated as the cross-sectional value-weighted average of market-to-

book assets. Data show that the correlations among these explanatory variables in the

time series are very high. For example, the correlation coefficient is 0.90 between size

and VROE, 0.87 between size and turnover, and -0.97 between size and dividend dummy.

Given such high correlations among these time series, it is not appropriate to control for

several variables at the same time due to potential multicollinearity. This is especially true

for relatively short time series, as I have only 51 time series observations. Therefore, as I

did in the cross-sectional analysis, I only control for the lagged volatility and one of the

other variables when assessing the explanatory power of the asset growth measure. My

goal here is to demonstrate the significance of the asset growth rate in the time series and

show that the effect of asset growth on idiosyncratic volatility cannot be explained by any

other control variable combined with the lagged volatility.16

To assess the level of residual autocorrelations, I calculate the Durbin-Watson (DW)

statistic in all time series regressions. The deviation of the Durbin-Watson statistic from

2 shows the autocorrelation of regression residues. Specifically, DW smaller than 2 shows

positive autocorrelation, while DW larger than 2 shows negative autocorrelation. Note

that the t-statistics for all annual time series regressions are adjusted for the residual

autocorrelation through Newey-West adjusted standard errors with a lag length of 2.

Table 4 reports results for multiple time series regressions. There are four important

results. First, the aggregate asset growth measure is significantly positive in the time

series (with a t-statistic of 10.4) and it explains 57.5% of the variations in the average

15 An alternative to the HMLgA measure is the cross-sectional standard deviation of
asset growth rate, which gives the same inferences in the time series regressions. These
two measures have a correlation of 0.97.
16 Even in the full regression including all the control variables, the asset growth measure
is still highly significant in the time series.
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Table 4 Time series regressions
The table reports results of the time series regressions using value-weighted data from 1963
to 2013. The regressions have the following general form: IV olt = α+ βgAHMLgAt−1 +
βxXt−1 + εt. The dependent variable is the average idiosyncratic volatility (IV ol), which
is calculated as the cross-sectional average idiosyncratic volatility for each year. The aggre-
gate asset growth measure, denoted by HMLgA, is the difference in average asset growth
rates between high-growth firms and low-growth firms, with the breaking annual asset
growth rate of 5%. The other controlling variables (Xt−1) are: LagIVol is the lagged av-
erage IVol; Size is the average market equity in June of year t measured in millions of
dollars; MABA is the average ratio of market assets to book assets for year t− 1; VMA-
BA is the average five-year rolling window (t− 6 to t− 1) variance of MABA; Age is the
average number of years since a firm first appears in CRSP by t− 1; Price is the average
nominal price per share in June of year t; Turn is the average turnover rate calculated
as the monthly trading volume (from July t− 1 to June t) divided by outstanding shares
in June t; Lev is the average leverage at t− 1, calculated as long-term debts divided by
total assets; DD is the average dividend paying dummy at t− 1; ROE is the average re-
turn on equity at t− 1; and VROE is the average five-year rolling window (t− 6 to t− 1)
variance of ROE. DW is the Durbin Watson statistic. The t-statistics are calculated using
Newey-West adjusted standard errors with a lag length of 2.

HMLgA LagIVol Size MABA VMABA Age Price Turn Lev DD ROE VROE DW R2(%)

(1)
0.525

2.01 57.50
(10.4)

(2)
0.518 0.014

2.03 56.63
(5.52) (0.11)

(3)
0.545 0.016 -0.003

2.08 56.06
(6.57) (0.13) (-0.53)

(4)
0.425 0.018 0.013

1.95 57.39
(4.52) (0.15) (1.92)

(5)
0.572 0.046 -0.006

2.16 56.93
(5.02) (0.33) (-1.89)

(6)
0.518 0.021 -0.001

2.06 55.96
(5.76) (0.16) (-0.45)

(7)
0.505 0.037 0.013

2.04 55.93
(5.46) (0.27) (0.72)

(8)
0.522 0.032 -0.035

2.06 55.90
(6.25) (0.20) (-0.27)

(9)
0.497 0.008 -0.335

2.03 56.03
(5.10) (0.06) (-0.57)

(10)
0.558 0.023 0.052

2.10 56.22
(6.42) (0.18) (0.66)

(11)
0.511 0.017 0.104

2.05 55.82
(5.53) (0.13) (0.29)

(12)
0.651 0.016 -0.382

2.21 59.75
(5.68) (0.14) (-2.96)

idiosyncratic volatility. Second, the lagged volatility is not significant once the asset growth

is controlled for. This shows the superior explanatory power of the asset growth even

compared to the lagged volatility.17 Third, all the other competing variables except MABA

17 Rubin and Smith (2011) demonstrate in a simulation that inferences in regressions
with both highly persistent dependent variable (e.g., the time series of average volatility)
and independent variables (e.g., average price or average market-to-book ratio) suffer
from a spurious regression problem, as discussed in Ferson, Sarkissian, and Simin (2003).
They also find that the Newey and West (1987) approach is inadequate to correct such a
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and VROE are not significant once the lagged volatility is added to the regression. Lastly,

even though MABA is still significant in the multiple regression, it does not improve

the adjusted R-square after the asset growth measure is included. Note also that even

though VROE is significant in the multiple regression, it changed sign from positive in

an univariate to negative in the multiple regression. Overall, the evidence in Table 4

shows that the aggregate asset growth is the most significant explanatory variable for the

aggregate idiosyncratic volatility in the time series.

Combining the results from the cross-section (Table 2) and time series (Table 4), we

can conclude that the asset growth measure has significant explanatory power in both the

cross-section and the time series. MABA is the only other variable which is also significan-

t in the both the univariate and multiple time series regressions. However, MABA lacks

power in the cross-section. Even in the time series, the asset growth effect is more impor-

tant than MABA in terms of R-square in explaining the average idiosyncratic volatility.

This implies that the asset growth measure is the only explanation that is significant in

both cross-section and time series.

4.2 ROBUSTNESS ANALYSIS

In this subsection, I provide some further robustness analysis on the main findings re-

ported above and show that the effect of the asset growth on idiosyncratic volatility is

robust. Specifically, I show the robustness of asset growth effect for an early subsample

of time series (Section 4.2.1), controlling for market sentiment (Section 4.2.2), and under

additional robustness checks (Section 4.2.3).

4.2.1 An early sub-sample of time series

Rubin and Smith (2011) find that the existing explanations of the average idiosyncratic

volatility lack power in the pre-1995 period, which excludes the episode of rising and then

falling idiosyncratic volatility around year 2000. Here I conduct time series regressions and

show that the asset growth has a robust explanatory power for the pre-1995 sub-sample.

problem. Instead, simply controlling for the lagged dependent variable (i.e., the average
volatility) gives correct inferences without eroding the power of the tests.
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Table 5 Robustness analysis in the time series
The table reports results for the robustness analysis in the time series. The time series
regressions are conducted similar to those in Table 4. The regressions have the following
general form: IV olt = α+ βgAHMLgAt−1 + βxXt−1 + εt. The dependent variable is the
average idiosyncratic volatility (IV ol), which is calculated as the cross-sectional average
idiosyncratic volatility for each year. The aggregate asset growth measure, denoted by
HMLgA, is the difference in average asset growth rates between high-growth firms and low-
growth firms, with the breaking annual asset growth rate of 5%. The regression may include
the lagged average volatility (LagIVol) and other controlling variables (Xt−1). Panel (a)
uses data from 1963 to 1995 with 33 observations and the growth options measure MABA is
the average ratio of market assets to book assets. Panel (b) controls for investor sentiment
using data from 1965-2010; Panel (c) compares the asset growth with cash-flow measures
using data from 1963–2013. ROE is the average return on equity at t− 1; and VROE is
the average five-year rolling window (t− 6 to t− 1) variance of ROE. Panel (d) compares
the asset growth with growth options using data from 1963–2013. VMABA is the average
five-year rolling window (t− 6 to t− 1) variance of MABA. DW is the Durbin Watson
statistic. The t-statistics are calculated using Newey-West adjusted standard errors with
a lag length of 2.

LagIVol HMLgA MABA DW Adj. R2(%)

(a) Pre-1995 time series

(1)
-0.005

0.91 -2.03
(-0.50)

(2)
0.315

1.44 28.31
(2.72)

(3)
0.327 0.003

1.43 26.37
(2.86) (0.38)

(4)
0.439 0.215 0.007

1.96 40.23
(3.14) (2.80) (0.89)

LagIVol HMLgA Sentiment DW Adj. R2(%)

(b) Sentiment

(5)
0.012

1.07 3.44
(1.83)

(6)
0.514 -0.000

2.06 53.28
(9.38) (-0.18)

(7)
-0.003 0.516 -0.000

2.06 52.17
(-0.02) (5.44) (-0.17)

LagIVol HMLgA ROE VROE DW Adj. R2(%)

(c) Cash flows

(8)
0.268 0.521

1.12 13.45
(0.48) (1.31)

(9)
0.658 0.252 -0.417

2.25 60.37
(8.64) (0.64) (-2.45)

(10)
0.023 0.648 0.256 -0.418

2.29 59.54
(0.19) (5.51) (0.65) (-2.47)

LagIVol HMLgA MABA VMABA DW Adj. R2(%)

(d) Growth options

(11)
0.047 0.000

1.13 38.59
(2.90) (0.04)

(12)
0.497 0.021 -0.010

2.01 60.16
(6.50) (2.47) (-3.08)

(13)
0.074 0.465 0.021 -0.010

2.13 59.59
(0.56) (4.48) (2.60) (-3.91)
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As shown in Section 4.1, the growth options measure, MABA, is the only variable that is

significant in the time series regression in addition to the asset growth measure and the

lagged volatility. Panel (a) of Table 5 reports the time series regression result including

both the asset growth and the growth options measure. First, the asset growth measure is

still highly significant in regressions for the sample period of 1963-1995. Second, MABA

is insignificant in the pre-1995 period, which is consistent with the finding in Rubin and

Smith (2011). This implies that the explanatory power of MABA comes mostly from the

short period of time around year 2000. In contrast, the aggregate asset growth measure is

still significant in this sub-sample, even when the episode around year 2000 is excluded.

4.2.2 Controlling for sentiment

Existing studies find that the cross-sectional return patterns related to the asset growth

(Stambaugh, Yu, and Yuan (2012)) and idiosyncratic volatility (Stambaugh, Yu, and Yuan

(2014)) are both affected by market-wide investor sentiment. Therefore, it is important to

control for the investor sentiment when studying the relationship between asset growth

and the average idiosyncratic volatility.

I follow Stambaugh, Yu, and Yuan (2012) and use the market-wide sentiment index

from Baker and Wurgler (2006). Panel (b) of Table 5 reports the results. First, the senti-

ment measure is positively related to the average idiosyncratic volatility in the time series.

However, the coefficient is insignificant and the R-square is low. Second, when the asset

growth measure (HMLgA) is added to the regression, the sentiment loses all its explana-

tory power. However, the asset growth measure is still highly significant, with or without

controlling for lagged idiosyncratic volatility. These results show that the asset growth

effect on the average idiosyncratic volatility is unrelated to the investor sentiment.

4.2.3 Additional robustness checks

I consider three further robustness checks in the time series. To save space, I report only

the findings of additional robustness analysis without tabulating the results. First, I repeat

the analysis by using different time frequency of the volatility measure or the weighting

method. Specifically, I show that the main findings reported in Section 4.1 still hold
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when monthly frequency of volatility is used. In addition, the asset growth dispersion also

predicts positively the next year’s average idiosyncratic volatility in the equal-weighted

time series. Second, I consider four alternative measures of the volatility and two measures

of the asset growth as discussed in Section 3.2. The main findings reported in Section 4.1

still hold. Finally, the asset growth effect on idiosyncratic volatility in the time series is

robust after controlling for the past returns.

4.3 COMPARISONS WITH ALTERNATIVE TIME SERIES EXPLANATIONS

In this section, I compare the asset growth effect in the time series with two closely related

alternative explanations: cash-flow volatility (Section 4.3.1) and growth options (Section

4.3.2). In addition, I run a horse race among the most significant explanations of the

average IVol (Section 4.3.3). The purpose of the comparison is to show that the asset

growth effect is independent of these alternatives and it has the strongest explanatory

power in the time series.

4.3.1 Asset growth versus cash-flow volatility

Irvine and Pontiff (2009) study the effect of unexpected cash flow shocks on the average

idiosyncratic volatility in the time series. They interpret the increasing cash flow volatility

as a result of intensified competition among firms over time. Wei and Zhang (2006) use

return-on-equity (ROE) and its time series variance (VROE) as the proxies cash-flow and

its uncertainty to explain the aggregate idiosyncratic volatility.

As in the cross-sectional analysis, here I follow Wei and Zhang (2006)’s measures of

cash flow (i.e., ROE) and volatility of cash flow (i.e., VROE). The time series results are

reported in panel (c) of Table 5. Note that both the two cash-flow measures are insignif-

icant in bivariate regression with both measures. Surprisingly, when the asset growth is

controlled for, the VROE even turns from insignificant positive to significant negative.

Note, however, the asset growth measure is highly significant and increase dramatically

the R-square.
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I conclude that the proxies of cash-flow and its volatility lack explanatory power in the

time series, while the asset growth measure retains its high explanatory power.

4.3.2 Asset growth versus growth options

As reported in Table 4, MABA, which proxies growth options, is the only other variable

that shows significant explanatory power in the time series. Cao, Simin, and Zhao (2008)

use this measure to explain the aggregate return volatility. In this section, I make direct

comparisons between the asset growth and the growth options measures.

Panel (d) of Table 5 reports the results when MABA and its variance VMABA are both

used. First, the MABA has a robustness positive effect on the average idiosyncratic return

volatility across different regressions (note the VMABA changed sign across regressions).

Second, the asset growth measure is still highly significant even if we control the MABA.

As I discussed in Section 4.1, the R-square of asset growth measure is much higher than

that of the MABA. Overall, the asset growth measure is a better explanation of the average

idiosyncratic volatility than the growth options measure.

4.3.3 Determinants of average idiosyncratic volatility: a horse race

As discussed in the Introduction, following Campbell, Lettau, Malkiel, and Xu (2001),

there is a large empirical literature that tries to explain the time series of average idiosyn-

cratic volatility. More recent studies try to summarize and compare the proposed explana-

tions. For example, Zhang (2010) compares fundamentals-based with trading volume-based

explanations of the average stock return volatility. He finds that much of the variation

in the return volatility can be explained by fundamental variables, such as volatility of

return on equity (VROE) and growth options (MABA), but not by trading-related vari-

ables. Bekaert, Hodrick, and Zhang (2012) run a horse race among 17 variables in order

to determine which variables best capture the time series variation in the U.S. average

idiosyncratic volatility. They find that the most important determinants of the average

volatility are (i) the growth options variable (MABA) and (ii) the market-wide volatility.

In addition, R&D expenditures also explain a nonnegligible part of the variation of the

aggregate idiosyncratic volatility.
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Since the asset growth measure is new to this literature, it’s interesting to perform a

similar comparison. As reported before (see, e.g., Table 4), the asset growth measure has

a very strong explanatory power in the time series. Therefore, I only need to compare

the asset growth with the existing variables that show significant explanatory power.

Specifically, I follow the results in Bekaert, Hodrick, and Zhang (2012), and compare the

asset growth measure with (i) the growth options variable (MABA), (ii) the volatility of

the market index (MKTTV), and (iii) two R&D expenditures related variables (one is the

value-weighted average R&D expenditures scaled by firms’ sales (RD), and the other is

the cross-sectional variance of RD (CVRD)).18

To compare the explanatory power of these alternative explanations of aggregate id-

iosyncratic volatility, I take two approaches. In the first approach, I run time series regres-

sions of the aggregate idiosyncratic volatility on each individual explanations and compare

the corresponding explanatory power in terms of R-square. In the second approach, I run

multiple regressions that include all these variables. In this case the R-square measures

the total contribution of the all variables. To gauge the relative importance of the var-

ious variables in explaining the variations in aggregate idiosyncratic volatility, I follow

Bekaert, Hodrick, and Zhang (2012) and decompose the covariance of the fitted volatility.

The covariance decomposition is intuitive and straightforward. Consider a multiple linear

regression of yt on explanatory variables xit, with i = 1, 2...n. Denote the fitted value and

the coefficients as ŷt and β̂i respectively. Then the contribution of variable xi on the fit-

ted variance is simply cov(ŷt, β̂ixit)/var(ŷt). These ratios add up to one by construction.

With this covariance decomposition, we can compare directly the explanatory power of

each explanations in multiple regressions.

Table 6 reports the results. I first compare the four explanations when each of them

is used to explain the average idiosyncratic volatility. Panel (a) shows that, consistent

18 Note that Bekaert, Hodrick, and Zhang (2012) also report three other variables (see
their Table 6) that are significant in terms of t-statistics, but they all have negligible ex-
planatory power in the time series (they only account for about 2% of variations in the
aggregate idiosyncratic volatility). Note also that the market wide volatility is the volatil-
ity of the value-weighted index concurrent to the idiosyncratic volatility. In unreported
analysis, I find that the lagged market volatility has a very small explanatory power once
the lagged idiosyncratic volatility or the lagged asset growth is controlled for.
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Table 6 Determinants of average idiosyncratic volatility: a horse race
The table reports the time series regressions of the value-weighted average idiosyncratic
volatility on different explanatory variables from 1963 to 2013. The regressions have the
following general form: IV olt = α+ βgAHMLgAt−1 + βxXt−1 + εt. The dependent vari-
able is the average idiosyncratic volatility (IV ol), which is calculated as the cross-sectional
average idiosyncratic volatility for each year. The aggregate asset growth measure, denot-
ed by HMLgA, is the difference in average asset growth rates between high-growth firms
and low-growth firms, with the breaking annual asset growth rate of 5%. The regression
may include the lagged average volatility (LagIVol) and other controlling variables (Xt−1).
MKTTV is the total variance of the value-weighted market index. MABA is the average
ratio of market assets to book assets. RD is the value-weighted average firm-level research
and development expenditures scaled by sales (in percentage), and the CVRD is the cor-
responding cross-sectional variance. Panel (a) reports univariate regressions. Panel (b)
performs the covariance decomposition and reports the variance explained by each vari-
able as a percentage of total explained variance. DW is the Durbin Watson statistic. The
t-statistics are calculated using Newey-West adjusted standard errors with a lag length of
2.

LagIVol HMLgA MABA MKTTV RD CVRD DW Adj. R2 (%)

(a) Individual explanations

(1)
Coeff. 0.525

2.01 57.50
t-stat (10.38)

(2)
Coeff. 0.047

1.13 39.84
t-stat (4.30)

(3)
Coeff. 1.176

0.53 50.94
t-stat (5.45)

(4)
Coeff. -3.594 0.012

0.50 20.58
t-stat (-1.24) (6.17)

(b) Multiple explanations with covariance decomposition

(5)
Coeff. 0.362 0.012 0.740 -5.064 0.004

1.16 85.91t-stat (5.76) (1.81) (2.75) (-5.24) (1.15)
Cov. decomp. 46% 12% 37% -4% 9%

(6)
Coeff. 0.159 0.299 0.011 0.714 -7.229 0.005

1.34 86.55t-stat (1.06) (4.07) (1.85) (2.86) (-3.23) (1.45)
Cov. decomp. 10% 38% 11% 35% -6% 12%

with earlier results, the asset growth measure (the asset growth dispersion HMLgA) has

the highest R-square (57.5%). Confirming the findings in Bekaert, Hodrick, and Zhang

(2012), the other two variables that show high explanatory power are market total variance

(MKTTV) and growth options measure (MABA), with R-square of 50.9% and 39.8%,

respectively. The two R&D measures (RD and CVRD) also have sizable explanatory power

with R-square of 20.6%.
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Panel (b) reports the multiple regressions with covariance decomposition. When all

explanations are included (regression (5)), they explain around 86% of the variations in

aggregate idiosyncratic volatility. In terms of t-statistics, both the asset growth, market

total volatility, and RD are significant. In the covariance decomposition, the asset growth

measure HMLgA accounts for 46% of the explained variance; the market volatility MK-

TTV accounts for 37%; the growth options measure MABA accounts for 12%; and the two

RD measures account for 5% in net. Finally, I also add the lagged idiosyncratic volatility,

LagIVol, in the full regression (6). The results are similar. In this case, the ordering of

the explanations in terms of covariance decomposition is HMLgA (38%), MKTTV (35%),

MABA (11%), LagIVol (10%), and RD measures (6%).

The results in Table 6 show that the asset growth measure is the winner of the time series

race. Compared with other significant alternative explanations, the asset growth measure

has the highest explanatory power in explaining the time series of average idiosyncratic

volatility.

5 Conclusion

This paper documents the empirical relationship between asset growth rate and stock

return volatility. In the cross-section, the idiosyncratic return volatility shows a V-shaped

relationship with asset growth rate. That is, stocks with either high positive or negative

asset growth rates have high idiosyncratic return volatility. In the time series, a higher

cross-sectional dispersion of the firm-level asset growth rate predicts a higher average

idiosyncratic return volatility.

This paper further documents the robustness of these empirical findings. First, the V-

shaped relationship in the cross-section is robust even after controlling for factors such

as size and cash flow volatility. Second, the asset growth effect on idiosyncratic return

volatility empirically dominates alternative explanations of idiosyncratic return volatility

such as cash flow and its volatility, growth options, and forecasted long-term earnings

growth. Finally, the asset growth measure is the most important predictor of the average

idiosyncratic return volatility in the time series.
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