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Abstract

We propose a tractable model of an informationally inefficient market. We show the equiv-

alence between our model and a substantially simpler model whereby investors face distortive

investment taxes depending both on their identity and the asset class. We use this equivalence

to assess existing approaches to inferring whether individual investors have informational ad-

vantages. We also develop a methodology of inferring the magnitude of the frictions (implicit

taxes) that impede financial trade. We illustrate the methodology by using data on cross-

country portfolio holdings and returns to quantify these frictions, and locate the directions in

which financial trade seems to be especially impeded. We argue that our measure of frictions

contains useful information for the sources of failure of frictionless models, and it helps in study-

ing whether certain factors (such as the size of the financial sector) are associated with lower

financial frictions.
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1. Introduction

There is abundant evidence suggesting that (many) financial portfolios are under-diversified. One

way to phrase this observation is to state that investors differ in their perception of value of many

assets, and therefore tilt their portfolios away from a fully-diversified market portfolio.

We propose a tractable model of one channel that can generate such heterogeneity, namely

asymmetric information. We show that such a model naturally creates a wedge in the valuation of

the same asset by different investors, akin to raising investor- and asset-class- specific taxes. More

broadly, treating financial frictions as equivalent to shadow taxes provides a simple, unified, and

flexible way to model their distortionary effects.

We use this tax equivalence of frictions for two applications, the first theoretical and second

empirical. First, we assess the value of the widely used “alpha” measures for inferring informational

frictions, and in particular the informational advantage of certain investors. We find that there is

no simple, one-to-one relation between informational advantage and alpha and discuss alternatives.

Second, using the broad equivalence between financial frictions and shadow tax rates, we develop

a methodology to infer these shadow tax rates jointly from observed portfolio allocations and

returns. We illustrate this methodology in the context of an example: we compute the matrix

of (implicit) shadow taxes necessary to explain cross-country portfolio allocations. These shadow

tax rates are expressed in economically meaningful units (percentage points of gross return) and

allow us to create a “map” of financial frictions, i.e., they allow us to locate directions of financial

trade that seem to be especially impeded. We analyze various factors that tend to correlate with

the magnitude of these frictions. We argue that they contain important information for many

applications, such as identifying sources of departure from frictionless models, determining the role

of the financial industry in reducing financial frictions, etc.

Specifically, we consider a model featuring different locations, with a fraction κ of investors in

every location being regular investors and the complement being “swindlers.” Regular investors

are endowed with common stocks that pay random location-dependent dividends at date one, while

each swindler owns a “fraudulent” stock that pays nothing. Investors obtain signals on the type

of a given stock (regular or fraudulent) in every location. Important, the quality of that signal

depends on both the investor’s and the firm’s location.

Swindlers have a strong incentive to trade so as to equalize the price of their stock with the
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prices of other stocks in their location. Moreover, the swindler can manipulate the earnings of

her company, which deters short selling. A pooling equilibrium emerges with all common and

fraudulent stocks in a given location trading at the same price. The failure rate f of an investor’s

signal to identify fraudulent stocks in a given location can be equivalently viewed as a tax rate

when investing in that location: A proportion f of the stocks identified by the investor’s signals

as regular pay nothing. Indeed, we prove an equivalence between our model and a much simpler

(Walrasian) economy where investors are faced with investor- and asset-specific capital taxation.

We utilize this simple framework for two purposes. First, we investigate the theoretical validity

of common approaches to measuring informational (dis)advantages. We show that when markets

are informationally inefficient, Jensen’s alpha may fail to identify informational advantage; passive

strategies may have alpha, and informed strategies may have negative alpha. We link these phe-

nomena to the heterogeneity of informational inefficiency across markets. The limitation of Jensen’s

alpha as a performance measure is not merely a side effect of the CAPM being misspecified. In an

informationally inefficient market it may be impossible to risk-adjust returns so that the intercept

(alpha) of the postulated-asset pricing model maps into an investor’s informational advantage. We

show that the “style” analysis approach (originally proposed by W. Sharpe, and commonly adopted

in practice), whereby the returns of an investment strategy are regressed on the returns of index

strategies that depend on the type of asset classes in which the investment manager invests, would

be a better alternative within our framework. However, style analysis requires a judicious choice

of relevant asset classes, which can be a nontrivial task.

Second we develop a methodology to extract the model-implied shadow tax rates from informa-

tion that is contained in both portfolio holdings and asset returns. We illustrate this methodology

by inferring the shadow tax rates that are consistent with the patterns of international portfolio

allocations and equilibrium returns in a cross section of OECD countries. We note that our theo-

retical model provides only one (informational frictions) of a number of possible ways to motivate

the empirical exercise. This motivation is useful to fix ideas, but not crucial. More broadly, the

implied shadow tax rates should be interpreted as a comprehensive measure of valuation discrepan-

cies, which encompass all impediments to financial trade, both explicit and implicit.1 The patterns

of these shadow tax rates paint a detailed picture of the direction and magnitude of frictions.

1Examples of actual impediments would be actual capital taxes, while examples of implicit impediments would
be portfolio constraints.
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We document several patterns in the shadow tax rates. A first and noticeable pattern is that the

majority of their variation is explained by destination-country fixed effects: Some countries seem

to present foreign investors with higher implicit tax rates than others, no matter the origin of the

investment. Origin-country fixed effects explain a smaller, but still non-trivial, amount of variation.

Measures that span the residual, bilateral variation (i.e., the variation not spanned by either origin-

or destination-country fixed effects) explain a very small part of the variation in implied tax rates.

Indeed, any non-directional, bilateral variable (i.e., any variable that doesn’t change value when

we switch the identity of origin and destination country, such as geographical distance, common

legal origin, common language or religion, etc.) is bound to not explain a substantial fraction of

the variation in shadow tax rates. We also find that import shares into country j from country

i have a positive but small correlation with our measured financial friction facing investors from

i when investing in j, suggesting that iceberg-cost-related frictions in the goods markets2 are not

the primary driver of our measured frictions.

Consistent with common wisdom, we find that high shadow tax rates plague mostly investments

directed towards less developed (economically and financially) economies. By contrast, shadow tax

rates are quite small for financial trade between more developed economies. These statements

follow both from an inspection of the data via a k-means cluster analysis (using estimated tax

rates as a measure of distance), as well as a regression analysis. Smaller frictions correlate with a

higher GDP per capita and a larger financial industry as a fraction of GDP. This suggests that the

financial sector performs a useful function either because it helps lower frictions, or because it is a

useful input for countries that have inherently lower frictions and need to process the flows from

their increased appeal as investment destinations.

By performing several counterfactual exercises, we illustrate that our results are not merely

driven by cross-sectional differences in home bias. The implication of this finding is that simply

focusing on patterns of home bias may not be enough if one is to obtain an explanation of the

frictions that impede financial trade.

In summary, this paper develops a new methodology to measure impediments to financial trade.

Taking the view that financial frictions act as shadow taxes (a view consistent with, but not confined

to, an asymmetric-information motivation), we utilize data on cross-country portfolios to obtain

2See, e.g., Obstfeld and Rogoff (2001) or Dumas and Uppal (2001).
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and study patterns in implicit tax rates. These tax rates can be useful for a host of applications,

such as providing guidance for the sources of frictions that seem most promising in explaining

the data, quantifying the importance of some factors (such as the size of the financial industry)

in reducing shadow tax rates, providing benchmarks for models that generate valuation wedges

across different investors, etc. Additionally, and importantly, our measure of frictions is expressed

in economically meaningful units and is easily interpretable.

1.1. Literature Review

The paper is related to various strands of the literature. At the theoretical level, the most closely

related literature is that on multi-asset REE that focuses on explaining portfolio biases as due to

asymmetric information.3 A limitation of the asymmetric information literature is that investors

tend to invest more heavily locally, but only if their superior local signal is positive. By contrast,

in the data investors tend to have permanently higher allocations to their local asset. Our model

is a hybrid of a rational expectations equilibrium and a standard adverse-selection model, which

generates the constantly higher allocation to local stocks.4 Perhaps the main innovation relative to

the literature, however, is that we obtain a particularly tractable multi-asset model, which can be

analyzed as simply as an elementary model with differential tax rates. We exploit this simplicity to

obtain implications for the measurement of informational advantages and frictions that we believe

to be new in the literature. In particular, our critique of “alpha” as a measure of informational

advantage is quite distinct from existing criticisms of that measure in the literature.5

The idea of adding to the canonical model frictions that drive wedges in the valuation of different

investors dates back to the origins of modern international finance — at least as far as Black (1974)

and Stulz (1981). Cooper and Kaplanis (1986) noticed an identification problem in inferring implied

3Representative examples include Admati (1985), Gehrig (1993), and Brennan and Cao (1997). Relatedly,
Van Nieuwerburgh and Veldkamp (2010) propose an approach relying on rational inattention.

4Hatchondo (2008) is closer to the setup of the current model. An important difference to his model is that we
do not rely on noise trading, assuming instead the existence of strategic “swindlers.” Furthermore, we can obtain
the no-shorting outcome endogenously, although in the main body of the paper we impose short selling restrictions
directly for simplicity.

5To give an example, our criticism of “alpha” as a measure of performance relies on the different pricing of stocks
in the presence of heterogeneous extents of asymmetric information in general equilibrium, and the inexistence of
an asset pricing model capable to price even the “passive” strategies. Hence our argument is quite distinct from
earlier criticisms, which emphasized the difficulties in using an uninformed investor’s information set to evaluate the
ex-post performance of an ex-ante efficient portfolio. (See, e.g., Admati and Ross (1985), Dybvig and Ross (1985),
and Mayers and Rice (1979) amongst many others). For instance, in the latter two papers SML analysis is valid if
all information is security-specific, unlike in our framework.
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frictions from observed portfolio holdings. Specifically, the requirement that portfolios add up to

one, along with the market clearing conditions, make the mapping from portfolios to frictions non-

unique. This identification problem does not arise in our setup for two reasons. First, we assume

the presence of (country-specific) risk-free assets that can be traded without frictions. Second, our

tax-equivalence result implies taxes that are distortionary, but redistributive (from regular investors

to swindlers), unlike the iceberg costs in the literature.6

Finally, the paper is related to the various strands of empirical literature that analyze cross-

country equity allocations.7 Our main departure from this literature is methodological. For in-

stance, it is common to regress portfolio allocations on various bilateral measures. However, portfo-

lios alone are not sufficient to provide a picture of the underlying frictions (i.e., valuation wedges),

which are the ultimate object of interest. We combine the information contained in the moments of

asset returns, portfolios, and market capitalizations, along with optimality and general equilibrium

conditions, to obtain a comprehensive measure of deviations from a frictionless benchmark.8

The paper is remotely related to the voluminous literatures on the home bias and the benefits

of international diversification. We do not attempt to summarize either of these strands of the

literature here.9 The modern literature on home bias typically starts with primitive assumptions

on endowments, information, etc., and then derives implications for such quantities as equilibrium

portfolios, return correlations, exchange rate correlations, and expected returns. Multi-country

setups are not easily computable except in very special cases;10 more importantly, the goal of such

models is to assess the quantitative power of one particular mechanism, without aspiring to match

all conceivable moments in the data. The spirit of the exercise in this paper is different: rather than

write elaborate models, we propose to revisit an (intentionally) basic, well-understood model, which

6In a related vein, Sharpe (1974) proposes to use holdings information to impute perceived expected returns.
The idea in this paper is similar in some ways, in that the implied taxes essentially present different investors with
different investment-opportunity sets. However, an aspect of our analysis is the joint usage of first order optimality
conditions and general equilibrium conditions to infer frictions.

7This literature is quite large and we do not attempt to provide a full summary here. Indicatively we mention
Faruqee et al. (2004), Portes and Rey (2005), Lane and Milesi-Ferretti (2005), Aviat and Coeurdacier (2007), Berkel
(2007), Daude and Fratzscher (2008), and Bekaert and Wang (2009) among many others. A common theme in this
literature is to estimate “gravity” equations for equity flows. Okawa and van Wincoop (2012) contains a thorough
treatment of the theory of gravity equations in international finance and its limitations.

8Koijen and Yogo (2014) use institutional portfolio holdings to estimate an equilibrium demand system and the
price impact of institutional investors. However, they parametrize directly the demands (through a logit specification)
whereas we impute wedges from first order optimality conditions.

9See, e.g., Coeurdacier and Rey (2013) for a recent survey.
10See, e.g. Pavlova and Rigobon (2008) for a particularly tractable framework
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we enrich with a very flexible structure of frictions. Subsequently we infer the frictions that can

re-produce the observed allocations in the data. Such an approach has the advantage of providing,

in economically rather than statistically meaningful units, measures of the strength of the sources

of success or failure of the basic economic model. Our paper belongs to a growing body of research

that performs similar exercises in other contexts.11

The paper is also remotely related to the literature that assesses the benefits of international

diversification (typically in a partial rather than general equilibrium framework). In contrast to

that literature, we do not provide estimates of the benefits of diversification for — say — a US

investor. Instead we try to develop an entire geography of the severity of bilateral impediments to

financial trade. We therefore provide a complement to this literature, by localizing and quantifying

the financial frictions.

2. Model

2.1. Locations, preferences, and firm and investor types

Time is discrete and there are two dates, t = 0 and t = 1. All trading takes place at time t = 0,

while at t = 1 all payments are made and contracts are settled. There is a set L of locations, and

each investor is located in one location in the set L. There is a continuum of investors in each

location and we index a representative investor in a given location by i ∈ L. Investors maximize

expected utility of period-1 wealth, E [U (W )] , for some increasing and concave U .

Investors’ time-zero endowments consist of shares in firms that are domiciled in their location.

Investors in every location i are of two types, common investors and swindlers, while firms are of

two types, regular and fraudulent. The number of shares in each firm is normalized to one, as are

the measures of investors and firms at each location.

Common investors in location i are a fraction κ ∈ (0, 1) of the population in that location.

They are identically endowed with an equal-weighted portfolio of all regular firms in location i. All

regular firms in location i produce the same random output Di, and pay it out as a dividend. The

total measure of regular firms is κ in each location.

Swindlers are a fraction 1−κ of the population in each location. Each swindler is endowed with

11See, e.g., the “growth accounting” framework of Chari et al. (2007), or the voluminous international trade
literature, which we do not attempt to summarize here, on the identification of trade-friction parameters.

6



the share of one fraudulent firm. Fraudulent firms produce no output or dividend (Di = 0).

For every firm in every location, there is a market for shares where any investor can submit

a demand. Moreover, there exists a market for a riskless bond, available in zero net supply. The

interest rate is denoted by r.

2.2. Signals

Each investor obtains a signal of the type — regular or fraudulent — of every firm in every location.

The precision of these signals depends on the locations of the investor and the firm.

Specifically, investors in every location i obtain a signal ιijk ∈ {0, 1} about every firm k in location

j. (All investors in i obtain the same signal about any given firm.) This signal characterizes the firm

as either regular (ιijk = 1) or fraudulent (ιijk = 0). The signal is imperfect. It correctly identifies

every regular firm as such. However, it fails to identify all fraudulent firms: it correctly identifies a

fraudulent with probability πij and misclassifies it as regular with probability 1− πij . We assume

πii = 1, so that investors are fully informed about their local markets.

Given this setup, Bayes’ rule implies that the probability that a firm in location j is fraudulent

given that investor i’s signal identifies it as regular is given by

fij ≡
(1− πij)(1− κ)

κ+ (1− πij)(1− κ)
. (1)

The law of large numbers implies then that fij can also be interpreted as the fraction of fraud-

ulent firms among all firms in location j identified by the signal of investor i as regular.

2.3. Budget constraints

Letting Bci denote the amount that a common investor in location i invests in riskless bonds and

dXci
jk a bivariate signed measure capturing the number of shares of firm k in location j that she

buys, the time-one wealth of a common investor located in i is given by

W ci
1 ≡ Bci (1 + r) +

∫
j∈L

∫
k∈[0,1]

DjkdX
ci
jk. (2)

The first term on the right-hand side of (2) is the amount that the investor receives from her bond

position in period 1, while the second term captures the portfolio-weighted dividends of all the
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firms that the investor holds. The time-zero budget constraint of a common investor in location i

is given by

Bci +

∫
j∈L

∫
k∈[0,1]

PjkdX
ci
jk =

1

κ

∫
k∈[0,1]

Pi,kρ(i,k)dk, (3)

where ρ(i,k) is an indicator function taking the value one if the firm k in location i is a regular firm

and zero otherwise, and Pjk refers to the price of security k in location j. The left-hand side of (3)

corresponds to the sum of the investor’s bond and risky-security spending, while the right-hand side

reflects the value of the (equal-weighted) portfolio of regular firms the investor is endowed with.

The budget constraint of a swindler owning firm l in location i is similar to (3), except that the

value of the agent’s endowment is given by Pil:

Bsil +

∫
j∈L

∫
k∈[0,1]

PjkdX
sil
jk = Pil. (4)

Note that, as before, the notation allows investors’ portfolios to have atoms, which is further

useful here because, in equilibrium, swindlers optimally hold a non-infinitesimal quantity of shares

of their own firms. We denote the post-trade number of shares of fraudulent firm l in location i

retained by the original owner by Sil = dXsil
il .

Finally, the time-1 wealth of a swindler is

W sil
1 ≡ Bsil +

∫
j∈L

∫
k∈[0,1]

DjkdX
sil
jk . (5)

2.4. Optimization problem

Common investors are price-takers. Taking a set of prices for risky assets as given for all firms in

all locations and an interest rate, a common investor maximizes

max
Bci,dXci

jk

E
[
U(W ci

1 )|Fi, Pjk, r
]

(6)

subject to (3) and a short-selling constraint: dXci
jk ≥ 0. We note that even though we impose

the short-selling restriction exogenously in the body of the text, we relax this assumption in the

appendix. Specifically, we show that our results are identical when we allow short sales, but

extend the setup to allow costly earnings manipulation by the swindler, which acts as an (out-of-

equilibrium) deterrence mechanism to potential short sellers of fraudulent firms. We relegate the

details to appendix A, and for the rest of the paper we simply exclude short sales.
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The investor conditions on her own information set Fi (i.e., on her signals about every security),

as well as on the prices of all securities in all markets.

The problem of the swindler is similar to the one of the common investor with the exception

that the swindler takes into account the impact of her trading on the price of her stock.12 Similar

to a common investor, the swindler who owns firm l in location i solves

max
Bsil,dXsil

jk

E
[
U(W sil

1 )|Fil, Pjk, r
]

(7)

subject to the budget constraint (4) and dXsil
jk ≥ 0.

2.5. Equilibrium

An equilibrium is an interest rate r and a collection of prices Pi,k for all risky assets, asset demands

and bond holdings expressed by all investors in all locations, such that: 1) Markets for all secu-

rities clear: κ
∫
i∈L dX

ci
jk + (1− κ)

∫
i∈L dX

sil
jk = 1 for all (j, k); 2) Risky-asset and bond holdings,{

Xci
jk, B

ci
}

, are optimal for regular investors in all locations given prices and the investors’ expec-

tations; 3) Bond holdings Bsil and asset holdings for all securities Xsil
jk (including a swindler’s own

holdings of her own firm Sil) are optimal for swindlers given their expectations; 4) All investors

update their beliefs about the type of stock k in location j by using all available information to

them — prices, interest rate, and private signals — and Bayes’ rule, whenever possible.

Our equilibrium concept contains elements of both a rational expectations equilibrium and a

Bayes-Nash equilibrium. All investors make rational inferences about the type of each security

based on their signals, the equilibrium prices, and the interest rate, by using Bayes’ rule and taking

the optimal actions of all other investors (regular and swindlers) in all locations as given. The

continuum of regular investors are price takers in all markets.

Swindlers, however, are endowed with the shares of a fraudulent company and take into account

the impact of their trades on the share price. In formulating a demand for their security, swindlers

have to consider how different prices might affect the perceptions of other investors about the type of

their security. As is standard, Bayes’ rule disciplines investors’ beliefs only for demand realizations

that are observed in equilibrium. As is usual in a Bayes-Nash equilibrium, there is freedom in

specifying how out-of-equilibrium prices affect investor posterior distributions of security types.

12In the extension presented in Appendix A, the swindler also has the ability to manipulate the dividends of her
fraudulent stock.
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We note that the distinction between regular investors who are price takers and swindlers who

are strategic about the impact of their actions on the price of their firm is helpful for expediting

the presentation of results, but not crucial. In Appendix A we show that our equilibrium obtains

in the limit (as the number of traders approaches infinity) of a sequence of economies with finite

numbers of traders — both regular and swindlers — who are strategic about their price impact, as

in Kyle (1989).

By Walras’ law, we need to normalize the price in one market. Since we abstract from con-

sumption at time zero for parsimony, we normalize the price of the bond to be unity (r = 0).

2.6. Tax equivalence

While our economy is seemingly complex, its equilibrium outcomes coincide with those of a much

simpler Walrasian economy featuring bilateral taxes. The intuition behind this result is quite

straightforward: Agents optimally invest in all assets for which they have positive signals and in

no others (the only exception is the swindler investing in her firm), but the signal is imperfect.

The failure rate of the signal translates into a lower payoff relative to that obtained by a perfectly

informed investor; the proportional loss can be thought of as a tax rate, depending on the identities

of both the investor and the market. In addition, swindlers have strict incentives to invest in

their own firms so as to render them indistinguishable from regular firms, which ensures a pooling

equilibrium that justifies the behavior of the other investors. We record this result formally:

Proposition 1 There exists an equilibrium of the original economy in which the prices of all

assets in each location are equal. Furthermore, the prices Pj and positions dXi
j ≡

∫
k dX

i
jk taken

by investors located in market i when investing in market j, excluding swindlers’ positions in their

own firms, are given as a solution to the problem:13

dXi
j ∈ arg max

dXj≥0
EU

(∫
j∈L

((1− fij)Dj − Pj) dXj +Pi

)
(8)

κ =

∫
i∈L

(1− fij)dXi
j . (9)

Equation (8) formalizes the decision problem of an investor facing taxes fij , as explained above.

Equation (9) is the market clearing equation. The left-hand side, κ, is due to the fact that only

13In the interest of concision, we plugged in the investor’s budget constraint in the objective.
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κ of the firms are regular. We also note that the right-hand side depends on the “tax rates”; the

reason is that a proportion fij of the investment dXi
j is made into fraudulent firms, leaving only

the remainder to purchase the share of regular firms.14

Proposition 1 makes the description of an equilibrium relatively easy, as we illustrate in the fol-

lowing section. In addition, it provides us with an intuitive language to describe the degree to which

any investor is at a disadvantage when investing in any given market. We make considerable use

of this concept in our empirical section, where the primary goal is to quantify these disadvantages

— indeed, construed as taxes.

3. Informationally Inefficient Markets: Implications

In this section we exploit the equivalence formalized in Proposition 1 between informational frictions

and taxes to obtain a number of theoretical implications. We first describe the solution to the model,

but the main question we address is methodological: We investigate whether existing approaches

that compare the returns obtained by an investor to those of certain passive (index) investment

strategies identify correctly the investor’s informational advantage. Both for simplicity and in

order to compare our results to the Sharpe-Lintner-Mossin CAPM, in this section we assume that

the dividends Dj are jointly normal (so that in the absence of frictions the CAPM would hold).

Moreover, to obtain closed-form solutions for equilibrium prices, we also assume that investors have

CARA utilities, U(W ) = −e−γW . Even though we make these assumptions to ease the exposition

in the text, the lemmas obtain irrespective of these two assumptions.

3.1. Equilibrium prices

We start from the optimality condition of an investor in location i faced with problem (8). We

let λij ≥ 0 denote the Lagrange multiplier associated with dXi
j ≥ 0, and pij := 1 − fij be the

effective payoff to investing in assets of location j.15 We also assume that
∫
k∈L dk = 1. Given the

14We note that in a pooling equilibrium the swindler submits an elastic demand for her own firm, i.e., absorbs the
residual demand for her own firm at the price Pj , so that the market for fraudulent firms clears by construction.

15Note that pij is the probability that security j is regular given that the signal of investor i identifies it as such.
Clearly, pij ≥ κ.
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CARA-normal setup, the first-order condition is

γcov

(
pijDj ,

∫
k∈L

pikDkdX
i
k

)
= pij − Pj + λij . (10)

Dividing this equation by pij and summing over all agents i yields

γcov (Dj , κD
a) = 1− Pj

∫
i∈L

p−1
ij di+

∫
i∈L

p−1
ij λijdi, (11)

where we introduced the notation Da for the aggregate dividend Da =
∫
j∈LDj . We note that,

by (9) and Fubini’s theorem,

∫
i∈L

∫
k∈L

pikDkdX
i
k =

∫
k∈L

Dk

∫
i∈L

pikdX
i
k = κDa. (12)

The price Pj is consequently expressed as

Pj =

(∫
i∈L

p−1
ij

)−1

×
(

1− γcov (Dj , κD
a) +

∫
i∈L

λijp
−1
ij di

)
(13)

=

(∫
i∈L

pij

)
×
(

1− γcov (Dj , κD
a) +

∫
i∈L

λijp
−1
ij di

)
×

(∫
i∈L p

−1
ij

)−1(∫
i∈L pij

) ,

which provides a natural formula. The first term captures the average post-tax payoff to investors,

the second the risk adjustment and the effect of the shorting constraint, while the third measures

dispersion in pij across agents. A larger dispersion, i.e., a lower value of the third term, translates

into a lower price as the effective price per unit of mean dividend paid by investor i, namely Pj/pij

is convex in pij , and thus agents with low pij have a stronger weakening effect on the price than

agents with high pij have in the opposite direction. Clearly, due to possible differences in the

average and dispersion of pij , different asset classes may be priced differently even when containing

the same amount of aggregate risk and being held in positive amounts by all agents (λij = 0).

3.2. Alpha does not measure skill

A common approach to measuring the skill (i.e., the informational advantage) of a fund manager

is to regress her historical returns on an asset pricing model (such as the Sharpe-Lintner-Mossin

CAPM) or more generally some model of the stochastic discount factor. It is then quite common
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to interpret the intercept (alpha) of such a regression as a measure of the manager’s skill, after

“having controlled for risk.”

We show that, in an informationally inefficient market, even passive index strategies have alphas

(either negative or positive), while informed investors may come across as having negative alpha.

This shows that alphas are only an indication of model misspecification; the sign and size of alphas,

however, do not generally map into a meaningful measure of skill. As we show shortly, when an

asset pricing model fails due to the fact that different investors face essentially different returns

within the same asset class, a conceptually more appropriate measure of informational advantage is

a measure proposed by W. Sharpe and known as “style alpha” (we provide a formal description of

this concept shortly). This measure does not employ a universal model of risk adjustment. Rather,

it measures an investor’s performance relative to the returns of the asset classes she invests in.

Since in our model the CAPM would hold in the absence of informational frictions, we start

by computing the CAPM alpha of a passive index strategy in location j. From the perspective of

an econometrician,16 the return of an index strategy (i.e., an uninformed strategy, which utilizes

no private signals) investing in location j is given by Mj =
κDj
Pj

which has expected return κ
Pj
.

Similarly, the return on an index replicating the market portfolio is M = κDa∫
k∈L Pkdk

. Using these

observations, and recalling that the interest rate is normalized to zero, the alpha of buying the

index in location j is given by

αj =
κ

Pj
− 1−

cov
(
κDj
Pj
,
(∫
k∈L Pkdk

)−1
κDa

)
(∫
k∈L Pkdk

)−2
κ2σ2

a

(
κ∫

k∈L Pkdk
− 1

)

=

(
βDj

∫
k∈L Pkdk

Pj
− 1

)
+

κ

Pj

(
1− βDj

)
, (14)

where βDj is the “cash-flow beta”

βDj =
cov(Dj , D

a)

var(Da)
. (15)

In the special case in which there is no asymmetric information (pij = κ) equations (13) and

(14) imply the usual CAPM relation (αj = 0).17 However, in general αj 6= 0, even for passive

16Note that we are studying the original, asymmetric-information economy, using the simplification provided by
the tax economy for the computation of prices.

17To see this, notice that equation (13) implies that Pj = κ − γκ2βDj σ
2
a. Then it follows from (14) that α =
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strategies. To see this in the simplest possible case, consider a world with βDj = 1 for all j.

Accordingly, αj =
(∫

k∈L Pkdk

Pj
− 1
)

. In addition, equation (13) implies that some asset classes may

still exhibit lower (or higher) than average prices, despite all assets having the same exposure to

aggregate risk. For instance, lower overall quality of information in asset class j (low values of pij

compared to other asset classes) will translate into a lower than average price for that class; since

αj =
(∫

k∈L Pkdk

Pj
− 1
)

even an index investment in such a class will have positive alpha.18

If uninformed (passive) strategies command alphas, then alphas cannot be an accurate measure

of an investor’s skill. Indeed, continuing with the assumption that βDj = 1 for all j, the alpha

resulting from a regression of the return that investor i obtains (when investing in location j) on

the return of the market portfolio is given by

αij =
pij
κ

∫
k∈L Pkdk

Pj
− 1. (16)

Hence, even an investor who has an informational advantage pij > κ might exhibit a negative

alpha when that informational advantage happens to be in an asset class that is comparatively

more expensive than the average asset class, i.e.,
∫
k∈L Pkdk < Pj .

The fact that alpha does not measure skill is not simply a restatement of E. Fama’s “joint hy-

pothesis problem”. Fama observed that positive alpha could either mean rejection of informational

efficiency or rejection of the asset pricing model. We address a different issue: Taking as given the

presence of informational inefficiency, we ask whether the resulting alphas map into a meaningful

measure of skill. We obtain a negative answer.

Relatedly, we would like to remark that the failure of the CAPM is not a result of mis-specifying

the model. Rather, the equilibrium outcome of binding shorting constraints — due to agents’ dif-

ferential information even conditional on prices — leads to a violation of the law of one price,

and thus implies that no stochastic discount factor exists from the perspective of an uninformed

investor. To make a formal statement, we introduce a derivative security, in zero net supply, that(
βDj

κ−γκ2σ2
a

Pj
− 1
)

+ κ
Pj

(
1 − βDj

)
=

κ−γκ2βD
j σ

2
a

Pj
− 1 = 0.

18An additional, less interesting observation is that mispricing is not related to the amount of risk. Consider for
instance the case pij = p. All indexes, including the market, earn negative excess returns κ − p (compared to an
informed strategy) before the risk adjustments, but a high βDj index is benchmarked against a leveraged market
index, thus one with even higher negative returns, and therefore has positive alpha. Conversely, low βDj is associated
with negative alpha. We shut down this channel by assuming βDk = 1 for all k.
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pays the aggregate dividend κDa, and denote by P a its price.19 Adjusting the budget constraints

accordingly, and thus the second argument to the covariance operator on left-hand side of equa-

tion (10), equations (10) and (11) continue to hold, possibly with different Lagrange multipliers.

Equations (14) and (16) do not depend on the existence of this derivative security.

Lemma 2 Suppose that a stochastic discount factor ξ exists such that

Pj = E [ξκDj ] .

Then ξ does not price the aggregate-dividend security:

P a <

∫
j
Pjdj = E[ξκDa]. (17)

As is well known (see, for instance, Cochrane (2005)) the existence of a stochastic discount factor

is equivalent to a beta representation for returns (with one factor). There consequently exists no

such representation, i.e., no factor model that yields zero alphas.

3.3. Style alphas

An alternative and quite popular approach, routinely used in practice to infer skill, is the so-called

style analysis, proposed by Sharpe (1992). According to this approach, the return of each manager

is regressed on the passive returns of all possible asset classes. Moreover, to interpret the betas

as portfolio weights, one additionally requires that the sum of the betas on the passive strategies

add up to one (and are restricted to be positive). In our economy, style analysis would correctly

identify investors who possess superior information, as shown by the following lemma.

Lemma 3 Let dwij =
PjdX

i
j∫

j∈L PjdX
i
j

be the risky-portfolio weight of the investment in location j by

an investor in location i. Consider the style regression of the gross return obtained on her risky

portfolio by an investor in location i. The constant αsi in this regression is a positive multiple of

the portfolio-weighted informational advantage of investor i across all market in which she invests:

αsi = ν

∫
j∈L

(
pij
κ
− 1

)
dwij . (18)

19We note that, in the absence of aggregate risk, such a security already exists in our model: the risk-free security.
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The multiplicative constant ν does not depend on the agent i.

Of course, despite its theoretical appeal, a well-understood limitation of style analysis is that,

with a short sample of data, one may be restricted in the number of asset classes to include in the

regression.

3.4. Active asset management and indexing

Leaving aside issues of risk adjustment, return comparisons between passive and active strategies

(even within the same asset class) can yield surprising conclusions in a world where the degree of

asymmetric information is random.

A common observation in financial markets is that active asset managers underperform index

investing after fees. In this section we show that when markets are informationally inefficient,

comparing the average returns of active and indexing strategies in the same asset class may not be

an appropriate measure of the relative attractiveness of the two strategies from the perspective of

an investor.

Specifically, we consider the following modification of the setup. We assume that κ is not known

to investors, but instead is drawn from a distribution F (κ) independently of other uncertainty.

Furthermore, we assume that investors in all locations have a choice. Investors in location i can

either pay a cost to obtain the signals {ιijk}k, or invest without any information. If the investors

choose to get informed, they pay ϕijDj , at time 1, for every share purchased in market j, and

obtain the return
pijDj
Pj

in that market.20 If uninformed, they obtain
κDj
Pj

. The following obtains.

Lemma 4 Suppose that agent i must pay ϕijDj (at time 1) per share in market j to invest based

on the signals ιij·. Then for any {pij}i,j there exist (an open set of) values of ϕij and distributions

F for κ such that investors choose to pay the proportional costs ϕij and get informed rather than

invest passively (not knowing κ), while the expected return of a passive strategy exceeds that of an

active strategy:

E (κ)

Pj
>

∫
k∈L (pik − ϕik) dXi

k∫
k∈L PkdX

i
k

for all i, j ∈ L. (19)

20The assumption that the observation costs are incurred at time 1 (rather than time 0) is convenient for the proof,
but not essential for the economics of the result.
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The result is intuitive. The cost ϕij reduces the average payoff from investing in market j, but

also eliminates the risk introduced by the randomness of κ, since equilibrium prices, and therefore

informed returns, do not depend on κ. Risk-averse investors are willing to pay a premium to avoid

that risk.

To summarize, if the market is subject to time-varying asymmetric information, then the average

return differential between active and passive strategies may be negative, even though every investor

chooses to invest actively. From the perspective of an investor, active investing offers insurance

against fluctuations in asymmetric information. This insurance makes the investor willing to accept

a lower average return when investing actively.21

4. Empirical Specification and Data

The previous section highlights some limitations of relying exclusively on return differentials to infer

financial frictions. In this section we explore the idea of using the information in both returns and

observed portfolio choices to infer the shadow tax rates (i.e., the differences in marginal valuations

of the same asset by different investors). To illustrate our proposed method, we apply it to interna-

tional data. As a result, for the remainder of this section, an investor i refers to the representative

investor of country i and the asset class j refers to country j′s assets. To facilitate empirical analysis

and comparisons with the literature we make the same assumptions as the Sharpe-Lintner-Mossin

CAPM, (i.e., we assume that all returns are jointly normal or that investors have mean-variance

preferences). We extend this basic framework to allow for frictions and different currencies.

Specifically, we start by assuming that — in the absence of frictions and multiple currencies —

the representative investor’s i optimal portfolio would be given by the familiar Markowitz portfolio

wi =
1

γ
Ω−1 (µ−ReN×1) , (20)

where wi is a vector of portfolio holdings for investor i, γ is the (relative) risk aversion (assumed

common across investors), µ is a set of expected gross returns, Ω is the covariance matrix of returns,

R is the gross rate of interest and eN×1 is an N ×1 vector of ones, with N the number of countries.

We depart from conventional mean-variance analysis by allowing investors in different countries

to differ with respect to their information sets. Our earlier finding is that such informational

21See, e.g., Moskowitz (2000), Sun et al. (2009), and Glode (2011) who find evidence of active funds outperformance
in “down” markets.

17



differences act as taxes, which change equation (20) to

wi =
1

γ
P̂i
−1Ω−1P̂i

−1
(
P̂iµ−RQieN×1

)
, (21)

where the matrix P̂i = diag(pi1, .., piN ) is a diagonal N ×N matrix capturing the after-tax gross

return of investor i in country j and Qi ≡
(
IN×N − 1

Rdiag (li1, ...liN )
)

with IN×N being the N ×N

identity matrix and diag (li1, ...liN ) denoting a diagonal matrix containing the Lagrange multipliers

associated with the short-sale constraint wij ≥ 0 for all j.

We allow the constant κ of our previous analysis (i.e., the shadow tax rate associated with

passive, uninformed strategies) to vary by location, and let K = diag (κ1, .., κN ) denote the corre-

sponding diagonal matrix. We obtain the following result.

Lemma 5 Let Σ ≡ KΩK denote the covariance matrix of passive, index returns and similarly let

µo = Kµ denote the vector of expected index returns. Then, with Πi ≡ KP̂−1
i Qi,

Π−1
i wi =

1

γ
Σ−1 (µo −RΠieN×1) . (22)

Equation (22) is cental for our purposes. It relates quantities that one can observe in principle

(expected returns of index strategies, covariances of index strategies, and country portfolios) to the

unobserved diagonal matrix Πi, whose typical diagonal element is πij = κj

(
1− lij

R

)
/(1− fij). In

words, πij captures the ratio of the gross return obtained by a passive strategy in country j relative

to the shadow after-tax return obtained by the representative investor from country i investing in

country j.

There are three practical issues that arise when using equation (22) for identifying Πi. First,

not all countries have the same currency. Second, the expected returns µo are notoriously hard to

estimate from limited time series of data, and — more importantly — equation (22) ignores the

restrictions posed on µo by market clearing. Third, the measurement of cross-country portfolios is

very likely subject to measurement error as well, which could also impact the recovery of Πi.

To address the first problem in the most straightforward way, we simply follow the literature on

the international CAPM. Specifically, we drop the assumption of one currency and instead assume

that there are L+ 1 ≤ N currencies in the world, where L+ 1 is the reference country’s currency

— the US dollar for our empirical analysis. L + 1 is allowed to be smaller than N to allow for

currency unions. We assume that there is no informational advantages/distortions when investing

in currencies.
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Allowing for foreign-country denominated bonds starts with enlarging the variance-covariance

matrix to include the dollar-denominated returns from investing in foreign-currency denominated

bonds. Specifically, we assume that the vector of expected returns is now given by µ =
(
µS , µf

)′
,

where µS is the vector of dollar-denominated stock returns and µf is the vector of dollar-denominated

returns from investing in foreign bonds. Similarly, the covariance matrix of (passive-strategy) re-

turns is now given by

Σ =

 ΣS ΣSf

Σ′Sf Σf

 ,
where ΣS captures the variance-covariance matrix of index investments in stocks, ΣSf is the covari-

ance matrix of returns between stocks and bonds, and Σf is the variance-covariance matrix from

investing in foreign-currency denominated bonds.

Replicating standard arguments of the international CAPM, the presence of random exchange

rates modifies equation (22) to22

Π−1
i wi =

1

γ
Σ−1
S|f

(
µS,f −RΠieN×1

)
(23)

where wi is once again the stock portfolio, but the covariance matrix is now given by ΣS|f ≡

ΣS − β′Σfβ with β′ ≡ ΣSfΣ−1
f , and the expected return vector is µS,f = µS − β′

(
µf −ReL×1

)
.

(Throughout we assume that ΣS and Σf are invertible.)

The “multiple-currencies” equation (23) is essentially identical to the “single-currency” equation

(22), except that stock returns should be understood as “currency-hedged”, i.e., as the residuals

from regressions of dollar-denominated stock returns on the (dollar denominated) returns of all

foreign bonds. We note that our approach to dealing with multiple currencies could be extended to

allow for different consumption baskets (see, e.g., Adler and Dumas (1983) or Cooper and Kaplanis

(1994)). We prefer to keep the currency-aspects of the model as simple as possible for simplicity;

however, when we present our empirical results, we revisit this issue and include controls to account

for possible hedging effects arising from different consumption baskets.

Next we address the second problem, by imposing market clearing conditions, deriving the

vector µ =
(
µS , µf

)
, and then providing an expression for Πi, i = 1, . . . , N. The next lemma

provides an intermediate step.

22See Sercu (1980) and the proof of Lemma 6.
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Lemma 6 Let Π denote an N ×N matrix whose N columns contain the N diagonal elements of

the matrices Πi, i ∈ {1, . . . , N}. Similarly, let W denote a matrix whose columns are given by the

(stock) portfolios wi. Let η denote the vector of the the wealth weights (as a fraction of aggregate

world-wealth) of each country, and similarly let m denote a vector of the market capitalization of

the stock market of each country (as a fraction of aggregate stock market capitalization).

Then, up to terms of second or higher order in ‖Π− 1‖, we have23

vec (W ) = Avec (Π) , (24)

where

A ≡ IN×N ⊗ diag (m) +
R

γ

((
eN×1η

′ − IN×N
)
⊗ Σ−1

S|f

)
. (25)

The vector of equilibrium expected returns is given by

µS −ReN×1 = γΣS|fm+R (Π diag(η)− IN×N ) eN×1 + β′
(
µf −ReL×1

)
, (26)

where

µf −ReL×1 = γΣ′Sfm+ (1− γ) Σf η̂, (27)

and η̂ is a vector whose typical element j is the wealth weight of investors who use currency j as

their reference currency.

Equation (24) provides an explicit relation between the portfolio weights W and the matrix of

frictions Π. The matrix A, which controls the correspondence from frictions to portfolios, has two

terms: The first term reflects market capitalization weights. Indeed, when vec (Π) = eN2×1, then

only the first term survives, in the sense that vec (W ) = eN×1 ⊗m. Alternatively phrased, when

there are no frictions, then all countries should hold the world market portfolio — a well-known

implication of the CAPM. The second term of (25) reflects the magnitude of equilibrium portfolio

deviations from the CAPM. These deviations depend on risk aversion, the interest rate, the wealth

weight of different countries, and most importantly the covariance properties of the returns of

different countries — all quantities that influence the tradeoff between diversification and tilting

one’s portfolio to locations where the investor faces lower taxes. Importantly, expected returns on

stocks and foreign-denominated bonds do not enter the matrix A.

23As part of our empirical exercise, we also computed the terms Π exactly using a numerical procedure. Because
the values of Π−1 are within a few basis points of zero, the exact and approximate solutions are essentially the same.
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We conclude by addressing the third practical problem in recovering Π, namely the presence of

measurement error. We start by noting that in the absence of measurement error in W , equation

(24) would allow recovery of Π, since the matrix A is invertible. However, due to data limitations,

it is likely that portfolios are measured with non-trivial error. Hence, to obtain more reliable

estimates of Π, we also use the N equations (26), i.e., we use the information in expected returns

to improve the recovery of Π. To operationalize this idea, we allow for observation errors U and

express equations (24) and (26) as

Y = X × vec (Π) + U, (28)

where

Y =

 vec(W )
µS−β′(µf−ReN×1)−γΣS|fm

R

 , (29)

X =

 A

η′ ⊗ IN×N

 , (30)

and U is assumed to have covariance matrix Z, which we specify shortly. Equation (28) leads to

the estimator

vec (Π) =
(
X ′Z−1X

)−1
X ′Z−1Y. (31)

The estimator (31) weights the information contained jointly in equations (24) and (26) to

obtain the most efficient estimate of vec (Π) . To compute Π we need return data, market and

wealth weights and information on portfolios. The next section describes our data sources, while the

following section describes some details of the estimation procedure, in particular our specification

of the covariance matrix Z.

4.1. Data

To obtain estimates of Π we need country-level stock market returns and stock market capitaliza-

tions, country-level wealth weights, exchange rates, and bilateral portfolio holdings. The monthly

data for country-level stock return and stock market capitalizations come from Compustat Global

and Compustat North America. We use these data to calculate the monthly total market capital-

ization of each country in US dollars. We only keep ordinary shares and we omit ADRs from our
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sample. In addition, the corresponding exchange rates are also obtained from Compustat Global

and Compustat North America. Due to data limitations for a large panel of countries, we focus

our stock return sample on the period past the introduction of the Euro.24 Our results are similar

if stock return data are obtained from MSCI.

The bilateral equity holding data are from consolidated portfolio investment survey (CPIS) from

the International Monetary Fund (IMF). This survey reports bilateral portfolio equity holdings for

77 origin countries and 241 target countries for the years 2001-11. The survey for year 2011 contains

the latest available holdings data from the IMF at the time of our study.

Under the guidance of the IMF, national compilers collect the portfolio holdings data through

national surveys addressed to end-investors and custodians. The national compilers try to minimize

under- or double- counting, and to make CPIS data comparable across countries. For each country,

the IMF produces the geographic breakdown of its residents’ aggregate holdings of securities issued

by non-residents, and all holdings are denominated in U.S. dollars. The CPIS data set has some

drawbacks. For example, if a parent company in country A has a foreign subsidiary in country

B, which holds a financial asset in country C, this holding is counted as country B’s holding in

country C, rather than country A’s holdings in country C. Thus, just as with any survey data on

cross-border holdings, the CPIS data set also suffers from the third-party holdings problem. In

addition, the coverage is incomplete. For these reasons, it is important to allow for measurement

error in portfolios (the next section contains further details). We revisit the issue of measurement

error in Section 4.4., after presenting the results. There we explain in greater detail why portfolio

measurement error (and incomplete coverage) is unlikely to have significant impact on our results.

These CPIS data have been used by many prior studies in economics and finance such as Faruqee

et al. (2004), Lane and Milesi-Ferretti (2005), Aviat and Coeurdacier (2007), Berkel (2007), Daude

and Fratzscher (2008), and Bekaert and Wang (2009). We focus on the most recent available

portfolio holding data for the year 2011. Using holding data for earlier years yield similar results.

Due to incomplete data on portfolio observations, coupled with shortage of continuous, reliable

stock and exchange rate data on a multitude of countries, we choose to focus on OECD countries

only. A handful of countries — Chile, Estonia, Slovakia, and Slovenia — joined the OECD only

24We take January 2003 as the starting date, i.e., 12 months after the physical introduction of the Euro in all Euro-
countries in our sample (including Greece). We make this choice to mitigate the impact of any transient adjustments
to the new currency. Earlier start dates do not impact the results.
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recently and their portfolio data are mostly missing. We exclude these OECD countries, as well as

Ireland, which has a negative holding of its own stock market and Luxembourg, which is a financial

center. Financial centers are likely to act as pure intermediaries that are neither the true source

nor the true destination of foreign investments.

We consider several possible measures of wealth weights. One is country-level GDP in 2011,

while the others are calculated from stock-market size. These measures have a correlation above

97%, and thus our results are insensitive to the choice of proxy. We report results based on GDP

as a proxy for wealth weights.

In the regressions, we use IMF data on the real GDP per capita adjusted for PPP in year

2011. The data on the size of the financial sector as a fraction of GDP and the size of real estate

finance sector (value added as a fraction of GDP) are from the national accounts database in the

OECD’s website. We use the most recent available data, which are for the year 2008. The data

on domestic private credit over GDP in year 2011 are obtained from the World Bank Financial

Structure database (see, e.g., Beck et al. (2010)).

We also use bilateral (geographical) distance measures from CEPII. CEPII has calculated bi-

lateral distances (in kms) for most countries across the world (225 countries in the current version

of the database). As a measure of familiarity between two countries, we use categorical data on

Facebook friendships between countries i and j. The data are available on the Facebook website.25

For each country, the website lists (in order of importance) the five closest countries in terms of

friendship connections. We assign the number six to all countries that do not rank in the top five.

Finally, we use data on the fraction of imports from country j as a fraction of the GDP of country

i. We use data for 2011 from the IMF.

4.2. Estimation

Having described the data that define the matrices X and Y in equation (31), we finally need

to specify the covariance matrix Z of error terms. Given the very large number of parameters

compared to the dimension of equation (31), we adopt a semi-parametric approach. Specifically,

25The web address is https://www.facebookstories.com/stories/1574/interactive-mapping-the-world-s-friendships.
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we assume that Z is block diagonal, so that

Z =

 Z1 0N2×N

0N×N2
1
T Σ̂S|f

 .
In words, we assume that the measurement error in the N2 portfolio equations is uncorrelated with

the measurement error in the N expected-return equations. For the error terms of the expected

return equations, we simply use the empirical estimate 1
T Σ̂S|f . Finally, we specify Z1 parametrically.

Specifically, we assume that the error terms in the measurement portfolios are uncorrelated across

countries, but are correlated within a country:

uij = wij (σεεi + σξξij) with cov (εi) = IN×N and cov(ξij) = IN2×N2 . (32)

We make three observations about (32): i) the magnitude of each error term is proportional

to the portfolio weight wij (i.e. the share of country i′s portfolio that is invested in country j),

ii) Error terms are correlated within each country i due to the presence of the error term εi. iii)

The portfolio-specific term ξij captures an idiosyncratic error in the measurement of each portfolio.

The error specification (32) is motivated by the data limitation that we only observe the equity

portfolio of each country. As a result, differences in leverage across countries are likely to be over-

or under-stating the portfolio of each country by the same proportion of wij . Another reason that

leads to a similar source of measurement error is the difficulty of determining the free float of market

capitalization in every country, which may be affected by cross-holdings, etc.

Having specified the structure of Z, the computation of Π can now be accomplished by specifying

γ, σε, and σξ. For reasons that we explain later, the specification of γ is unimportant for the structure

of the matrix Π (γ acts as a scaling parameter). Therefore we simply set γ = 2, and in Section 4.4.

we show that our conclusions are unaffected as we vary γ. The other two parameters, σε and σξ,

are estimated in an iterative way. Specifically, we start with an initial guess for these parameters,

estimate an initial Π from equation (31), obtain residuals, estimate σε and σξ by using the moment

equation implied by (32), re-estimate Π, and proceed till convergence. This procedure results in

the values σε = 0.15 and σξ = 0.16.26

26A technical issue arises because some wij are equal to zero, so that the covariance matrix of errors is sin-
gular. To ensure a non-singular covariance matrix we evaluate (32) with max(0.03, wij), rather than wij , which
implies that the minimum standard deviation of the observation error of any given portfolio is bounded below by
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4.3. Results

4.3.1. Basic properties of the implied tax rates

Throughout this section, we focus on the quantity τij =
Πij
Πii
−1. This quantity has a straightforward

interpretation as the valuation wedge (the shadow tax) between a foreigner from country j and the

local investor from country i when investing in country i. Besides this intuitive interpretation,

this quantity has the important advantage of being essentially unaffected by the presence of mea-

surement error in expected returns (µS), and also robust to different assumptions on risk aversion

(up to multiplicative re-scaling). We substantiate these last two claims in the next section, where

we show that τij is primarily impacted by measurement error in both the covariance and portfolio

matrices. Due to the presence of measurement error, one should exercise caution in interpreting

individual values of τij ; collectively, however, the values of τij exhibit some interesting patterns,

which we describe next.

Figure 1 reports τij as a histogram. Most values of τij are positive, although a few are negative —

a manifestation of measurement error in individual τij , due to measurement error in the covariance

matrix and the portfolio holdings. (Section 4.4. shows that it is possible to ensure positive values

by making assumptions on the structure of the covariance matrix of returns to reduce the impact

of measurement error. We prefer to not impose any restrictions on the covariance matrix for our

baseline results.)

The first hypothesis that we test is that the average value of τij equals zero. Indeed, if no frictions

were present, then we would expect both positive and negative values of τij due to measurement

error, but a mean value of zero. In Table 1 we regress all the values of τij on a constant and reject

the hypothesis that the average τij is zero.

Figure 2 reports τij as a color-coded table. Countries are aligned according to their WEO (World

Economic Outlook) code, which implies that entries for the relatively more advanced economies

appear generally (but not always) at the left and top of the figure. Rows refer to the destination

country of portfolio investments, while columns refer to origin country. For instance, the entry

max(0.03, wij)
√
σ2
ε + σ2

ξ ≈ 0.5%. Besides ensuring that the covariance matrix of error terms is invertible — so that

expression (31) is meaningful — this minimum variance of the error term ensures that small portfolios don’t exert
undue influence on the estimation procedure. We note that this truncation affects only the assumed minimum stan-
dard deviation of the observation error in the matrix Z. We do not perform any truncation of the actual values of
the portfolios in the vector Y .
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Figure 1: Histogram of implied tax rates τij (in basis points per month).

in the second row, first column, is the implied tax faced by the representative US investor when

investing in the UK (relative to the representative UK investor), while the first-row, second-column

entry is the implied tax rate faced by the representative UK investor when investing in the US

(relative to the representative US investor).

The similarity of colors across a given row shows that certain countries are lower-implied-tax

destinations than others. Furthermore, the matrix is not symmetric around its diagonal, i.e.,

τij 6= τji. These facts suggests that certain countries seem to present foreign investors with high

shadow tax rates, irrespective of the origin of the foreign investor. An additional implication

is that destination-country fixed effects play a larger role in explaining the variation in implicit

tax rates than symmetric, bi-directional variables whose value is not affected when origin and

destination country are reversed (e.g., common institutions, culture, geographic distance, etc.).

Table 1 confirms these visual impressions. Indeed, Table 1 shows that the bulk of the variation in

implicit tax rates is due to destination-country fixed effects (73% of the variation). Origin-country

fixed effects also account for a non-trivial part of the variation (approximately 25% on their own).

The variation not explained by either type of fixed effect is small.

Another impression from Figure 2 is that frictions are rather small in the top left part of the

table and become larger in the bottom and right part of the table. This suggests that the implied
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tax rates affecting capital flows between developed countries are rather minimal (a few basis points

per month). The frictions become more substantial when capital flows from more to less developed

markets (but are not very large when capital flows from less to more developed economies).

Table 1: The four columns report results of regressions of implied tax rates on a constant and various
combinations of destination- and origin-country dummy variables.

(1) (2) (3) (4)
tax tax tax tax

constant 10.12∗∗∗

(27.62)

Observations 702 702 702 702
R2 0.521 0.732 0.247 0.968
Dest. Dummies No Yes No Yes
Orig. Dummies No No Yes Yes

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Continuing with our basic data explorations, we perform a k-means cluster analysis, so as to

identify group of countries that exhibit similar tax rates. The results are reported in Figure 3.

Specifically, to measure the similarity between the destination countries i and i′ we use a modified

Euclidean distance between the tax-rate vectors τi· and τi′·.
27 Roughly speaking, we consider

countries i and i′ as “similar” when international investors face similar shadow tax rates when

investing in either country.

Figure 3 plots results of the cluster analysis. We performed our cluster analysis with two to

eight clusters. Our analysis favored four clusters.28 Figure 3 reports these clusters, along with

silhouette scores for each country. These scores are meant to measure how well a country fits inside

a cluster. For instance, a silhouette score of one would mean that a country is identical to the rest

of the countries inside its cluster, a value of zero indicates that a country is not particularly well

27Specifically, our distance measure can be expressed as
∑
j /∈{i,i′} (τij − τi′j)

2 + (τii′ − τ̄i)
2 + (τi′i − τ̄i′)

2, where τ̄i

is the average tax rate faced by foreigners in country i (and similarly for i′). We use this modified Euclidean measure
since τii = τi′i′ = 0, by construction, and it seems more meaningful to compare the tax rate faced by investor i′ in
country i to the average tax rate faced by foreign investors in country i, rather than the tax rate faced by investor
i whose shadow tax rate is zero by construction. Excluding the last two terms in the empirical analysis has a very
small impact on the results.

28The analysis favored 4 clusters in terms of two criteria frequently used in the literature, namely producing
relatively homogenous and well-separated clusters (i.e. high average “silhouette” scores within each cluster) and in
terms of finding the number of cluster beyond which the incremental drop in the sum of absolute distances becomes
relatively small.
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matched inside the cluster, while negative values would indicate that a country probably does not

belong to that given cluster.29

Inspecting the clusters, we find that one of the clusters includes fairly developed financial

markets (e.g., USA, Japan, Euro countries such as Germany, etc.), a second cluster contains France,

Italy, and Spain, a third cluster contains mostly non-Euro countries at the periphery of the Eurozone

(e.g., Scandinavian countries), and a fourth cluster contains countries that one would arguably

associate with less developed financial markets (Portugal, Greece, Turkey etc.). The second and

fourth clusters are well separated from each other and from the rest of the clusters (high silhouette

scores). The first and third clusters are less well separated from each other with some of the

countries having low silhouette scores (below 0.5). Even though certain countries could still be

misclassified within a given cluster (after all the cluster analysis does not remove the error in the

measurement of τij), overall the clustering shows patterns that coincide with the way the investment

community separates financial markets in terms of their financial and economic development, and

their economic ties. This suggests that our measure of frictions plausibly captures what it is

supposed to.

4.3.2. Factors that correlate with implied tax rates: Regression evidence

We next investigate what factors tend to be associated with high or low tax rates. The goal is not

to provide an exhaustive list of factors that explain τij , nor to dissect the independent role played

by every possible factor that could be affecting τij . Such a task would be impossible with the small

number of countries at our disposal. The regressions that follow are merely meant to highlight

that our implied tax rates are plausible measures of frictions, in that they correlate with the sort

of variables that one would expect.

We start by following the long tradition of gravity equations in international finance and regress

the implicit tax rates on the logarithm of geographical distance between two countries. We also

use a second measure of connections between two countries i and j, namely a categorical measure

of Facebook friendships between countries i and j.

To ensure that our tax rates do not simply capture real-exchange-rate hedging motives we

29Silhouette scores are a standard diagnostic used in cluster analysis. A silhouette score is defined as s(i) =
b(i)−a(i)

max(a(i),b(i))
, where a(i) is the average distance of element i to other elements inside its cluster, while b(i) is the

lowest average distance of i to any other cluster of which i is not a member.
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Figure 3: Results of cluster analysis along with sillhouette plots. Sillhouette values range from −1
to +1 and reflect how well a country fits into its cluster. A value of one reflects that a country
fits perfectly in a cluster, a value of zero reflects that a country is not particularly well matched in
the given cluster compared to some alternative cluster, and a value of negative one implies that a
country probably does not belong in its cluster.

include a control for imports from country j as a fraction of country i’s GDP. This measure is

motivated by the literature on goods-market frictions,30 which shows that “iceberg” transportation

costs imply a wedge between the marginal utilities of foreign and domestic investors for the same

good. These different marginal valuations translate into different marginal valuations for the firms

that produce these goods, exactly as the taxes we assume here.31 Obstfeld and Rogoff (2001)

30Dumas and Uppal (2001) develop a theoretical model with transportation costs; Obstfeld and Rogoff (2001)
develop quantitative implications and show how a model with transportation costs can account for several puzzles of
international macroeconomics.

31There is a formal link between the model in Obstfeld and Rogoff (2001) and our model. An elementary ma-
nipulation of the equations in Obstfeld and Rogoff (2001) implies that DH

∂U
∂CH

= (1 − τ)DH
∂U∗

∂C∗
H

where CH is the
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Table 2: The first four columns report regressions of implied tax rates on the logarithm of geographical
distance between the countries (log dist), a categorical measure of Facebook friendships between countries
(fbook), and a measure of the share of goods imports from the origin country as a fraction of the GDP of
the destination country (imp share). Origin- and destination- country dummies are included in all except
the last regression. Standard errors are heteroskedasticity-robust, clustered by recipient country.

(1) (2) (3) (4) (5) (6) (7) (8)
tax tax tax tax tax tax tax tax

log dist 0.775∗∗∗ 0.739∗∗∗ 1.138 0.296
(5.92) (4.81) (1.54) (0.36)

imp share -15.75 -1.233 -124.0∗ -115.6∗

(-1.36) (-0.14) (-2.54) (-2.16)

fbook -0.230∗∗∗ -0.0269 -0.934∗∗ -0.108
(-3.98) (-0.31) (-3.44) (-0.24)

Observations 702 702 702 702 702 702 702 702
R2 0.970 0.969 0.969 0.970 0.018 0.066 0.010 0.068
Dest. Dummies Yes Yes Yes Yes No No No No
Orig. Dummies Yes Yes Yes Yes No No No No

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

implies a direct and negative relationship between tax rates and import shares, in the sense that if

the transportation cost from country j to i is large, then country i will import a smaller fraction

of its imports from country j.

Table 2 shows that these bilateral measures have the sign that one would expect. (Tax rates

are higher for relatively more distant countries, and taxes are lower for countries that have higher

import shares and more Facebook friendships.) The statistical significance depends on whether

origin and destination fixed effects are included. If they are, only distance is significant in a

multivariate regression containing all variables. As one would expect from our earlier discussion,

Table 2 shows that these bilateral variables have very limited ability to explain the variation in

frictions (the R2 is low). This is a consequence of the observation (in Table 1) that the bulk of the

variation in tax rates is due to destination- (and to a lesser extent origin-) fixed effects.

In an attempt to understand the type of country characteristics that are correlated with the

consumption of the home good by a local, C∗H is the consumption of the home good by a foreigner, DH is the dividend
of the home tree, and (1 − τ) is the iceberg (transportation) cost. Accordingly, similar to this paper, the marginal
valuation of locals and foreigners agrees on the valuation of the home tree only after applying a “tax rate” to the
dividend of the home tree. Lane and Milesi-Ferretti (2005) generalize this model to multiple countries and show that
import shares are decreasing in transportation costs.
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severity of the frictions we turn our attention to Table 3. Table 3 reports results of regressions of

implied tax rates on country characteristics. Viewing the financial industry as an input to lessen

informational frictions, one would expect a larger financial industry to be correlated with a lower

degree of frictions. Also motivated by Figure 3, one would expect GDP per capita to impact these

frictions.

Table 3 provides evidence that both of these characteristics play a role. The regressions show

that the value added in the financial industry of the destination country (as a fraction of its GDP) is

associated with lower implied tax rates for the country. GDP per capita of the destination country

also plays a significant role in lowering implied frictions, and so does the GDP per capita of the

origin country. The last regression in Table 3 reports results when we include destination- and

origin-country fixed effects along with interaction terms between origin-dummies and the size of

the financial industry. We find that interaction terms between the GDP of two countries tend to

play a role: Implied tax rates are lower when developed countries trade assets with each other, even

after accounting for distance and destination- and origin-country dummies. In the last regression,

we add interaction terms between the financial industry and the dummy variable of the origin

country allowing for destination- and origin- fixed effects. The line labeled “D originXFin d” in

the bottom part of the table reports the average value of these interaction terms. This value is

negative, suggesting that a larger financial industry of the destination country is associated with

lower tax rates for an origin country controlling for both origin- and destination- fixed effects.

The p-value (line labeled “pval”) performs a joint test that all the interaction terms between the

financial industry and origin dummies are zero, and rejects that hypothesis.

The above results provide a flavor of the type of country characteristics that tend to be correlated

with low frictions. Broadly speaking, we find that financial and economic development of the

destination countries tend to be the factors that explain an important part of the variation in

frictions — consistent with an informational interpretation.

4.3.3. Counterfactual experiments: The role of home bias

One could argue that the above results are due to some unobserved factor, which correlates with

cross-country differences in home bias, and drives the differences in destination country fixed effects.

To address this issue, we show next that the results of Table 3 are not simply due to cross-country
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Table 3: The first three columns list results of regressions of implied tax rates (measured in basis points
per month) on the destination (resp. origin) country’s added value of the financial industry as a fraction of
GDP (Fin d, Fin o), the logarithm of geographical distance between the countries (log dist), goods import
share (imp share), GDP per capita of the destination, resp. origin country (GDP d, GDP o). The fourth
regression includes origin country dummy variables. The next three regressions add destination- country
fixed effects, and an interaction term of the GDPs per capita of the two countries (GDP dXGDP o). The
last regression adds interaction terms between origin dummies and the size of the financial industry of the
destination country. The third and second-last rows of the table report the average value of these interaction
dummies along with the p-test value for the hypothesis that these interaction terms are jointly zero. We
computed heteroskedasticity-robust standard errors and clustered three different ways (no clustering, by
origin country, by destination country). We report the standard errors that were the most conservative for
each regression, specifically: clustered by destination country for the first four regressions, clustered by origin
country in the fifth and regular heteroskedasticity-robust standard errors in the last two regressions.

(1) (2) (3) (4) (5) (6) (7)
tax tax tax tax tax tax tax

Fin d -137.5∗ -129.1∗ -129.8∗

(-2.53) (-2.65) (-2.61)

Fin o 10.17 18.29 25.75
(0.49) (0.93) (0.77)

log dist 0.957 0.300 0.859 0.915 0.955 0.683∗∗∗ 0.641∗∗∗

(1.41) (0.43) (1.33) (0.96) (1.23) (5.16) (4.36)

imp share -111.5∗ -102.2∗ -97.77∗ -91.13∗ -13.79 -1.618 -1.948
(-2.47) (-2.16) (-2.42) (-2.25) (-0.66) (-0.32) (-0.39)

GDP d -0.0926 -0.0910∗ -0.0916∗

(-1.84) (-2.05) (-2.03)

GDP o -0.0896∗∗∗ -0.0891∗∗∗ -0.0878∗∗

(-19.04) (-19.78) (-2.90)

GDP dXGDP o -0.000569∗∗∗ -0.000579∗∗∗

(-4.93) (-5.21)

Observations 702 702 702 702 702 702 702
R2 0.106 0.194 0.229 0.400 0.810 0.972 0.974
D origXFin d -1.765
pval 0.000
Dest. Dummies No No No No Yes Yes Yes
Orig. Dummies No No No Yes No Yes Yes

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

33



differences in the extent of home bias (i.e., the diagonal elements of the portfolio matrix W ).

Specifically, we consider a fictitious world in which a fraction δi of the population in every

country i decides to hold only its local stock market — for an unmodeled reason (behavioral,

hedging motives, etc.) — and not participate in any other market. Moreover, in this fictitious

world, the rest of the population chooses to allocate its funds internationally, and subject to no

frictions (τij = 0). We impose market clearing and solve for equilibrium portfolios in such a fictitious

world. Importantly, we reverse-engineer the fraction δi in each country so that the total holdings

of local stocks by local investors are exactly the same as in the data — i.e., we keep the diagonal

elements of the new weight matrix, W ∗, the same as W . However, we determine the off-diagonal

elements of W according to what they would be in the frictionless world given by τij = 0.

With this modified matrix of portfolios and keeping everything else unchanged (moments of

returns, assumptions on the observation errors, etc.), we infer the tax rates τ∗ij that would result

in such a counterfactual world. The left plot of Figure 4 provides a scatterplot of our implied

tax rates τij (using the actual matrix of portfolios W ) against the tax rates τ∗ij (implied by the

counterfactual matrix W ∗). The scatter diagram shows that the implied tax rates are substantially

different. The middle and right diagram provide similar scatter plots for the estimated destination-

country dummy variables and the estimated origin-country dummy variables. As the plot shows,

there is some, but far from perfect, correlation between the destination-country dummy variables

in the actual and counterfactual data. This implies that our tax rates are not mere reflections of

cross-country differences in home bias.

To test formally whether the results in Table 3 are simply a manifestation of patterns of home

bias, Table 4 tests the hypothesis τij = τ∗ij by regressing ∆τij = τij − τ∗ij on τ∗ij and the same

regressors as in Table 3. Under the null hypothesis that τij = τ∗ij (so that ∆τij = 0), all the regressor-

coefficients in Table 4 should not be significantly different from zero, including the coefficient on τ∗ij .

The reason is that any deviation of ∆τij from zero should be due to observation error in portfolios,

return moments etc. Table 4 shows that the hypothesis ∆τij = 0 can be rejected. The coefficient on

τ∗ij is different from zero in all specifications. Moreover, several of the variables in Table 3 remain

significant after including τ∗ij as a regressor. Comparing the magnitudes of the resulting coefficients,

we find that the coefficient of the financial industry in column 2 is lower by about a third compared

to the respective coefficient of Table 3, and remains significant. The import share, log distance,
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Table 4: This table repeats some of the regressions of Table 3 except that the dependent variable is the
difference between our implied tax rates and the tax rates that would result in a counterfactual world
with unchanged portfolio allocations of domestic residents to domestic risky assets, but frictionless capital
allocation for the fraction of capital that is allocated internationally. The counterfactual tax rate is included
as one of the regressors (“tax2”). The rest of the variables are described in Table 3.

(1) (2) (3) (4) (5) (6) (7)
dtax dtax dtax dtax dtax dtax dtax

tax2 -0.688∗∗∗ -0.719∗∗∗ -0.645∗∗∗ -0.661∗∗∗ -0.654∗∗ -0.397∗∗∗ -0.386∗∗∗

(-7.78) (-8.55) (-5.31) (-5.35) (-3.46) (-10.33) (-9.80)

Fin d -91.69∗ -79.85
(-2.00) (-1.63)

Fin o 8.139 15.70 23.14
(0.46) (0.94) (0.65)

log dist 0.762 0.202 0.530 0.502 0.293∗∗ 0.235∗

(1.31) (0.35) (0.98) (0.62) (3.22) (2.32)

imp share -69.21∗ -76.06∗ -74.80∗ -18.72 0.0447 0.111
(-2.03) (-2.00) (-2.17) (-0.88) (0.02) (0.04)

GDP d 0.0415 0.0363
(0.81) (0.71)

GDP o -0.102∗∗∗ -0.101∗∗∗ -0.101∗∗

(-14.55) (-14.44) (-3.15)

GDP dXGDP o -0.0000345 -0.0000416
(-0.36) (-0.49)

Observations 702 702 702 702 702 702 702
R2 0.633 0.655 0.691 0.697 0.910 0.992 0.993
D origXFin d -10.63
pval 0.000
Dest. Dummies No No No No Yes Yes Yes
Orig. Dummies No No No No No Yes Yes

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Figure 4: Scatter-plot of implied tax rates versus counter-factual implied tax rates. The counter-
factual implied tax rates are computed by assuming that domestic investors’ portfolio allocation to
domestic risky asset is unchanged. However, the fraction of the portfolio that is invested interna-
tionally is invested as if there were no frictions. The left plot depicts all N2 implied tax rates. The
middle plot depicts the estimated destination-country fixed-effects for actual and counterfactual
implied tax rates. The right plot depicts the estimated origin-country fixed-effects for actual and
counterfactual implied tax rates.

and the GDP of the origin country also remain significant in several of the specifications. Hence,

we can reject the hypothesis that τij = τ∗ij .

The fact that the off-diagonal elements of the portfolio matrix W play an important role for

our results can be illustrated in an even simpler way. Figure 5 performs the following experiment:

Keeping the diagonal elements of W fixed (i.e., the domestic allocations to the domestic asset),

we perform a random reshuffling of the elements contained in the international portfolio of each

country. We repeat this exercise 1000 times obtaining 1000 artificial matrices W , compute the

resulting artificial values τ∗ij (keeping all other inputs the same), and then regress the difference

between the actual tax rates τij and the counterfactual ones τ∗ij on τ∗ij , the size of the financial

sector, the GDP of the destination country, log distance, and the import share. Figure 5 plots a

histogram of the regression coefficients. The graph shows that the depicted coefficients are different

from zero in almost all samples, and indeed statistically different from zero.32 This implies that

the off-diagonal elements of W matter for the results in Table 3.

32We computed the 0.025–0.975 coverage interval for all the depicted coefficients and zero was not in that interval
for all of the depicted coefficients.
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Figure 5: Histograms of regression coefficients from two regressions performed on randomly generated data.
The artificial data samples are counterfactual shadow tax rates computed as follows: keeping the diagonal
elements of the international portfolio of each country fixed, we re-shuffle the elements of the international
portfolio holdings of each country in a random manner. We create 1000 artificial portfolio matrices and
compute 1000 artificial tax rates. For each draw, we regress the difference between the tax rates we obtain
from actual data (τij) and the artificial tax rates corresponding to the random draw (τ∗ij) on τ∗ij , the size of
the financial industry of both destination and origin country, log distance between the two countries, and
the import shares as described in the text. The histograms for the coefficients on the destination country’s
industry, log distance, and import shares are given by the top three histograms. The lower histograms
report results of the same regression, but including the GDP of destination and origin country as additional
regressors.

4.3.4. The role of the financial industry

Table 3 suggests that the size of the financial industry of the destination country covaries inversely

with the implied tax rates of the destination country. The table is silent about whether this is the

result of direct causality (the financial industry helps reduce the frictions for incoming portfolio

flows) or of reverse causality (countries that, for whatever reasons, have lower frictions attract more

capital flows and thus need a larger financial industry to process the transactions). We investigate

this issue in Table 5 by re-estimating some of the key regressions of Table 3 using an instrumental-

variables approach. We use private domestic credit (as a fraction of GDP) and value added in the

real-estate-finance sector as a fraction of GDP as instruments for the size of the financial sector.

Arguably, since these two instruments capture the operation of the domestic finance sector, their

size is less likely to be the mechanical result of international capital flows. Table 5 shows that when

we use instrumental variables, the significance of our results remains the same.

We conclude with a remark on the role of the financial industry: whether lower shadow tax

rates are caused by or cause a larger financial industry is of secondary importance for our purposes.
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Table 5: Two-stage least squares instrumental variables regression. We use private domestic debt as a
fraction of GDP and real estate finance as a fraction of GDP in the destination country as instruments for
the size of the overall financial sector as a fraction of GDP in the destination country (Fin d). The rest of
the variables are described in table 3. Standard errors are heteroskedasticity robust, clustered by destination
country. Results are essentially the same whether we estimate the regressions with two-stage least squares
or GMM. In the latter case the test of overidentifying restrictions does not reject.

(1) (2) (3) (4) (5) (6)
tax tax tax tax tax tax

Fin d -701.3∗ -624.3∗ -502.7∗ -775.2∗ -703.3∗ -561.3∗

(-2.52) (-2.30) (-2.00) (-2.38) (-2.13) (-1.97)

log dist 4.472∗ 3.475 3.469 6.679 5.558 4.956
(2.03) (1.58) (1.87) (1.75) (1.38) (1.53)

imp share -89.52∗ -69.23
(-2.34) (-1.33)

GDP d -0.0910∗ -0.0919∗

(-2.19) (-2.18)

Observations 702 702 702 702 702 702
Dest. Dummies No No No No No No
Orig. Dummies No No No Yes Yes Yes

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Either way, a larger financial industry seems useful: either because it directly lowers shadow tax

rates, or because it is necessary to process the international transactions that result from lower

shadow taxes, thus allowing a country to benefit from its inherently higher appeal.

4.4. Source of identification and robustness of implied tax rates

In this section we start by showing that the implied tax rates τij are quite robust to the measurement

of expected returns, which are notoriously hard to measure. Furthermore, different assumptions

on risk aversion act essentially as a multiplicative scalar for the matrix τij . After illustrating these

statements, we provide an approximate, but intuitive expression for τij that helps explain these

statements, and more generally helps recognize the sources of identification of τij .

We start with a graph that illustrates that our findings do not depend critically on assumptions

or estimates of expected returns. Specifically, the left panel of Figure 6 shows a scatterplot of our

implied tax rates plotted against the tax rate that would result if we used the constant interest

rate R instead of our estimates of expected returns µS (i.e., the averages of historical returns).
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Figure 6: Left plot: Scatterplot of our implied tax rates (x-axis) versus implied tax rates imposing
µS = R (y-axis). Middle and right plots: Scatterplots of our implied tax rates (x-axis) versus
implied tax rates resulting when γ = 5, respectively γ = 10 (y=axis).

The scatterplot shows that the obtained estimates τij remain essentially unchanged, showing that

assumptions on expected returns do not affect τij . (Indeed one would obtain essentially the same

tax rates, as long as the assumption on gross returns is that they are not too far from one).

A related finding is the impact of risk aversion on τij . The middle and right panels of Figure 6

illustrate the point. As risk aversion changes, the quantities τij remain unaltered, up to scaling.

To understand these patterns, it is useful to perform a “back of the envelope” exercise by

revisiting (22). Multiplying both sides by γΣ
R and evaluating the equation for two different investors

i and j gives

γΣ

R

(
Π−1
j wj −Π−1

i wi

)
= (Πi −Πj) eN×1.

Since both Π−1
i and Π−1

j are close to one and γΣ
R is small, we approximate the left-hand side as

γΣ
R (wj − wi). Focusing on element i in the above equation and approximating τij ≈ πij − πii gives

τij ≈
γ

R
[Σ (wi − wj)]i , (33)

where the notation [x]i refers to entry i in the vector x. Assuming momentarily that this basic

approximation is accurate, it helps explain two things. First, it helps provide a reason why µS

does not affect the computation of τij . And, second, it shows that γ acts (approximately) as a

multiplicative constant on all τij .

A benefit of expression (33) is that it provides a more intuitive understanding of τij . Specifically,
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τij can be understood as a difference in the marginal valuation of a given asset by foreign and local

investors. Indeed, the right hand side of (33) is the difference between the covariance of asset i

with (the local) investor’s i overall portfolio and the respective covariance of asset i with investor

j’s portfolio. The difference between these covariances should be equal to the (shadow) difference

in the expected returns perceived by the two investors.33 In the special case where Σ is the identity

matrix (possibly multiplied by a scalar), the implied tax rates reflect only the extent that a local

investor invests in the local asset as compared to the respective allocation of foreign investors. If

variances are unequal, and more importantly, if the covariances differ from zero, then the τij will

not only reflect properties of portfolios, but also properties of second moments of returns.

The approximation (33) also helps illustrate which type of measurement error affects our es-

timates of τij primarily, namely measurement error in portfolios and covariances. In particular,

if there is measurement error in estimated covariances, it is possible that the estimated τij < 0

for some countries, even if locals allocate more to their own country than foreigners. (We note

parenthetically that if one were willing to parameterize the covariance matrix in certain ways, one

could easily ensure that τij > 0.34) Additionally, equation (33) shows that mis-measurement of a

country’s portfolio only impacts our results to the extent that it affects the covariance of the coun-

try’s overall portfolio with the covariance of individual assets. For instance, incomplete coverage

of countries that are unlikely to change the covariance properties of an investor’s overall portfolio

does not materially affect our results.

The simplicity of expression (33) makes it tempting to examine whether one could infer τij by

using (33) directly, rather than using the more cumbersome expression (31). It turns out that (33)

is only in partial agreement with our obtained tax rates: the correlation coefficient between the

two sets of rates is 0.56. The correlation, however, becomes virtually one if, rather than using the

actual portfolios wi and wj on the right hand side of (33), we use instead the predicted portfolio

values ŵi and ŵj that result from vec(Ŵ ) = Avec(Π̂), where vec(Π̂) is our estimate of (33).35

The reason why (33) and (31) give different result is simple: Via (31), we intentionally over-

33We use the word ‘shadow’ to allow for a Lagrange multiplier on the requirement wji ≥ 0 that these two investors
face when investing in asset class i.

34For instance if one postulated that the off-diagonal elements of Σ are all equal, and the diagonal elements are
greater than the off-diagonals, then wii > wij implies τij > 0. This would be an appropriate assumption in a
one-factor world, where all countries had the same exposure to that factor.

35The correlation coefficient between our measure of τij and the approximate expression γ
R

[Σ (ŵi − ŵj)]i is essen-
tially one.
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identify the model so as to allow our estimation procedure to lower the weight given to portfolios

that are likely to be the result of measurement error. Besides “filtering” out portfolio noise, however,

expected returns do not affect τij , as equation (33) shows. This (indirect) dependence of τij on µS

is the reason why our findings are numerically insensitive to different assumption on µS .

4.5. Interpretation and practical uses of the implied tax rates

An insight from the previous section is that the implied tax rates τij capture valuation discrepan-

cies between different investors. The theory section of this paper suggested one possible theoretical

underpinning for the presence of such shadow tax rates. However, we are quite open to the possi-

bility that these discrepancies may be the result of other frictions, or may even reflect behavioral

misperceptions and fears related to unfamiliarity.

Regardless of the exact friction that leads to these valuation discrepancies, we believe that they

have several practical uses.

The first and most obvious use is to provide a direct measure of “bottlenecks” of financial flows,

i.e., help identify the directions of financial trade that seem particularly impeded. As such our

measure of financial frictions can be used in various contexts both within and outside financial

economics (say, as an alternative to distance in gravity equations in economics).

The second usage is as a way to diagnose the directions (and likely reasons) for failures of asset-

pricing models. Most existing empirical asset-pricing approaches rely on comparing discrepancies

between average and the expected returns implied by some model. Our implied taxes capture a

different aspect, namely the discrepancy in the valuation of the same asset by different investors.

This helps paint a complementary picture (and also suggest a direction for the likely failure of

asset-pricing models). The reason is that most theories of frictions have implications not only for

equilibrium expected returns, but also for valuation discrepancies between investors.

If one were to adopt a more behavioral view of our measured frictions, one could envisage a

practical use for investment purposes. To give an extreme example, suppose that someone viewed

these implied tax rates as resulting from irrational non-participation decisions, not informational

disadvantages. Then the countries with the largest measured shadow tax rates would be good

candidates for investing, since they are irrationally “cut off” from markets.
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5. Conclusion

If markets are not frictionless, then frictions can act in a manner similar to distortionary taxes. We

illustrate this analogy explicitly in the context of a model where frictions are caused by asymmetric

information. More generally, financial frictions are similar to taxes in that they drive a wedge in the

valuation of the same asset by different investors. This leads to different tilts in optimal investor

portfolios.

Accordingly, the optimal holdings of investors contain valuable information in terms of inferring

these implicit taxes. We employ a standard mean-variance framework (appropriately modified to

allow for fictions) to infer a set of taxes capable to reproduce observed patters of portfolio holdings

and equilibrium returns. These taxes provide a novel view of the direction and extent to which

financial linkages seem to be particularly impeded: Consistent with commonly held views, tax

rates are very small when developed countries trade with each other. However, these implicit taxes

become non-trivial, when the capital flows are directed towards lesser developed financial markets.

This helps us identify the location of financial “bottlenecks”, i.e. directions where financial trade

is particularly impeded. More importantly, it allows us to quantify (in units of expected returns)

the relative importance of different directions of deviation from the frictionless benchmark.

A finding of our analysis is that tax rates manifest themselves mostly in the form of country-

specific destination- and to a lesser extent origin-fixed effects. This means that certain countries

are high-tax-rate destinations, no matter where the financial flows originate. This implies that

bidirectional variables that are immune to the permutation of origin and destination country (e.g.,

geographical distance, common legal origin, common language or religion etc.) cannot explain but

a very small fraction of the variation of the tax rates we observe in the data. The sort of variables

that seem to perform well in terms of explaining the variation in tax rates are predominantly

destination-country characteristics, indicatively the size of the financial industry of the destination

country and the overall level of economic development.
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Appendix

A Strategic Agents and Dividend Manipulation

Here we build a model extension designed to capture two desired phenomena. First, we model

a finite economy populated by agents who behave strategically and show that the equilibrium

approaches the one in the benchmark (continuum) economy as the number of agents grows without

bound. Second, we also obtain no shorting as an endogenous consequence of allowing swindlers to

manipulate the cash flows from their firms, in a sense made precise below.

In order to illustrate the point as quickly and easily to convey as possible, we make a number

of (dispensable) simplifying assumptions.

Consider two locations, L = {1, 2}, each populated by N agents and hosting N firms. A number

κN of the agents36 in each location are common, the others being swindlers. Similarly, there are

κN regular and N − κN fraudulent firms per location. Agents have CARA preferences with risk-

aversion parameter γN , and each regular firm in location j has output and dividend Dj/N , where

E[Dj ] = 1 and Var(Dj) = σ2. Let Ω denote the variance of (D1, D2). Dividends in different

locations are assumed to be independent. Fraudulent firms have output equal to zero. All agents

are endowed with an equal number of shares of regular firms in their locations. Each swindler also

owns entirely a fraudulent firm.

The information structure is as in the main text, with some simplifications. As in the text,

we maintain that pii = 1, and also impose symmetry, i.e., p12 = p21 ≡ p. We also impose that

some quantities, such as the proportion of fraudulent firms mis-identified as regular equal their

ex-ante averages. More precisely, agent 1 receives p−1κN good signals for the firms in location

2, of which exactly κN correspond to the regular firms and the remainder to fraudulent firms.

The set of (p−1 − 1)κN of mis-identified firms is chosen from a uniform distribution on the set of

cardinality-(p−1 − 1)κN subsets of the set of fraudulent firms.

The action space for common investors consists of demand functionsX(P̄ ) that give the numbers

of shares in the 2N securities that a given investor is willing to purchase given the 2N -dimensional

price vector P̄ . Swindlers must take an additional action, which is the amount L that they borrow

36The number of agents must be an integer, of course. We therefore adopt the convention that all necessary
quantities are rounded in some reasonable fashion. Alternatively, we restrict κ to be rational and N to an appropriate
(unbounded) set. The same for p−1κN .
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and divert into the firm to increase its liquidation value.

Specifically, we assume that each swindler has the ability to borrow any amount L of her

choosing at time 0, divert these funds into the firm, and report earnings equal to L (1 + r) = L in

period 1. (Equivalently, we could assume that the swindler can take an action to produce earnings

L by incurring a personal non-pecuniary cost of effort, which would have a value L in monetary

terms.) Given the possibility of such a diversion, equation (5), giving the swindler’s time-1 wealth,

becomes

W sil
1 ≡ Bsil +

∫
j∈L

∫
k∈[0,1]

DjkdX
sil
jk + Lil

(
Sil − 1

)
. (A.1)

We note that the difference to (5) is the term Lil
(
Sil − 1

)
, which is intuitive. If Sil−1 < 0, i.e.,

if the swindler reduces her ownership of shares by being a net seller, then she has no incentive to

perform earnings diversion, since she will recover only a fraction of the funds she diverted into the

company. If, however, the swindler is a net buyer of her own security
(
Sil − 1 > 0

)
, then the ability

to manipulate earnings becomes infinitely valuable, since Lil can be chosen to be an arbitrarily

large number. Intuitively, the swindler can report arbitrarily large profits at the expense of outside

investors who hold negative positions (short sellers) in the fraudulent firm. This feature discourages

any other agent from shorting: with non-zero probability all other agents know that the firm is

fraudulent and don’t buy any shares, so that any shorting results in Sil > 1.

Given that we are considering a sequential game — the swindler’s decision to manipulate is

taken after the asset market clears — of incomplete information, we are looking for a perfect

Bayesian Nash equilibrium. Loosely speaking, this concept requires that all actions — demands

and manipulation decisions — be optimal given beliefs, while beliefs be updated according to Bayes’

rule wherever possible. Note that, unlike in the main body of the paper, all agents take into account

their potential impact on the price, and on the other agents’ beliefs, when submitting their demand

functions.

We concentrate on the sub-class of symmetric equilibria, in which all agents in a given market

behave identically conditional on their type and signals, while the differences in behavior between

market-1 and market-2 agents come down to index permutations in the natural way. Important,

we are interested in the existence of pooling equilibria, in which all securities in a given location,

and therefore in the entire economy by symmetry, have the same price.
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Proposition 7 A perfect Bayesian Nash equilibrium exists with the following properties.

(i) The equilibrium is symmetric.

(ii) All security prices are equal.

(iii) Common investors and swindlers have the same portfolios in equilibrium, with the exception

of the swindler’s holding of her own firm.

(iv) There is no shorting.

(v) There is no dividend manipulation.

Furthermore, as N increases, equilibrium prices and aggregate holdings of agents in any location i

of all assets in location j converge to the competitive-strategic equilibrium in Proposition 1.

B Proofs

Proof of Proposition 1. The proof proceeds in a number of steps. We start with an equilibrium

in the simplified competitive tax economy, and use it to construct demands in the original economy.

Second, we specify out-of-equilibrium beliefs in the original economy that support the equilibrium.

In a third step, we verify that all agents, regular as well as swindlers, find it optimal to submit the

demands specified given prices and their beliefs. Finally, we verify that markets clear.

Consider a solution to the simplified problem (8)–(9). The demands in the original economy

are defined naturally based on this solution:

dXci
jk = (1− fij)κ−1dXi

j1ιijk
1(Pjk=Pj) (B.1)

dXsil
jk = (1− fij)κ−1dXi

j1ιijk
1(Pjk=Pj), (i, l) 6= (j, k) (B.2)

dXsil
il =

 [0,∞) if Pil = Pi

0 if Pil 6= Pi
. (B.3)

The conjectured prices are Pjk = Pj for all j and k. Note that dXci
jk and dXsil

jk are themselves

demand curves, i.e., functions of the prices {Pj}j .

In words, all investors buy the same number of shares in each market as in the tax economy,

but they split this position (equally) only among the firms about which they receive a good signal

— note that the multiplicative factor (1− fij)κ−1 equals the reciprocal of the probability that a

48



given signal is good. Another proviso is that the price equal the pooling price Pj ; for any other

price, the agents shun the asset. The only exception to this behavior is provided by the insiders of

fraudulent firms, who submit an elastic demand at Pjl = Pj .

In equilibrium, only prices Pj are realized, and therefore prices are not informative. We postulate

that all agents believe that any firm k in market j that has price Pjk 6= Pj is fraudulent with

probability one.

To see that dXci
jk is optimal, start by writing the expected utility for the agent as

E

[
U

(∫
j

∫
k

(Djk − Pj) dXci
jk + Pi

)
|ιi
]

= E

[
U

(∫
j

∫
k

(
ρ(jk)Dj − Pj

)
dXci

jk + Pi

)
|ιi
]

(B.4)

and note that, by Jensen’s inequality, this utility is maximized by choosing dXci
jk, for fixed j, to

be measurable with respect to ιijk — in words the agent invests identically in all assets in market

j in which she received the same signal. Furthermore, the portfolio of assets with higher signals

(ιijk = 1) strictly dominates the portfolio with low signals (ιijk = 0). Let dX̂ci
j denote the number

of shares in each asset in market j in which the investor has a positive signal. Consequently, (B.4)

is equal to

E

[
U

(∫
j

∫
k

(
ρ(jk)Dj − Pj

)
1(ιijk=1)dkdX̂

ci
j + Pi

)
|ιi
]

(B.5)

= E
[
U
(∫

j ((1− fij)Dj − Pj)Pr
(
ιijk = 1

)
dX̂ci

j + Pi

)]
.

It follows that the optimal position is

dX̂ci
j = Pr

(
ιijk = 1

)−1
dXci

j = (1− fij)−1κ dXci
j . (B.6)

Equation (B.1) is immediate.

The same argument holds for the choice that a swindler makes with respect to all assets but

her own. When choosing the position in her own asset, the only consideration is the time-zero

revenue (1 − dXsil
il )Pil, since the asset pays zero. Given the other investors’ demands, the insider

must ensure that Pil = Pi. To that end she submits a demand that fails to clear the market at

Pil 6= Pi, and is willing to take any position at Pil = Pi.

To see that markets clear at prices Pj , start from (9) and a consider a regular firm k in market
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j. Since by assumption we have ιijk = 1, the total demand follows from adding (B.1) and (B.2)

over all i, which gives

κ

∫
i
dXci

jk + (1− κ)

∫
i
dXsil

jk =

∫
i
(1− fij)κ−1dXi

j = 1 (B.7)

by (9). The markets for fraudulent assets clear due to the elastic demands submitted by insiders.

Proof of Lemma 2. The proof rests on the observation that every agent is either indifferent

toward buying a particular market j or bound by the shorting constraint. Also recall that the

risk-free rate is r = 0. This means

Pj ≥ (Ei[U ′(W i
1)pijDj ])/E

i[U ′(W i
1)] ≥ (Ei[U ′(W i

1)κDj ])/E
i[U ′(W i

1)] = Ei[ξiκDj ],

where we defined ξi ≡ U ′(W i
1)/Ei[U ′(W i

1)]. The first inequality is strict whenever the Lagrange

multiplier λij is strictly positive, while the second whenever pij > κ. Since pij > κ for at least one

pair (i, j), choosing investor i accordingly and summing over j, we have

E[ξκDa] =

∫
j
Pjdj > Ei[ξiκDa] = P a, (B.8)

where the last equality follows from the fact that all agents, including agent i, are marginal in the

aggregate-index derivative.

Proof of Lemma 3. Let Mj be the return on index j, fix an investor i, let Rij be this investor’s

return in market j and Ri on the risky portion of her portfolio; use a bar over a random variable

to indicate its mean. The goal is to compute the weights dB̂i and αi in the decomposition

Ri = αi +

∫
MjdB̂

i
j + ηi

that minimizes V ar(ηi) subject to
∫
dB̂i

j = 1.

The minimization problem is equivalent to minimizing the Langragian

var

(∫
MjdB̂

i
j

)
− 2cov

(
Ri,

∫
MjdB̂

i
j

)
− 2λi

∫
dB̂i

j , (B.9)
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with first-order condition

∫
cov(Mj ,Mk)dB̂

i
j = cov(Ri,Mk) + λi (B.10)

for all k.

Let µj = κ/Pj be the expected return on index j, so that

Mj = µjDj , (B.11)

and define

dBi
j =

pij
κ
dwij. (B.12)

Notice that Ri =
∫
jMj

pij
κ dw

i
j . The first-order condition can be written as

∫
cov(µjDj , µkDk)dB̂

i
j =

∫
cov(µjDj , µkDk)dB

i
j + λi, (B.13)

with solution of the form

dB̂i
j = dBi

j + λiY i
j dj (B.14)

for an appropriate Y i, i.e., solving the linear system

∫
cov(µjDj , µkDk)Y

i
j dj = 1. (B.15)

Note that this system is independent of the agent, enabling us to write Y instead of Y i.

Then the style alpha is given by

αi =

∫
µj

(
dBi

j − dB̂i
j

)
= −λi

∫
µjYj dj. (B.16)

We note that, in the special case βDj = 1 for all j, the integral can be calculated by dividing (B.15)
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by µk and integrating against dk to obtain

∫
µ−1
k dk =

∫
cov(Dj , D

a)µjYj dj (B.17)

= σ2
a

∫
µjYj dj. (B.18)

In general, the value of the integral does not depend on the agent.

Finally, to write an expression for λi, integrate (B.14):

−λi =

∫
dBi

j − 1∫
Yj dj

. (B.19)

Putting together (B.16) and (B.19), the style alpha equals

αi =

(∫
pij
κ
dwij − 1

) ∫
µjYj dj∫
Yj dj

. (B.20)

The last term is independent of i and, indeed, of the agent’s skill, so that the formula would apply

even if there were agents with differing skills in each locations.

We conclude by noting the simplification that obtains in the special case in which Pj = P for

all j:

αi =

∫
pij − κ
P

dwij . (B.21)

Proof of Lemma 4. The utility of an uninformed investor choosing dXi
j satisfies

E

[
U

(∫
j

(κDj − Pj) dXi
j + Pi

)]
≤ E

[
U

(∫
j

(E[κ]Dj − Pj) dXi
j + Pi

)]
, (B.22)

since the function inside the square bracket on the left-hand side is concave in κ. For non-trivial

distributions of κ the inequality is strict.

On the other hand, an informed investor attains utility

max
dXi

j≥0
E
[
U
(
((pij − ϕij)Dj − Pj) dXi

j + Pi
)]
. (B.23)
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It follows that, for fixed κ, choosing ϕij so that E[κ] − (pij − ϕij) is sufficiently close to zero, but

positive, for all i and j, investors choose to pay for the information, yet

E [κ]

Pj
>
pij − ϕij

Pj
. (B.24)

The result follows.

Proof of Lemma 5. We note that since Liwi = 0, it follows that Qiwi = Q−1
i wi = wi. Letting

Π̂i denote the (diagonal) matrix Π̂i = P̂−1
i Qi, equation (21) can be written more compactly as

Π̂−1
i wi = Q−1

i P̂iwi = P̂iQ
−1
i wi = P̂iwi =

1

γ
Ω−1P̂i

−1
[
P̂iµ−RQieN×1

]
=

1

γ
Ω−1

[
µ−RΠ̂ieN×1

]
,

where Q−1
i P̂i = P̂iQ

−1
i , since both Q−1

i and P̂i are diagonal matrices. Letting Πi = KP̂−1
i Qi, and

µo = Kµ, we obtain (22).

Proof of Lemma 6. Imposing the same market clearing conditions as in Sercu (1980), and using

(22) we obtain

m =
∑
i=1..N

ηiΠ
−1
i wi =

1

γ
Σ−1
S|f

[
µS,f −RΠdiag(η)eN×1

]
, (B.25)

Combining (B.25) with µS,f = µS − β′
(
µf −ReN×1

)
leads to (26). Similarly, adapting the argu-

ments as in Sercu (1980) and imposing bond market clearing leads to (27). From equations (23)

and (B.25), we have

wi =
1

γ
ΠiΣ

−1
S|f

[
µS,f −RΠieN×1

]
= Πim+

R

γ
(Πi − IN×N + IN×N ) Σ−1

S|f (Π− eN×N + eN×N ) diag(η)eN×1

−R
γ

(Πi − IN×N + IN×N ) Σ−1
S|f (Πi − IN×N + IN×N ) eN×1.

Noting that eN×Ndiag(η)eN×1 = eN×1, where eN×N is an N -by-N matrix of ones, we obtain

wi = Πim+
R

γ
Σ−1
S|fΠdiag(η)eN×1 −

R

γ
Σ−1
S|fΠieN×1 + o(||Π− 1||). (B.26)

Re-arranging (B.26) into vector form leads to (24) and (25).
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Proof of Proposition 7.

To construct an equilibrium, we proceed in a number of steps. We first construct demand

functions under the postulate, later verified, that all assets in the same location have the same

price, shorting is prohibited, and there is no dividend manipulation. In a second step we extend

the demand functions to cover all other price configurations, while in subsequent steps we address

out-of-equilibrium beliefs, dividend manipulation, and, in a final step, shorting. We focus on a

particular investor 1 and use symmetry throughout.

Step 1: Two-asset equilibrium. Suppose that Pj exists such that Pjk = Pj for all firms jk.

Consider the investment problem of any agent 1, common investor or swindler. We note that, given

her signals on any location j, the agent (i) excludes from consideration all firms with bad signals

— these have zero payoff — and (ii) invests equally in all the others, thus minimizing idiosyncratic

risk.37 At this stage, we also assume that the beliefs about the asset qualities are given by the

signals, and are not updated based on the price. We address out-of-equilibrium beliefs in a later

step.

This problem is a relatively standard, perfect-information one, featuring mean-variance investors

facing differential taxes who invest strategically in multiple assets in the presence of shorting con-

straints. For the sake of completeness, we sketch proofs of both existence and convergence towards

the competitive outcome as the number of agents grows to infinity.

Given that the asset payoffs in the two locations are independent and preferences are CARA,

investments in the two assets do not interact. Market clearing, however, involves the demands of

both agents, so we choose to write the problem in matrix form, even if all endogenous matrices are

diagonal.

Let Π be diagonal with Πjj = p1j . Agent 1 faces a two-asset universe with expected payoffs

diag(Π) and variance-covariance matrix of payoffs ΠΩΠ. With X the portfolio choice of the agent,

it is convenient to focus on the quantity Y = ΠX . We are looking for an equilibrium in which all

demands, as functions of the two prices, are piece-wise linear — in fact, linear truncated at zero.

Relying on symmetry, we need to parameterize only the demand of agent 1, as

Y = (A−BP )+ = Z (A−BP ) , (B.27)

37The agent is perfectly informed about location 1, and thus does not face any idiosyncratic risk, but equal weighting
is, of course, still optimal, albeit only weakly.
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where P ∈ R2 denotes the vector of prices per share in the two markets, and Z is a diagonal matrix

with Zjj = 1 if entry j of A − BP is positive and Zjj = 0 otherwise. Z is a function of P . A

requirement of the equilibrium is that, taking all other demand schedules as given, an agent 1’s

optimal portfolio choice, denoted X̂ (respectively Ŷ ), and therefore P , is optimal subject to the

restriction X̂ ≥ 0. The type of equilibrium we are looking for requires that Ŷ = Z(A−BP ).

Consider price setting for a regular firm. We note that if an agent 1 demands X (∈ R2) total

shares in each location, the total demand for regular-firm shares is only ΠX = Y . The reason is

that, in market j, a proportion 1− p1j of the demand flows to fraudulent firms.

Given (B.27), it follows that the residual demand faced by an agent 1 for the aggregate regular

asset in each location is also linear, given as

Y (r) = A(r) −B(r)P, (B.28)

with A(r) = (N−1)ZA+NRZA and B(r) = (N−1)ZB+NRZBR, where the matrixR implements

the permutation 1↔ 2 applied to all indices to capture the demand of agents in location 2; that is,

R =

 0 1

1 0

 .
An agent 1 maximizes

Ŷ >
(
1−Π−1P

)
+
κ

N
e>1 P −

γN

2
Ŷ >ΩŶ , (B.29)

where e1 = (1, 0)> is a vector that selects market 1, to capture the agent’s endowment, and

1 = (1, 1)>. Note that the agent’s endowment represents a fraction 1/N of the total endowment in

market 1, and his risk tolerance a fraction 1/N of the aggregate risk tolerance of agents in location

1. The agent takes into account that the price depends on her demand through the market-clearing

condition

Ŷ + Y (r)(P ) = κ1. (B.30)

The logic of the argument is familiar. The agent can be thought of as choosing the quantity Ŷ
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and via (B.30) the price vector P , taking the residual demand as given. Before we compute the

optimal demand, we remark, based on (B.29), that (i) if P1 < 1, then Ŷ1 > 0 , and (ii) Ŷ2 > 0 if

and only if P2 < p. Since the market for asset 1 must clear, Y1 > 0 in equilibrium, while Y2 may or

not be positive.

The first-order condition for the Lagrangean associated with (B.29) is

0 = 1−Π−1P − (DŶ P )Π−1Ŷ + (DŶ P )e1
κ

N
− γNΩŶ + λ, (B.31)

where λ is the Lagrange-multiplier vector attached to the no-shorting condition, while differentiating

(B.30) with respect to Ŷ gives

0 = 1 +DPY
(r)DŶ P

= 1−B(r)DŶ P. (B.32)

Note that, via Z, A(r) and B(r) are actually functions of P . Since they are step functions, though,

we may treat them as constants when evaluating first-order conditions. We verify later that the

first-order approach generates an equilibrium in our context.

Putting (B.31) and (B.32) together provides a candidate demand schedule for agent 1:

Ŷ = Ẑ

((
B(r)

)−1
Π−1 + γNΩ

)−1(
1−Π−1P +

(
B(r)

)−1
e1
κ

N

)
. (B.33)

We’ll define the coefficients of the linear demand of the agent 1 under consideration based on (B.33),

but we first determine the value that the matrix Z, and therefore Ẑ, takes in equilibrium. Let P ∗

denote the equilibrium price and suppose that P ∗1 > p, so that agent 1 is the only one investing in

market 1. Then, from (B.33) market clearing implies

κ = NŶ =

(
N−1

(
B

(r)
11

)−1
+ γσ2

)−1(
1− P ∗1 +N−1

(
B

(r)
11

)−1
κ

)
, (B.34)

which gives upon rearrangement

P ∗1 = 1− γκσ2. (B.35)
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Thus, if p < 1−γκσ2 and the equilibrium satisfies (B.33), then agent 1 doesn’t invest in market

2.

Suppose now that the agent invests in both markets. We use again market clearing from (B.33),

κ =

(
N−1

(
B

(r)
11

)−1
+ γσ2

)−1(
1− P ∗1 +N−1

(
B

(r)
11

)−1
κ

)
+ (B.36)(

N−1
(
B

(r)
22

)−1
p−1 + γσ2

)−1 (
1− p−1P ∗2

)
,

which, using P ∗1 = P ∗2 , leads to

P ∗1 = 1− γκσ2 +

(
N−1

(
B

(r)
11

)−1
+ γσ2

)
(
N−1

(
B

(r)
22

)−1
p−1 + γσ2

) (1− p−1P ∗1
)
, (B.37)

further rewritten as

(p− P ∗1 ) (1 + a0) = p−
(
1− γκσ2

)
(B.38)

with

a0 =

(
N−1

(
B

(r)
11

)−1
+ γσ2

)
(
N−1

(
B

(r)
22

)−1
+ pγσ2

) > 0.

Thus p > P ∗1 , implying active participation of agent 2 in market 1 if and only if p > 1− γκσ2. We

have therefore shown that Z22(P ∗) = 1(p>1−γκσ2), should an equilibrium exist.

Let Z∗ ≡ Z(P ∗). We define the demand of agent 1 under consideration based on the coefficients

φ (B) = Z∗
((

B(r)
)−1

+ γNΩ

)−1

Π−1 (B.39)

ψ (B) = φ (B) Π

(
1 +

(
B(r)

)−1
e1
κ

N

)
. (B.40)

Note that we used the known value of Z∗ in this definition, as defined above.

Suppose that the mapping φ : R2 → R2 admitted a non-zero, positive fixed point. Then let
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A = ψ(B) and compute the price from the market-clearing condition. It follows from equation

(B.33) that Ŷ = ψ(B)− φ(B)P ∗ as long as Ẑ(P ∗) = Z∗, i.e., as long as (i) (ψ(B)− φ(B)P ∗)11 =

(A−BP ∗)11 is positive, and (ii) (ψ(B)− φ(B)P ∗)22 = (A−BP ∗)22 is positive if and only if

Z∗22 = 0, thus p > 1− γκσ2.

Note, however, that Z∗22 = 0 implies B22 = A2 = 0, and therefore Ẑ22(P ∗) = 0. Given symmetry

and market clearing, it follows that A1 −B11P
∗
1 > 0. If Z∗22 = 1 and both investors invest in both

markets, then we saw above that market clearing leads to (B.38), which implies P ∗1 < p. From the

definitions,

A−BP ∗ =

((
B(r)

)−1
+ γNΩ

)−1(
1 +

(
B(r)

)−1
e1
κ

N
−Π−1P ∗

)
. (B.41)

Since P ∗1 < p, 1−Π−1P ∗ > 0, and therefore (A−BP ∗)jj > 0, thus Ẑ∗jj > 0, for j ∈ {1, 2}.

One can use Brouwer’s theorem to show that φ has a strictly positive fixed point, as follows.

It is convenient to concentrate on the mapping φN (NB) ≡ Nφ(B). To invoke this theorem, we

restrict attention to B1 > 0 (and B2 ≥ 0) and note that, as a consequence, the image of φN is

bounded above (in the operator sense) — uniformly in N , in fact. We also see that δ > 0 exists

such that, if NB1 ≥ δ, then (φN (NB))1 > δ. Specifically, from (B.39) it follows that δ must obey

N
(

(2N − 1)−1 δ−1 + γNσ2
)−1
≥ δ, (B.42)

which holds, for instance, for

δ =
1

2

(
γσ2

)−1
. (B.43)

Thus, we have verified that the continuous mapping φN maps a compact set into itself, and therefore

has a fixed point B characterized by B1 > δ > 0, B2 ≥ 0.

The last fact that must be established before concluding that we have an equilibrium is that

the agents’ portfolios are, indeed, optimal. We constructed them to satisfy first-order conditions,

but the agents’ objectives (B.29) are not concave in general. Given equilibrium residual demands,

though, they are concave.
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To make the matters clear, we rewrite (B.29) as

Ŷ >1−
(
Ŷ >Π−1 − κ

N
e>1

)
P − γN

2
Ŷ >ΩŶ , (B.44)

Since P is not a constant, this function is not quadratic in Ŷ . The implicit function P (Ŷ ), though,

defined via (B.30), is (piece-wise linear and) convex. To obtain concavity, it is sufficient that P (Ŷ )

be linear whenever Ŷ >Π−1 − κ
N e
>
1 < 0. Differently put, that for Ŷ < κ

NΠe1 = κ
N e1, both agents

are long in both markets given equilibrium demands and P (Ŷ ).

Obviously, there is no problem concerning asset 2 (since e12 = 0: agent 1 has no endowment of

asset 2). For asset 1, consider first the case in which agents only participate in their home markets

in equilibrium. Since we defined A2 = B22 = 0, i.e., constant, in this case, there is no issue. In the

other case, suppose that the agent increases Ŷ1 until agents 2 drop out of the market, i.e., the price

becomes P1 = p. Each other agent 1, at this price, holds

A1 −B11p =
(

(B
(r)
11 )−1 + γNσ2

)−1 (
1 + (B

(r)
11 )−1 κ

N
− p
)

(B.45)

<
(

(B
(r)
11 )−1 + γNσ2

)−1 (
(B

(r)
11 )−1 κ

N
+ γκσ2

)
(B.46)

=
κ

N
, (B.47)

where we used p > 1 − γκσ2. The residual demand is therefore linear until a point where Ŷ1 =

κ− (N − 1)(A1 −B11p) >
κ
N .

Let’s turn now to the behavior of this equilibrium as N grows large. Since NB is bounded

below by δ > 0 (independently of N), (B.39) implies

B̄ = Z∗ (γΩ)−1 Π−1, (B.48)

with B̄ denoting the limit of NB.

We note that limN→∞B
(r) = B̄ +RB̄R. It follows, using (B.40), that the limit of NA is

Ā = B̄Π1 = Z∗ (γΩ)−1 1 (B.49)
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and that the limit price per share is

P̄ =
(
B̄ +RB̄R

)−1
(Ā+RĀ− κ1). (B.50)

The quantities Ā and B̄ also correspond to the solution to (B.29) taking the price as given. The

price P̄ is therefore the competitive price in the two-asset, short-sale constrained equilibrium. The

term
(
B̄ +RB̄R

)−1
(Ā+RĀ) captures the aggregate expected payoff from an asset one invests in.

The remaining term is the risk adjustment, with κ1 the supply of the asset, and
(
B̄ +RB̄R

)−1

accounting for the covariance between one asset the aggregate investor purchases and one unit of

the total supply.

Step 2: The other demands. Returning to the finite-N case, we consider now the demand of a

swindler in her own firm. Given that the only way to generate a positive demand in her firm —

given the other agents’ equilibrium strategies, described below — is to ensure that its price is P1,

the swindler submits a perfectly elastic demand at the price P1 at which all other firms clear, as

long as the demand is a quantity that does not exceed one. At all other prices, the swindler submits

a demand (1,∞), i.e., stands ready to clear the market as long as she takes a gross position higher

than one. This case can only obtain when another agent is willing to short at the respective price,

and the optimal reaction of the swindler is to accommodate the shorter and manipulate dividends,

as we describe below.

Formally, the demand of the swindler for her own firm l is

Xsl(P1l) =

 (−∞,∞) if ∃P1 & P1l = P1

(1,∞) if @P1 or P1l 6= P1

. (B.51)

We also note that, in equilibrium, the swindler never shorts her own firm, since the demand for it

is lower than the demand for a regular firm, about which the signals are better.

All agents demand a zero amount of shares in firms in which they have bad signals. Local

agents know precisely all regular firms. If the set of prices of regular firms in market 1 is not a

singleton, then we specify the demand of agent 1 as Ŷ1j = ∞ for all j such that P1j < maxk P1k,

and Ŷ1j = −∞ for all j such that P1j = maxk P1k. If all positive-signal firms in market 2 do not

have the same price, then agent 1 maximizes utility conditional on his out-of-equilibrium beliefs,

stated below. The important feature to note is that no deviation by a swindler can prevent the
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regular firms having the same price — this is ensured by the demands of the local common investors

— and therefore the only relevant belief concerns the case in which the price P2j of a fraudulent

firm is not equal to that of at least κN other firms in location 2.38

Step 3: Out-of-equilibrium beliefs. Investor 1 knows all types in market 1. Suppose that she

observes prices P2k. Given κ > 1
2 , there are only two possibilities. First, at least κN firms of

the p−1κN ones about which the investor has positive signals have the same price (there is only

one price level for which this statement is true). Then the agent assigns probability one that all

firms with different price are fraudulent. Second, there is no such subset of firms. Then the agent

believes that the prices are entirely uninformative.

As remarked above, given the prescribed strategies, no swindler can bring about the second

case, and it is optimal for each swindler to induce the pooling outcome, as it carries zero cost and

unilateral deviation exposes the firm as certainly fraudulent.

Finally, common agents do not have an incentive to adjust demand for the regular stocks in

market 1 in the hope of signaling, given the swindlers’ equilibrium demand (which ensures the same

price for the fraudulent firm as for the regular ones).

Step 4: Dividend manipulation. The swindler’s action also includes the amount of dividend

manipulation she engages in, subsequent to asset-market clearing. If the swindler borrows the

amount F ≥ 0 that she diverts in the firm, then she makes profit

Xsl (F − P1l)− F + Pil = Pil

(
1−Xsl

)
+ F

(
Xsl − 1

)
. (B.52)

Clearly, if Xsl > 1, the swindler benefits from borrowing an arbitrarily large amount L to divert

in the firm, pushing its liquidating price arbitrarily high and making arbitrarily high profits. As

long as there is no shorting, however, there is no manipulation.

Step 5: Shorting. Agent 1 is perfectly informed about assets in market 1, and does not short

regular assets in market 1, as discussed in Step 1. She also does not short fraudulent assets in

market 1 because agent 2 may also know that they are fraudulent, and therefore the swindler

would be the only buyer, would end up being a net buyer of the asset and manipulate the dividends

to an arbitrary extent. Agent 1 does not short an asset in market 2 that is fraudulent, for everyone

38To simplify exposition, we make the parametric assumption κ > 1
2
, which excludes the possibility that there are

two or more disjoint sets of firms of size κN , which may have the same price.
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knows that it is fraudulent. Finally, she may consider shorting an asset in market 2 about which

she has a positive signal. If the equilibrium demand for market 2 by agent 1 in the shorting-

constrained economy without manipulation is zero, then there is a positive probability that the

asset is fraudulent and no one else invests in it. If this demand is actually strictly positive, then

taking a negative position would be suboptimal even in the absence of the manipulation threat.
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