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Abstract

The treatment of this article renders closed-form density approximation feasible for univariate

continuous-time models. Implementation methodology depends directly on the parametric-form of the

drift and the diffusion of the primitive process and not on its transformation to a unit-variance process.

Offering methodological convenience, the approximation method relies on numerically evaluating one-

dimensional integrals and circumvents existing dependence on intractable multidimensional integrals.

Density-based inferences can now be drawn for a broader set of models of equity volatility. Our

empirical results provide insights on crucial outstanding issues related to the rank-ordering of

continuous-time stochastic volatility models, the absence or presence of nonlinearities in the drift

function, and the desirability of pursuing more flexible diffusion function specifications.
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1. Introduction

Whether the end-goal is martingale pricing or maximum-likelihood estimation, theory
invariably requires the knowledge of the transition density of the economic variable, which
is generally unamenable to closed-form characterization. In this sense the lack of
analyticity of the density function has hampered empirical testing and the validation of
alternative hypotheses about continuous-time models. To remedy this deficiency, Aı̈t-
Sahalia (1999, 2002) proposes a method to approximate the transition density in a one-
dimensional diffusion setting. Given its utility to the researcher in applied and theoretical
work, the purpose of our article is to expand on the analytical density approach of Aı̈t-
Sahalia (1999, 2002), and our treatment renders the original method feasible for a
substantially larger class of one-dimensional models. Based on this modification we
empirically implement the density approximation method to study the plausibility of
general models of equity volatility. Density-based inferences allow us to disentangle issues
connected with the rank-ordering of continuous-time volatility models, the presence of
nonlinearities in the drift function, and the desirability of adopting more flexible diffusion
specifications.
The motivation for our analysis to expand on Aı̈t-Sahalia (1999, 2002) derives from two

considerations. First, in the context of one-dimensional diffusions dX t ¼ m½X t�dtþ

s½X t�dW t, for economic-variable X t, extant density approximations hinge on transform-
ing X t to a unit-variance process via

RX
du=s½u� and then on inverting

RX
du=s½u�. This

requirement has proved analytically challenging for some economic models (see Bakshi
and Ju, 2005). While developing the likelihood function of arbitrary multivariate
diffusions, Aı̈t-Sahalia (2003) constructs a Taylor series solution of the expansion
coefficients. Such a procedure is capable of delivering a closed-form density approximation
even when the multivariate diffusion is not reducible. A potential trade-off exists between
the fully closed-form irreducible method and our approach. Second, in the enhanced-
method of Aı̈t-Sahalia (1999, 2002), the recursively defined coefficients that fulfill the
forward and backward equation have a multidimensional integral dependence and are
seldom tractable outside of the constant elasticity of variance diffusion class. The
framework of our paper overcomes both hurdles associated with implementing Aı̈t-Sahalia
(1999, 2002). Broadening the appeal of the methodology we show that the density
approximation can be derived without reducing the primitive process to a unit-variance
process and without analytically integrating and inverting

RX
du=s½u�. The contribution of

our approach also lies in determining the recursively defined expansion coefficients that
exhibit at most a single integral dependence and consequently affords tractability. An
advantage of this new approach is that it causes the density approximation to be virtually
analytical for continuous-time models with nonlinear drift and diffusion functions of the
general type analyzed in Aı̈t-Sahalia (1996).
Market index volatility is one of the most fundamental variables determined in financial

markets and is a particularly relevant input into option pricing, risk management
systems, and volatility-based contingent claims. Despite the flurry of recent modeling
efforts (see Andersen et al., 2003; Heston, 1993; Jones, 2003) no consensus has been
reached on the dynamic evolution of equity volatility in continuous-time. Exploiting the
closed-form density approximation, our empirical analysis of daily market volatility
provides evidence for a volatility process that has substantial nonlinear mean-reverting
drift underpinnings.
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Supporting a strand of drift specifications taking the parametric form
a0 þ a1X t þ a2X 2

t þ a3X�1t , the finding of statistically significant a2o0 and a340 indicates
a reversal in the drift function at both high and low ends of the equity volatility spectrum.
Volatility processes omitting a role for nonlinear diffusion coefficient s½X � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b1X t þ b2X
b3
t

q
with b342 are structurally flawed and destined for unsatisfactory

empirical performance. Thus the inconsistency of affine stochastic volatility models (i.e.,
Heston, 1993) can be attributed to misspecified drift and diffusion coefficients. Overall, an
equity market variance specification with nonlinear drift and diffusion function delivers
the most desirable goodness-of-fit statistics, and this empirical result has wide-ranging
implications for pricing and trading of risks associated with equity and volatility
derivatives.

The rest of the paper proceeds as follows. Section 2 discusses the enhanced density
approximation method of Aı̈t-Sahalia (1999, 2002) and develops results aimed at
simplifying the multidimensional structure of the expansion coefficients up to fourth-
order. Our characterizations are derived entirely in terms of the drift and diffusion of the
underlying primitive process. Section 3 presents the density approximation for the
encompassing model of Aı̈t-Sahalia (1996). Section 4 is devoted to empirically evaluating
continuous-time models of equity volatility. Section 5 summarizes our contributions and
concludes.
2. Maximum-likelihood estimation of continuous-time models

Consider a one-dimensional diffusion process for a state variable X t:

dX t ¼ m½X t; y�dtþ s½X t; y�dW t, (1)

where m½X t; y� and s½X t; y� are, respectively, the coefficients of drift and diffusion, and y
represents the unknown parameter vector in an open-bounded set Y � Rd . The maximum
likelihood estimation of y using discretely observed data requires the underlying transition
density.

To facilitate empirical testing using density methods, Aı̈t-Sahalia (1999, 2002) develops
two analytical density approximations. Of particular interest are the enhanced formulae in
Aı̈t-Sahalia (1999, 2002), which correspond to the limit in which the order of the Hermite
polynominals converges to infinity and is derived by forcing the coefficients to fulfill the
Fokker–Plank–Kolmogorov partial differential equation. The contribution of this section
is to propose a modification to the enhanced method and shows that the resulting density
approximation applies to a broader class of m½X t; y� and s½X t; y�.
2.1. Enhanced method in Aı̈t-Sahalia (1999, 2002)

Aı̈t-Sahalia (1999, 2002) constructs a unit-variance process Y t defined by

Y t � g½X ; y� ¼
Z X t du

s½u; y�
. (2)
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Letting g�1½y; y� be the inverse function of g½X ; y�, the drift of dY t is

mY ½y; y� ¼
m g�1½y; y�; y
� �
s g�1½y; y�; y½ �

�
1

2

qs g�1½y; y�; y
� �

qx
. (3)

Denoting f½z� � e�z2=2=
ffiffiffiffiffiffi
2p
p

and D as a discrete time interval, Aı̈t-Sahalia (1999, 2002)
shows that the density of Y t ¼ y can be approximated up to the Kth term by

p
ðKÞ
Y ½D; yjy0; y� ¼ D�1=2f

y� y0

D1=2

� �
exp

Z y

y0

mY ½w; y�dw

 !XK

k¼0

ck½yjy0; y�
Dk

k!
(4)

with c0½yjy0; y� � 1. For jX1, the recursive coefficients, cj½yjy0; y�, can be derived by solving

cj ½yjy0; y� ¼ jðy� y0Þ
�j

Z y

y0

ðw� y0Þ
j�1 l½w�cj�1½w� þ

1

2

q2cj�1½wjy0; y�
qw2

 !
dw, (5)

where l½y; y� is defined in terms of the drift function of dY t as

l½y; y� � �
1

2
m2Y ½y; y� þ

qmY ½y; y�
qy

� �
. (6)

The transition density of X t is then obtained through the Jacobian formula as

p
ðKÞ
X ½D;xjx0; y� ¼ ðs½x; y�Þ

�1p
ðKÞ
Y ½D; g½x�jg½x0�; y�. (7)

Several aspects of this methodology need discussion. For the expansion in Eq. (4) to
converge, the X t process in Eq. (1) must first be transformed to be sufficiently Gaussian.
Based on the theoretical models adopted by Aı̈t-Sahalia (1999), when Y t and g�1½y; y� are
in analytical closed-form, then mY ½y; y� and l½y; y� are completely analytical and the
reduction to a unit-variance diffusion is feasible. Both Brandt and Santa-Clara (2002) and
Durham (2003) point that, for a broad class of continuous-time models, the reduction step
from X t to Y t is restrictive and can curb the appeal of the density approximation in
empirical applications.
Recognizing this disparity between theory and implementation, Bakshi and Ju (2005)

relax the requirement that both Y t and g�1½y; y� be known analytically, and they explain
how the Hermite expansions in the basic approach of Aı̈t-Sahalia (2002) can be
reformulated so that only the numerical value of Y t is needed. While the Bakshi and Ju
(2005) refinement is appealing because it makes the density approximation possible for a
wide class of s½X �, there are reasons to believe that the method in Eq. (4) is superior if it
can be transformed to make it apply to an equally wide class. The accuracy tests in Bakshi
and Ju (2005) indicate that the approximation based on Eq. (4) is accurate with expansion
coefficients as few as three and is substantially more reliable. The Hermite approach relies
on expanding the density of Y t around a standard normal, while the expansion in Eq. (4)
forces the density function to satisfy the Kolmogorov forward and backward equations to
the order DK , resulting in greater accuracy.
The second feature of the methodology concerns the determination of the re-

cursively defined cj½yjy0; y�. From the form of Eq. (5) it could be observed that
c1½yjy0; y� and c2½yjy0; y� can be derived by solving one-dimensional integrals and
two-dimensional integrals, respectively, and higher-dimensional integrals are involved
in implementing the density approximation with c3½yjy0; y� and beyond. For example,
Aı̈t-Sahalia (1999) has solved the density function for models satisfying
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dX t ¼ ða0 þ a1X t þ a2X 2
t þ a3X�1t Þdtþ sX

r
t dW t, where each cj ½yjy0; y� is fully analytical.

However, the expressions for leading terms cj½yjy0; y� are still unknown under a general

class of m½X t; y� and s½X t; y�. Suppose dX t ¼ ða0 þ a1X t þ a2X 2
t þ a3X�1t Þdtþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b0 þ b1X t þ b2X
b3
t

q
dW t. For this particular model class the multidimensional integrals

embedded in cj½yjy0; y� remain unsolved, thereby eluding closed-form representations for

fc1½yjy0; y�; c2½yjy0; y�; c3½yjy0; y�; . . . ; cK ½yjy0; y�g. The lack of analyticity of cj½yjy0; y� is
problematic as it has impaired the density-based inference of models with arbitrary m½X ; y�
and s½X ; y�.

Citing this reason, Durham and Gallant (2002) and Brandt and Santa-Clara (2002)
argue in favor of simulation-based methods. However, simulation methods can be
cumbersome and computationally expensive. Our objective is to characterize transition
densities for a broad parametric class of diffusion processes and exploit them for empirical
testing and model selection.

2.2. Central elements of the modification

The proposed approximation method directly exploits the form of m½X t; y� and s½X t; y�
and bypasses closed-form reliance on mY ½y; y� and

RXt du=s½u; y� in practical applications.
Our analytical contributions also ensure that each cj ½yjy0; y� contains at most one-
dimensional integrals, not a set of complex multidimensional integrals.

2.2.1. Circumventing the reliance of the approximation on mY ½y; y�
Models for m½X ; y� and s½X ; y� contained in Aı̈t-Sahalia (1999) stress that when Y t and

g�1½Y ; y� are analytical so are mY ½Y � and l½Y �. For this family of continuous-time models,
Eqs. (4), (5), and (7) constitute a conceptually simple and accurate approximation method.
However, when Y t or g�1½Y ; y� or both do not admit closed-form representation, it is
expedient to reexpress all required density approximation components in terms of m½X ; y�
and s½X ; y� of the original X t process.

Proposition 1. Let s0½X � � qs½X �=qX and define the function

f ½X � �
m½X �
s½X �
�

s0½X �
2

(8)

by analogy with Eq. (3). The following density approximation components can be obtained in

terms of m½X � and s½X � of the original process X t (suppressing the dependence on y):

l½y� ¼ �1
2
ðf 2
½x� þ f 0½x�s½x�Þ, (9)

l0½y� �
ql½y�
qy
¼ �

1

2
s½x�ðf 2

½x� þ f 0½x�s½x�Þ0, (10)

l00½y� �
q2l½y�
qy2
¼ �

1

2
s½x�ððf 2

½x� þ f 0½x�s½x�Þ0s½x�Þ0, (11)

y� y0 ¼

Z x

x0

du

s½u�
, (12)
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and, Z y

y0

mY ½w�dw ¼

Z x

x0

f ½u�
du

s½u�
, (13)

Z y

y0

l½w�dw ¼ �
1

2

Z x

x0

ðf 2
½u� þ f 0½u�s½u�Þ

du

s½u�
, (14)

Z y

y0

l2½w�dw ¼
1

4

Z x

x0

ðf 2
½u� þ f 0½u�s½u�Þ2

du

s½u�
. (15)

Proof. Make the change of variable x ¼ g�1½y�. Based on the definition of g½X � given in
Eq. (2), dy ¼ dx=s½x�. From the definition of l½y� in Eq. (6) and the new variable x comes
Eq. (9). The chain rule of differentiation implies l0½y� ¼ ql½y�=qx qx=qy in Eq. (10).
Similarly, Eq. (11) results. Noting that

mY ½y� ¼ m½g�1½y��=s½g�1½y�� �
qs½g�1½y��

qx

�
2

¼ m½x�=s½x� � s0½x�=2

and using dy ¼ dx=s½x�, we have the expression in Eq. (13). Using Eq. (9) and dy ¼

dx=s½x� leads to Eqs. (14) and (15).

2.2.2. Reduction of cj½yjy0; y� to a set of one-dimensional integrals

Proposition 2. For the recursively defined coefficients cj½yjy0; y� in Eq. (5) and l½y; y� defined

in Eq. (6), the higher-order cj½yjy0; y� is derived analytically with only one-dimensional

integral dependence (suppressing the y0 and y arguments):

c1½y� ¼
1

y� y0

Z y

y0

l½w�dw, (16)

c2½y� ¼ c21½y� þ
1

ðy� y0Þ
2
ðl½y� þ l½y0� � 2c1½y�Þ, (17)

c3½y� ¼ c31½y� þ
3

ðy� y0Þ
2
ðc1½y�ðl½y� þ l½y0�Þ � 3c2½y�Þ

þ
3

ðy� y0Þ
3

l0½y� � l0½y0�

2
þ

Z y

y0

l2½w�dw

 !
, ð18Þ

and

c4½y� ¼ c41½y� þ
3

ðy� y0Þ
2
ð2l½y�c2½y� � 8c3½y� þ 2l½y0�c

2
1½y�Þ

þ
12c1½y�

ðy� y0Þ
3

l0½y� � l0½y0�

2
þ

Z y

y0

l2½w�dw

 !

þ
3

ðy� y0Þ
4
ð3l2½y� þ 5l2½y0� þ 4l½y�c1½y� � 12c2½y� þ l00½y� þ l00½y0�Þ. ð19Þ
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Proof. See Appendix A.

c1½y� involves computing two simple integrals: y� y0 ¼
R x

x0
du=s½u� and

R y

y0
l½w�dw. Once

c1½y� is obtained, c2½y� follows immediately and c3½y�merely requires
R y

y0
l2½w�dw. With c3½y�

known, c4½y� can be easily recovered and involves no further integrals. Viewed from this
perspective of solving one-dimensional integrals, the density approximation with K ¼ 4
constitutes an efficient method. Thus Proposition 2 achieves the crucial task of reducing
the recursively defined multidimensional integrals in cj½y� to those involving only the one-
dimensional integrals outlined in Proposition 1.

With the relevant components in the density approximation expressed directly in terms
of the original state variable X t, its drift m½X �, and diffusion function s½X �, the method
under consideration can be applied to any selected scaler diffusion processes. The density
approximation becomes

p
ðKÞ
X ½D; xjx0; y� �

D�1=2

s½X ; y�
f

1

D1=2

Z x

x0

du

s½u�

" #
exp

Z x

x0

f ½u�
du

s½u�

 !X4
k¼0

ck½g½x�jg½x0�; y�
Dk

k!
,

(20)

where fc1½yjy0; y�; . . . ; c4½yjy0; y�g are presented in Eqs. (16)–(19). Although some integrals
still remain to be determined in our formulation in Eqs. (13)–(15) they are solely required
for their numerical values. Compared with the recursively defined multidimensional
integrals, the simplified cj½y�’s are easier to evaluate and this connection is highlighted in
the context of the general model of Aı̈t-Sahalia (1996). To guarantee that the density
remains positive, the approximation for log-density is used: logðp

ðKÞ
X ½D;xjx0; y�Þ �

� logð2ps2½X ; y�DÞ=2� ð
R x

x0
du=s½u�Þ2=ð2DÞ þ

R x

x0
f ½u�du=s½u� þ

P4
k¼0Ck½g½x�jg½x0�; y�Dk=k!,

where C1 � c1, C2 � c2 � c21, C3 � c3 � 3c2c1 þ 2c31, and C4 � c4 � 4c3c1 � 3c22þ

12c2c21 � 6c41.
Aı̈t-Sahalia (2003) extends the density approximation method in Aı̈t-Sahalia (1999,

2002) to higher-dimensional diffusion processes. The problem of determining cj½yjy0; y� is
substantially harder in the multivariate setting, and we have been unable to work through
the multivariate counterparts of Propositions 1 and 2. We direct the reader to Aı̈t-Sahalia
and Kimmel (2003) for closed-form likelihood expansions under affine multifactor models
of the term structure of interest rates.

2.2.3. Density approximation when x� x0 or y� y0 is small or both

For some applications (say, the spot interest rates), the difference between the two
adjacent observations (x0 and x) can be small. In such applications, Proposition 3 derives
the corresponding closed-form Taylor series approximation of the relevant integrals and
renders the method analytical.

Proposition 3. Let E � x� x0, D � y� y0, and define the successive partial derivative

entities as

ni � qi
ð1=s½X 0�Þ=qX i

0, (21)

ji � qi
ðf ½X 0�=s½X 0�Þ=qX i

0; and (22)

li � qil½y0�=qyi
0. (23)
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When x� x0, equivalently y� y0, is small, the following Taylor expansions of the integralsR x

x0
du=s½u� and

R x

x0
f ½u�du=s½u� result:

D ¼ y� y0 ¼

Z x

x0

du

s½u�
¼ n0E þ

n1E2

2
þ

n2E3

6
þ

n3E4

24
þ

n4E5

120
þ

n5E6

720
, (24)

Z y

y0

mY ½w�dw ¼

Z x

x0

f ½u�
du

s½u�
¼ j0E þ

j1E
2

2
þ

j2E
3

6
þ

j3E4

24
þ

j4E5

120
þ

j5E6

720
, (25)

and c1½yjy0; y�, c2½yjy0; y�, c3½yjy0; y�, and c4½yjy0; y� are presented in Eqs. (63)–(66) of

Appendix B.

Owing to the results in Eqs. (24)–(25) and Eqs. (63)–(68), the approximation for the
transition density Eq. (20) inherits an analytical structure. The partial derivatives, ni, ji,
and li, are compact and can be coded in any standard programming language for the
estimation of a wide class of continuous-time models. The tractability of cj ½yjy0; y� and the
methodological dependence on m½X ; y� and s½X ; y� are at the core of the analytical density
approximation.
Upon further reflection, the coefficients in our Taylor series in Proposition 3 correspond

to those in Aı̈t-Sahalia (2003) when the irreducible multivariate method is applied to the
univariate case. To be exact, Proposition 3 can be interpreted as the explicit Taylor
expansion solution of the system of equations in Theorem 2 of Aı̈t-Sahalia (2003) for
univariate diffusions with arbitrary m½X � and s½X �. However, in the irreducible multivariate
modeling case, the expansion coefficients do not generally afford the accuracy of integral
representations and must be approximated by Taylor series in x� x0 irrespective of
whether x� x0 is small or not. Meanwhile, the integral Eq. (5) and the reduced coefficients
in our Proposition 2 hold for any x and x0 and can be evaluated through efficient
integration routines. Thus it may be preferable to use Proposition 2 to obtain the
expansion coefficients, cj½yjy0; y�, when x� x0 is not very small.
Proposition 3 becomes useful only when x� x0 is very small (e.g., x ¼ x0). The reason is

that when x� x0 ¼ 0 (or equivalently y� y0 ¼ 0), the coefficients in our Proposition 2
involve 0=0, which implies that when x� x0 is very small the division of a very small
number by another very small number can occur. In the present method, the development
in Proposition 3 is intended to handle a tricky numerical situation, while in the irreducible
multivariate setting one must resort to Taylor approximations. Thus it must be appreciated
that a potential tradeoff exists between the fully closed-form irreducible method in
Theorem 2 of Aı̈t-Sahalia (2003) and the present scheme that retains simple one-
dimensional integrals in Proposition 2 and must be evaluated numerically.

3. Density approximation for a parametric model class

Spurred by our characterizations in Propositions 1–3, this section applies the density
approximation Eq. (20) to the following eight-parameter encompassing class of one-
dimensional processes stemming from Aı̈t-Sahalia (1996):

m½X ; y� ¼ a0 þ a1X t þ a2X 2
t þ a3X�1t and (26)

s½X ; y� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0 þ b1X t þ b2X

b3
t

q
, (27)
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subject to technical conditions Eqs. (24a) through (24d) in Aı̈t-Sahalia (1996). Here,

y � ða0; a1; a2; a3; b0; b1;b2;b3Þ. (28)

The distinctive property of this continuous-time process is that m½X ; y� in Eq. (26)
accommodates a nonlinear drift, and s½X ; y� in Eq. (27) implies stochastic elasticity of
variance. Given these features, this model is labeled as SEV-ND. Under appropriate
restrictions on y, the SEV-ND model subsumes several theoretically appealing models for
X t that display constant elasticity of variance (hereby CEV) with nonlinear, linear, and
constant drift, respectively, and the affine model (hereby AFF), as in

SEV-ND : dX t ¼ ða0 þ a1X t þ a2X 2
t þ a3X�1t Þdtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0 þ b1X t þ b2X

b3
t

q
dW t

SEV-LD : dX t ¼ ða0 þ a1X tÞdtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0 þ b1X t þ b2X

b3
t

q
dW t

SEV-CD : dX t ¼ a0 dtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0 þ b1X t þ b2x

b3
t

q
dW t

CEV-ND : dX t ¼ ða0 þ a1X t þ a2X 2
t þ a3X�1t Þdtþ b2X

b3
t dW t

CEV-LD : dX t ¼ ða0 þ a1X tÞdtþ b2X
b3
t dW t

CEV-CD : dX t ¼ a0 dtþ b2X
b3
t dW t

AFF : dX t ¼ ða0 þ a1X tÞdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0 þ b1X t

p
dW t.

To apply the enhanced method of Aı̈t-Sahalia (1999, 2002) to the process in
Eqs. (26)–(27) requires

Y t �

Z X t du

s½u; y�
¼

Z
duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b0 þ b1uþ b2ub3
p ,

which has no known closed-form analytical representation. Thus, leaving aside the
additional issue of multiple numerical integration determination of higher-order cj½yjy0; y�,
none of the models in the SEV class is amenable to a density characterization under the
approach of Aı̈t-Sahalia (1999, 2002).

Returning to our methodology, we determine the components of p
ðKÞ
X ½D; xjx0; y� in

Eq. (20) by defining V0 � b0 þ b1X 0 þ b2X
b3
0 . Clearly, n20V 0 ¼ 1, where n0 �

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0 þ b1X þ b2Xb3

q
. Straightforward successive differentiation of n20V 0 ¼ 1 with

respect to X 0 yields the first five derivatives of n0 with respect to X 0:

n1 ¼ �n0V 1=ð2V 0Þ, (29)

n2 ¼ �ð3n1V 1 þ n0V 2Þ=ð2V0Þ, (30)

n3 ¼ �ð5n2V 1 þ 4n1V 2 þ n0V 3Þ=ð2V0Þ, (31)

n4 ¼ �ð7n3V 1 þ 9n2V 2 þ 5n1V 3 þ n0V 4Þ=ð2V0Þ; and (32)

n5 ¼ �ð9n4V 1 þ 16n3V 2 þ 14n2V 3 þ 6n1V 4 þ n0V5Þ=ð2V 0Þ, (33)
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where V 1 ¼ b1 þ b2b3X
b3�1
0 , V2 ¼ b2b3ðb3 � 1ÞX

b3�2
0 , V 3 ¼ ðb3 � 2ÞV2=X 0, V 4 ¼ ðb3 �

3Þ V 3=X 0, and V 5 ¼ ðb3 � 4ÞV4=X 0 are the partial derivatives of V 0 with respect to X 0.
Proceeding, as in Proposition 3, we obtain ji ¼ qi

ðf ½X 0�=s½X 0�Þ=qX i
0. j0 ¼

f ½X 0�=s½X 0� ¼ m½X 0�=V0 � V 1=ð4V0Þ ¼ U0=V 0, where U0 ¼ m½X 0� � V 1=4 ¼ a0 � b1=4þ
a1X 0 þ a2X 2

0 þ a3=X 0 � b2b3X
b3�1
0 =4. Thus, j0V0 ¼ U0. Successive differentiation of this

equation produces the first five derivatives of j0 with respect to the state variable X 0,

j1 ¼ ðU1 � j0ÞV 1=V0, (34)

j2 ¼ ðU2 � 2j1V1 � j0V 2Þ=V 0, (35)

j3 ¼ ðU3 � 3j2V1 � 3j1V 2 � j0V3Þ=V 0, (36)

j4 ¼ ðU4 � 4j3V1 � 6j2V 2 � 4j1V3 � j0V 4Þ=V0; and (37)

j5 ¼ ðU5 � 5j4V1 � 10j3V 2 � 10j2V3 � 5j1V 4 � j0V5Þ=V 0, (38)

where U1 ¼ a1 þ 2a2X 0 � a3=X 2
0 � V2=4, U2 ¼ 2a2 þ 2a3=X 3

0 � V3=4, U3 ¼ �6a3=X 4
0�

V4=4, U4 ¼ 24a3=X 5
0 � V 5=4, and U5 ¼ �120a3=X 6

0 � V6=4 are the partial derivatives of
U0 with respect to X 0 and V6 ¼ ðb3 � 5ÞV5=X 0. For m½X 0� and s½X 0� governed via
Eqs. (26)–(27), the recursive nature of ji determines Eq. (25) of Proposition 3.
Finally, we characterize each li ¼ qil½y0�=qyi

0 in Eqs. (67)–(68) as a function of X 0.
Based on the calculations in Appendix C, each required li is

l0 ¼ H0, (39)

l1 ¼ H1S0, (40)

l2 ¼ H2S2
0 þ l1S1, (41)

l3 ¼ H3S3
0 þ 3l2S1 þ l1ðS0S2 � 2S2

1Þ, (42)

l4 ¼ H4S4
0 þ 6l3S1 þ l2ð4S0S2 � 11S2

1Þ þ l1ðS2
0S3 � 6S0S1S2 þ 6S3

1Þ, (43)

l5 ¼ H5S5
0 þ 10l4S1 þ l3ð10S0S2 � 35S2

1Þ þ l2ð5S2
0S3 � 40S0S1S2 þ 50S3

1Þ

þ l1ðS3
0S4 � 8S2

0S1S3 þ 36S0S
2
1S2 � 6S2

0S
2
2 � 24S4

1Þ; and ð44Þ

l6 ¼ H6S6
0 þ 15l5S1 þ l4ð20S0S2 � 85S2

1Þ þ l3ð15S2
0S3 � 150S0S1S2 þ 225S3

1Þ

þ l2ð6S3
0S4 � 63S2

0S1S3 þ 346S0S2
1S2 � 46S2

0S
2
2 � 274S4

1Þ

þ l1ðS4
0S5 � 10S3

0S1S4 þ 6S2
0S

2
1S3 � 20S3

0S2S3 � 240S0S
3
1S2

þ 90S2
0S1S2

2 þ 120S5
1Þ, ð45Þ

where S0 through S7 are shown in Eqs. (69)–(76), and H0 through H6 are shown in Eqs.
(85)–(91). The analyticity of li can now be used to build c1½yjy0; y� through c4½yjy0; y� in
Eqs. (63)–(66) and ji in Eqs. (34)–(38) are employed for constructing

R y

y0
mY ½w�dw

expansion in Eq. (25). Given the choice of m½X ; y� and s½X ; y�, we obtain the density
approximation for SEV-ND through Eq. (20). Density functions for other continuous-time
models are special cases.
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Before moving to empirical investigation, it is instructive to determine the accuracy of
the density approximation under the proposed scheme for determining cj½yjy0; y� in
Eq. (20). To illustrate this aspect we pick two candidate continuous-time models by setting
b0 � 0 in the AFF model (i.e., the square root model) and a0 � 0 in the CEV-LD model.
Each candidate stochastic process has an exact density that allows comparison with the
approximate density. Guided by Aı̈t-Sahalia (1999) and Bakshi and Ju (2005) we compare
the maximum absolute error of the approximate density relative to its exact density
counterpart. Table 1 judges the worst possible approximation error by presenting
MAXE � maxðjpexact½xjx0� � papprox½xjx0�jÞ and the maximum exact conditional density as
maxðpexact½xjx0�Þ. The main finding is that our density approximation is accurate for both
D ¼ 1=12 and 1 regardless of the underlying stochastic process. Inspection of the results
also reveals little value-added by including c5½yjy0; y� in

PK
k¼0ck½g½x�jg½x0�; y�Dk=k!: The

approximation with K ¼ 5 marginally improves over K ¼ 4 in some cases. The reason
appears to be that the maximum absolute errors with K ¼ 4, which are in the order of
10�14, have reached machine precision. However, as would be expected, embedding each
additional term in the approximation tends to make the method progressively more
accurate.
4. Evaluating continuous-time volatility models

Starting with Heston (1993), there is a tradition to model equity volatility as a
continuous-time stochastic process with mean-reverting drift and square root volatility.
Despite the insight this model has enabled, a consensus is growing that the square root
specification is grossly misspecified (see Andersen et al., 2002; Bakshi et al., 2000; Bates,
2000; Elerian et al., 2001; Eraker et al., 2003; Pan, 2002, among others). With the exception
of Jones (2003), who has provided evidence in favor of CEV models of the volatility
process, the lack of closed-form density approximations has impeded progress on the
testing of volatility processes beyond square root. As such, several questions still remain
unresolved with respect to the shown rejection of square root volatility models: Does the
drift of the volatility process admit departures from linearity? Are volatility models with
general s½X � more properly specified from empirical standpoints? What is the empirical
potential of variance processes in the Aı̈t-Sahalia (1996) class Eqs. (26)–(27)? Issues
connected with volatility modeling have bearing on the search for better performing option
pricing models, parametric compensation for volatility risk, and the timing of volatility
risks.

Before we can address the aforementioned questions we need a suitable proxy for
market volatility, which is intrinsically unobservable. Among the possible choices at the
daily frequency, the empirical literature has appealed to generalized autoregressive
conditional heteroskedasticity volatility constructed from daily returns, cumulated squared
intraday returns (Andersen et al., 2003), short-term near-money Black and Scholes implied
volatility (Bakshi et al., 2000; Pan, 2002), and market volatility extracted from S&P 100
index option prices, VIX (Jones, 2003). For reasons outlined in Jones (2003), we adopt the
forward-looking VIX volatility measure in our empirical work. Thus we are drawing
conclusions about the desirability of stochastic volatility models based on the estimated
dynamics of the VIX index.
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Table 1

Maximum absolute errors of the density approximation

Maximum absolute errors of the approximations are based on K ¼ 1; 2; 3; 4; 5 and the Euler approximation.

The approximate density is based on Eq. (20) with cj ½g½x�jg½x0�; y� presented in Proposition 2. Entries

corresponding to maxðpjx0Þ are the maximum conditional density. Computations involving Panels A and B use

a0 ¼ 0:145� 0:0732, a1 ¼ �0:145, b0 ¼ 0, and b1 ¼ 0:065212. For the calculations performed in Panels C and D

the initial stock price is fixed at x0 ¼ $50, the initial volatility level is b2x
b3�1
0 ¼ 0:3, and a1 and b2 are allowed to

vary. Tabulating the results by changing the elasticity of volatility coefficient b3 provided the same conclusions

and, therefore, omitted.

x0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

Panel A: dX t ¼ ða0 þ a1X tÞdtþ
ffiffiffiffiffiffiffiffiffiffiffi
b1X t

p
dW t, t ¼ 1=12

maxðpjx0Þ(10
1) 15.0 10.7 8.71 7.55 6.75 6.17 5.71 5.34 5.04

K ¼ 1 (10�3) 6.46 1.32 0.67 0.36 0.18 0.32 0.15 1.13 2.70

K ¼ 2 (10�6) 143 10.3 3.90 0.98 0.82 2.71 3.86 2.54 3.96

K ¼ 3 (10�8) 89.7 4.11 1.34 0.26 0.31 0.15 1.36 2.83 3.26

K ¼ 4 (10�10) 90.9 5.35 0.36 0.14 0.26 0.33 0.21 0.75 2.06

K ¼ 5 (10�12) 153 8.27 6.57 5.95 8.55 9.82 14.9 5.94 5.98

Euler 7.17 3.73 2.55 1.93 1.59 1.35 1.17 1.04 0.94

Panel B: dX t ¼ ða0 þ a1X tÞdtþ
ffiffiffiffiffiffiffiffiffiffiffi
b1X t

p
dW t, t ¼ 1

maxðpjx0Þ (10
1) 4.39 3.25 2.69 2.35 2.11 1.94 1.80 1.68 1.59

K ¼ 1 (10�2) 28.7 7.19 2.61 1.78 0.81 1.35 1.19 4.83 11.1

K ¼ 2 (10�3) 79.8 4.96 2.23 0.71 0.50 1.35 2.00 1.83 2.45

K ¼ 3 (10�4) 51.1 4.45 0.78 0.29 0.17 0.20 0.83 1.71 2.25

K ¼ 4 (10�6) 117 41.7 5.1 0.67 1.44 2.27 1.81 5.38 14.4

K ¼ 5 (10�7) 154 9.85 4.23 0.61 0.26 0.70 1.70 2.00 3.43

Euler 8.21 4.70 3.42 2.76 2.35 2.07 1.87 1.72 1.60

a1 0.04 0.04 0.04 0.06 0.06 0.06 0.08 0.08 0.08

b2 0.50 0.70 0.90 0.50 0.70 0.90 0.50 0.70 0.90

Panel C: dX t ¼ a1X t þ b2X
b3
t dW t, t ¼ 1=12

maxðpjx0Þ(10
�2) 9.20 9.22 9.24 9.19 9.20 9.22 9.18 9.19 9.21

K ¼ 1 (10�8) 1.48 0.55 0.11 15.05 6.26 1.12 47.50 22.69 6.24

K ¼ 2 (10�11) 4.26 0.17 0.09 3.41 18.33 0.04 19.28 6.56 1.49

K ¼ 3 (10�13) 1.56 0.32 2.83 2.64 0.36 2.31 7.10 1.24 2.02

K ¼ 4 (10�14) 2.23 3.22 28.28 1.50 2.12 2.31 1.37 3.43 20.42

K ¼ 5 (10�14) 2.28 3.22 28.28 1.54 2.12 2.31 1.34 3.42 20.42

Euler (10�3) 2.77 3.93 5.11 2.73 3.88 5.05 2.69 3.83 5.00

Panel D: dX t ¼ a1X t þ b2X
b3
t dW t, t ¼ 1

maxðpjx0Þ (10
�2) 2.63 2.68 2.75 2.59 2.63 2.70 2.55 2.58 2.64

K ¼ 1 (10�7) 8.19 2.51 0.49 65.17 26.24 4.66 206.58 95.23 25.89

K ¼ 2 (10�9) 28.51 0.85 0.32 19.05 1.51 0.16 125.72 37.89 7.80

K ¼ 3 (10�10) 13.20 0.05 0.00 17.29 1.46 0.03 43.33 6.92 0.11

K ¼ 4 (10�12) 63.43 0.24 0.00 55.15 6.52 0.01 49.19 8.88 0.19

K ¼ 5 (10�14) 456.61 0.57 0.39 0.04 1.16 0.52 325.76 2.23 0.37

Euler (10�3) 2.82 4.14 5.53 2.68 3.94 5.30 2.54 3.76 5.07

G. Bakshi et al. / Journal of Financial Economics 82 (2006) 227–249238
Given to us by Chris Jones, the VIX is sampled over the period of July 1, 1988 to
January 10, 2000 (2907 observations) and expressed in decimals. To aid comparisons with
the empirical literature we let X t � VIX2

t for ft ¼ iD j i ¼ 0; . . . ; ng.
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The estimate of y in Eq. (28) is based on the log-likelihood function

max
y

L½y� �
Xn

i¼1

logfpX ½D;X iDjX ði�1ÞD; y�g, (46)

where the transition density, pX ½D;X iDjX ði�1ÞD; y�, is approximated via Eq. (20) with
fc1½y�; . . . ; c4½y�g constructed separately for SEV-ND and its nested variants. The efficiency
and optimality of the maximum-likelihood estimator is discussed, among others, in Aı̈t-
Sahalia (1999, 2002).

Table 2 displays maximum-likelihood model parameters, the standard errors (in
parenthesis), the goodness-of-fit maximized log-likelihood values, and the rank-ordering of
stochastic volatility models based on the Akaike information criterion (AIC). For each of

the models the estimate of b0 in the diffusion function

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0 þ b1X t þ b2X

b3
t

q
was close to

zero with no impact on log-likelihood. For this reason we impose b0 � 0. In this case, the

AFF specification collapses to the square root model dX t ¼ ða0 þ a1X tÞdtþ
ffiffiffiffiffiffiffiffiffiffi
b1X t

p
dW t.

The failure of the square root model is evident even in the presence of a high b1 value of
0.1827 (i.e., volatility of volatility parameter,

ffiffiffiffiffi
b1

p
, is 0.4274). One drawback of this

specification is that it is insufficiently flexible in fitting higher-order volatility moments.
With sample VIX skewness and kurtosis of 2.39 and 9.67, respectively, this process can
internalize large movements in the underlying market volatility only at the expense of an
implausible level of b1. Negative and statistically significant a1 ¼ �8:0369 indicates speedy
mean-reversion in the variance process and a model long-run volatility level offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a0=a1

p
¼ 19:77%.

Keeping b3 free in the CEV class rectifies modeling deficiencies of the AFF specification
that forces b3 � 1=2, as seen through a large jump in the log-likelihood. Transitioning
from AFF to CEV-LD increases the log-likelihood from 11400.28 to 12090.40, thereby
rejecting AFF with a significant log-likelihood ratio statistic. Specifically, we compute the
log-likelihood ratio statistic as minus twice the difference between the log-likelihood values
of the restricted and the unrestricted models:

L� � �2� ðL½yR� �L½yU �Þ, (47)

which is distributed w2½dim½yU � � dim½yR��. That the data favor the CEV class of variance
processes over the AFF is further validated through high �n=2 AIC. Misspecification of
s½X � is primarily responsible for the rejection of the affine volatility models.1

Analyzing the MLE results across CEV-CD, CEV-LD, and CEV-ND provides a
number of fundamental insights about the dynamics of market variance. First, the highly
significant a2 and a3 suggest the presence of nonlinearities in the drift of the variance
process. Consider CEV-ND. The estimate of a2 is �166:72 (standard error of 60.53) and
the estimate of a3 is 0.0031 (standard error of 0.0015). Compared with the linear drift
1Demonstrating the computational superiority of the density approximation, the MLE computer code

converged rapidly (in less than one minute on a one GHZ laptop computer) regardless of the drift and diffusion

combination. Having a closed-form density approximation can therefore accelerate the speed of estimation several

hundred fold relative to simulation-based approaches. We refer the reader to the discussion in Durham and

Gallant (2002) and Li et al. (2004) on the efficacy of alternative approaches and Brandt and Santa-Clara (2002) on

the difficulty in estimating models using simulation-based methods. With finer Euler discretization and reasonably

lengthy MCMC sampler draws, our computation time also measures favorably relative to the Bayesian

methodology of Jones (2003).



ARTICLE IN PRESS

Table 2

Estimation results for market index variance

The encompassing model, SEV-ND, accommodates stochastic elasticity of variance and a nonlinear drift

function of the type: dX t ¼ ða0 þ a1X t þ a2X 2
t þ a3X�1t Þdtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0 þ b1X t þ b2X

b3
t

q
dW t. Nesting the constant

drift, CEV-CD, and linear drift, CEV-LD, the constant elasticity of variance with nonlinear drift, CEV-ND, is

dX t ¼ ða0 þ a1X t þ a2X 2
t þ a3X�1t Þdtþ b2X

b3
t dW t. The AFF model is dX t ¼ ða0 þ a1X tÞdtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0 þ b1X t

p
dW t.

Throughout b0 � 0 as the estimate of b0 was zero and has no impact on log-likelihood. The market index

volatility is proxied by the daily VIX. The daily data are sampled over the period of July 1, 1988 to January 10,

2000 (2,907 observations). We take X t ¼ VIX2
t and the VIX series is scaled by one hundred to convert it into a

decimal. The approximate density is analytical and displayed in Eq. (20) with cj ½g½x�jg½x0�; y� presented in

Proposition 2. Reported volatility model parameters and standard errors (in parenthesis) are based on maximizing

the log-likelihood L½y� �
Pn

i¼1 logfpX ½D;X iDjX ði�1ÞD; y�g. The Akaike Information Criterion (AIC) is computed

as �2=nðL½y� � dim½y�Þ. Thus, a more properly specified model has higher �ðn=2Þ AIC. Likelihood ratio test

statistic for comparing nested models isL� � �2� ðL½yR� �L½yU �Þ�w2½df �, where df is the number of exclusion

restrictions and the 95% criterion values are

dim½y� is reported in curly brackets below L.

Model L �ðn=2Þ AIC a0 a1 a2 a3 b1 b2 b3

AFF 11400.28 11397.28 0.3141 �8.0369 0.1827

{3} (0.0397) (1.1977) (0.0000)

CEV-CD 12089.65 12086.65 0.0664 4.7825 1.2781

{3} (0.0114) (0.1365) (0.0214)

CEV-LD 12090.40 12086.40 0.0941 �1.4607 4.7046 1.2732

{4} (0.0255) (1.1939) (0.1365) (0.0217)

CEV-ND 12094.24 12088.24 �0.3400 15.2476 �166.7249 0.0031 4.7645 1.2766

{6} (0.1846) (6.3934) (60.5296) (0.0015) (0.1381) (0.0218)

SEV-CD 12093.21 12089.21 0.0654 0.0142 47.0436 2.8302

{4} (0.0117) (0.0050) (10.4937) (0.1183)

SEV-LD 12093.83 12088.83 0.0920 �1.3540 0.0141 44.9773 2.8161

{5} (0.0267) (1.2159) (0.0051) (10.0673) (0.1187)

SEV-ND 12099.07 12092.07 �0.5537 21.3224 �209.3476 0.0051 0.0168 53.9726 2.8822

{7} (0.2162) (7.3014) (68.6506) (0.0018) (0.0050) (12.4970) (0.1226)
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model CEV-LD, which has a log-likelihood of 12090.40, adding two nonlinear drift
parameters raises the log-likelihood to 12094.24. The resulting log-likelihood ratio statistic
L� is 7.68, which is bigger than w2½2� critical value of 6.0 (at 95% confidence level) and the
linear drift model is rejected in favor of a nonlinear drift in the variance process.
Omitting a role for a1X t þ a2X 2

t þ a3=X t also worsens the performance of the stochastic
volatility models versus CEV-ND. The realized value of the test statistic L� is 9.18, which
can be compared with the w2½3� critical value of 7.82. However, the same cannot be argued
about linear drift versus constant drift accounting for the constant elasticity of variance
structure s½X t� ¼ b2X

b3
t . The log-likelihood is virtually insensitive to the addition of a1X t

to the CEV-CD specification. The small increase of L from 12089.65 to 12090.40 is
insufficiently large to make L� ¼ 1:5 statistically significant with one degree of freedom.
Ranging between 1.2732 and 1.2781, the exponent parameter b3 is statistically significant

in CEV-CD, CEV-LD, and CEV-ND and several-fold relative to the reported standard
errors. The magnitude of b3 is comparable but slightly higher than that reported by Jones
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(2003). An overarching conclusion is that b341 is needed to match the time-series
properties of the VIX index with the CEV models (the one-sided t-test rejects the null
hypothesis of b3p1).

The SEV class of variance processes shares the same drift and volatility structure as
models in the CEV class except that the SEV embeds an additional linear-term in the s½X �
specification. The implementation of SEV-CD, SEV-LD, and SEV-ND brings out several
incremental facts about the behavior of the volatility processes. Comparing the log-
likelihood and model estimates across CEV-CD and SEV-CD, CEV-LD and SEV-LD, and

CEV-ND and SEV-ND establishes that the addition of b1X t as in s½X t� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1X t þ b2X

b3
t

q
provides additional flexibility in fitting VIX dynamics. In each comparison, theL� statistic

ranges between 6.86 and 9.66, which is highly significant given w2½1� ¼ 3:84. Regardless of
the functional form of the drift specification, this result can be interpreted to mean that the

shape of s½X � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1X t þ b2X

b3
t

q
is statistically more attractive than s½X � ¼ b2X

b3
t in

reconciling the path of the VIX index. The estimate of b1 lies between 0.0141 and 0.0168
with a standard error of 0.0050 or 0.0051, making b1 significant across all models in the
SEV class.

Because the estimated value of b0 is zero in the SEV class, the volatility function of
market variance approaches zero as the variance itself approaches zero. However, the
significant positive value of b1 indicates that the volatility of the index variance process
approaches zero at a lower rate than that in the CEV specifications. At higher variance
levels, the volatility function in the SEV specifications increases faster than that in the CEV
specifications. So, the SEV specifications accommodate greater volatility at both low and
high variance levels. For the SEV specifications, the linear term b1X becomes more
pronounced than the nonlinear term b2X

b3 for Xoðb1=b2Þ
1=ðb3�1Þ. In the region Xo0:0136

in SEV-ND, the linear term b1X is more heavily weighted than the nonlinear component
b2Xb3 and vice versa. Therefore, b1 determines the behavior of the volatility function at
low variance levels.

Results from SEV-CD, SEV-LD, and SEV-ND strengthen our earlier conclusions from
CEV models that support the existence of nonlinearities in the drift function. The market
variance data prefer SEV-ND over both SEV-CD and SEV-LD, while SEV-CD and SEV-
LD are indistinguishable based on the log-likelihoods and log-likelihood ratio statistics.
More precisely, the L� is 11.72 between SEV-CD and SEV-ND and 10.48 between SEV-
LD and SEV-ND. The estimated a2 of �166:72 ð�209:35Þ for the CEV-ND (SEV-ND)
model is intuitive and guarantees a negative drift function in periods of pronounced
market volatility. In the reverse when the market variance is low, m½X � should contain a
positive drift, which dictates the positivity of a3 and assures that zero is unattainable. The
coexistence of statistically significant a2o0 and a340 suggests that mean-reversion and
nonlinearity of the drift function are robust phenomena in index volatility markets.

Elasticity parameters obtained from CEV and SEV models exhibit a mutually coherent
mapping. The b3 of SEV is slightly more than twice the CEV counterpart. The following
interpretation holds for estimated b3 of SEV-ND. With b3 ¼ 2:8822, the variance function
s2½X � is convex in variance, that is,

qs2½X ; y�
qX

¼ b1 þ b2b3Xb3�140 and
q2s2½X ; y�

qX 2
¼ b2b3ðb3 � 1ÞXb3�240.
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The one-sided t-test overwhelmingly rejects the null hypothesis that b3p2. This property
has the implication that a well-performing variance process should have its variance
function increasing at a rate faster than the level of market variance. Continuous-time
volatility models violating such a property are likely headed for inconsistencies in the
empirical dimension.
Because the most general specification, SEV-ND, exemplifies nonlinearity in the drift

and diffusion function of the type described in Eqs. (26)–(27), it rank-orders first with
�n=2 AIC of 12092.07, followed next by SEV-CD and SEV-LD with �n=2 AIC of
12089.21 and 12088.83, respectively. Our density-based estimation implies that the linear
AFF model displays unsatisfactory goodness-of-fit statistics and has dynamics most
inconsistent with the observed movements in the VIX index. While SEV-ND admits a
more complex representation, the nonlinearity parameters are vital to generating a more
realistic time-evolution of market volatility.
To further analyze the structure of market volatility, Fig. 1 plots the drift, m½X �, and

diffusion, s2½X �, function for the SEV-ND model and compares them with the short
interest rate counterparts in Figs. 4B and 4C of Aı̈t-Sahalia (1996). Accounting for
differences in estimation methods and parameter values for y in our Tables 2 and 4 in Aı̈t-
Sahalia (1996), this exercise nonetheless shows that market volatility and interest rate share
a closely related parametric structure. First, the shapes of m½X � and s2½X � for market
volatility and interest rate generally resemble one another. However, visual impression
suggests that the mean-reversion in market volatility is relatively stronger especially in the
tails. Second, the exponent parameter, b3, is instrumental to the volatility specification of
both interest rate and market variance. While Aı̈t-Sahalia (1996) reports b3 close to 2.0, the
corresponding estimate from market volatility is 40% larger around 2.88. For an economic
justification behind the shapes of m½X � and s2½X � for the SEV-ND model, we refer the
reader to the discussions in Aı̈t-Sahalia (1996).

5. Concluding statements and summary

Density approximation is an issue whenever the researcher needs the state-price density
for pricing purposes or for constructing the likelihood function in maximum-likelihood
estimation. Building on Aı̈t-Sahalia (1999, 2002) we have provided a method to
approximate the transition density, and studied the implications of estimating a much
wider class of equity volatility models.
Our theoretical contribution in Propositions 1 and 2 shows how to express the

recursively defined expansion coefficients in terms of one-dimensional integrals. To
enhance the appeal of the methodology, the density approximation is derived in terms of
the drift and diffusion function of the original state variable. This is done without
incurring burdensome integration steps to reduce the state variable dynamics to a unit-
variance process. Proposition 3 provides a technical treatment of the case when the
necessary integrals can be Taylor series approximated and results in a solution for the
expansion coefficients and the transition density. We illustrate the power of the
methodology by deriving the density approximation for the general continuous-time
model presented in Aı̈t-Sahalia (1996).
Novel to the literature on equity volatility, our empirical results substantiate variance

dynamics with nonlinear mean-reversion. Strong statistical evidence exists to support the
presence of a nonlinear diffusion coefficient structure. The variance of variance function is
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Fig. 1. Drift and diffusion functions for market variance and short interest rate for the SEV-ND model. Panels A

and B, respectively plot the drift function, m½:�, when the market variance and the short interest rate each follow

the SEV-ND process: dX t ¼ ða0 þ a1X t þ a2X 2
t þ a3 X�1t Þdtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0 þ b1X t þ b2X

b3
t

q
dW t. We plot the corre-

sponding diffusion function, s2½:�, in Panels C and D. All calculations for the market variance process are based

on the maximum-likelihood estimation results reported in Table 2. The parameter estimates for the interest rate

process are taken from Table 4 in Aı̈t-Sahalia (1996): a0 ¼ �4:643� 10�3, a1 ¼ 4:333� 10�2,

a2 ¼ �1:143� 10�1, a3 ¼ 1:304� 10�4, b0 ¼ 1:108� 10�4, b1 ¼ �1:883� 10�3, b2 ¼ 9:681� 10�3, and

b3 ¼ 2:073. Thus our interest rate Panels B and D coincide with Figs. 4B and C in Aı̈t-Sahalia (1996).
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composed of a term linear in variance plus a power function term in variance with an
exponent that demands a value greater than two. The combined continuous-time variance
model with the said properties furnishes reasonable goodness-of-fit statistics and produces
superior performance metrics relative to its nested variants.

The method can be adapted to undertake risk measurements under nonlinear drift and
diffusion forcing processes and for approximating the risk-neutral densities for valuing
contingent claims when the characteristic function of the state-price density is un-
available (Bakshi and Madan, 2000; Duffie et al., 2000). Suppose the log stock price is
X t � logðPtÞ. Then Ito’s lemma implies dX t ¼ ðr�

1
2
s½eX ; y�Þdtþ s½eX ; y�dW t. With an

analytical risk-neutral density approximation q
ðKÞ
X ½X �, the European option price with

strike price K, maturity T, and interest rate r can be computed as e�rT
Rþ1
logðKÞ

ðeXtþT �KÞq
ðKÞ
X ½X tþT �dX tþT . The field of density approximation is amenable to analytical
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characterizations for estimation and pricing under a large class of nonstandard
continuous-time models.
Appendix A. Proof of Proposition 2

To outline a proof of Proposition 2, consider the determination of c2½y�:

c2½y� ¼
2

ðy� y0Þ
2

Z y

y0

ðw� y0Þ l½w�c1½w� þ
1

2

q2c1½w�
qw2

� �
dw

¼
2

ðy� y0Þ
2

Z y

y0

l½w�
Z w

y0

l½z�dz

 !
dwþ

1

ðy� y0Þ
2

Z y

y0

ðw� y0Þ
q2c1½w�
qw2

dw. ð48Þ

The first part of Eq. (48) is equivalent to c21½y� as proved below:

2

ðy� y0Þ
2

Z y

y0

l½w�
Z w

y0

l½z�dz

 !
dw ¼

2

ðy� y0Þ
2

Z y

y0

Z w

y0

l½z�dz

 !
d

Z w

y0

l½z�dz

 !

¼
1

ðy� y0Þ
2

Z w

y0

l½z�dz

 !2
						
y

y0

¼ c21½y�. ð49Þ

Continuing, the second component of c2½y� reduces, by a repeated application of
integration by parts, toZ y

y0

ðw� y0Þ
q2c1½w�

qw2
dw ¼ ðw� y0Þ

qc1½w�

qw

				
y

y0

� c1½w�
		y
y0
. (50)

Care must be exercised in evaluating the functions at the lower limit y0. For example,
ðw� y0Þqc1½w�=qw does not evaluate to zero at w ¼ y0. To this end we note,

qc1½w�

qw
¼

l½w� � c1½w�

w� y0

. (51)

Consequently it then follows thatZ y

y0

ðw� y0Þ
q2c1½w�

qw2
dw ¼ l½y� � 2c1½y� � l½y0� þ 2c1½y0� ¼ l½y� � 2c1½y� þ l½y0�, (52)

where l’Hôpital’s rule implies c1½y0� ¼ l½y0�. Therefore,

c2½y� ¼ c21½y� þ
1

ðy� y0Þ
2
ðl½y� þ l½y0� � 2c1½y�Þ. (53)

Now consider c3½y�, which is recursively defined as

c3½y� ¼
3

ðy� y0Þ
3

Z y

y0

ðw� y0Þ
2 l½w�c2½w� þ

1

2

q2c2½w�
qw2

� �
dw. (54)
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For clarity consider each part of Eq. (54) separately. Using Eq. (53) and skipping
intermediate steps, the integral 3=ðy� y0Þ

3
R y

y0
ðw� y0Þ

2l½w�c2½w�dw simplifies to

3

ðy� y0Þ
3

Z y

y0

ðw� y0Þ
2l½w� c21½w� þ

l½w� þ l½y0� � 2c1½w�

ðw� y0Þ
2

 !
dw

¼ c31½y� þ
3

ðy� y0Þ
3

Z y

y0

l½w�ðl½w� þ l½y0� � 2c1½w�Þdw. ð55Þ

The second part of Eq. (54) has an analytical representation using integration by parts:

3

ðy� y0Þ
3

Z y

y0

ðw� y0Þ
2 1

2

q2c2½w�
qw2

� �
dw ¼

3ðw� y0Þ
2

2ðy� y0Þ
3

qc2½w�

qw

					
y

y0

�
3ðw� y0Þc2½w�

ðy� y0Þ
3

					
y

y0

þ
3

ðy� y0Þ
3

Z y

y0

c2½w�dw. ð56Þ

It is straightforward to show that

qc2½w�

qw
¼ �

2c2½w�

w� y0

þ
2

w� y0

l½w�c1½w� þ
1

2

q2c1½w�

qw2

� �
, (57)

and it holds that

q2c1½w�
qw2

¼
l0½w�

w� y0

�
2ðl½w� � c1½w�Þ

ðw� y0Þ
2

. (58)

By a basic application of l’Hôpital’s rule at the lower limit y0

3

ðy� y0Þ
3

Z y

y0

ðw� y0Þ
2 1

2

q2c2½w�
qw2

� �
dw ¼

3

ðy� y0Þ
2
ðl½y�c1½y� � 2c2½y�Þ �

3ðl½y� � c1½y�Þ

ðy� y0Þ
4

þ
3l0½y�

2ðy� y0Þ
3
þ

3

ðy� y0Þ
3

Z y

y0

c2½w�dw. ð59Þ

Combining Eq. (55) and (59) we finally have

c3½y� ¼ c31½y� þ
3

ðy� y0Þ
2
ðc1½y�ðl½y� þ l½y0�Þ � 2c2½y�Þ

þ
3

ðy� y0Þ
3

Z y

y0

l2½w�dwþ

Z y

y0

c2½w�dw�

Z y

y0

2l½w�c1½w�dwþ
l0½y�
2

 !

�
3ðl½y� � c1½y�Þ

ðy� y0Þ
4

. ð60Þ

Now Z y

y0

c2½w�dw ¼

Z y

y0

2

ðw� y0Þ
2

Z w

y0

ðz� y0Þ l½z�c1½z� þ
1

2

q2c1½z�
qz2

� �
dzdw

¼

Z y

y0

Z y

y0

2

ðw� y0Þ
2
ðz� y0Þ l½z�c1½z� þ

1

2

q2c1½z�

qz2

� �
1½zow�dzdw
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¼ 2

Z y

y0

ðz� y0Þ l½z�c1½z� þ
1

2

q2c1½z�

qz2

� �
1

z� y0

�
1

y� y0

� �
dz

¼ 2

Z y

y0

l½z�c1½z� þ
1

2

q2c1½z�
qz2

� �
dz� ðy� y0Þc2½y�

¼ 2

Z y

y0

l½z�c1½z�dzþ
qc1½z�

qz

					 y

y0

� ðy� y0Þc2½y�

¼ 2

Z y

y0

l½z�c1½z�dzþ
l½y� � c1½y�

y� y0

�
1

2
l0½y0� � ðy� y0Þc2½y�. ð61Þ

Plugging Eq. (61) into Eq. (60) and rearranging results in

c3½y� ¼ c31½y� þ
3

ðy� y0Þ
2
ðc1½y�ðl½y� þ l½y0�Þ � 3c2½y�Þ

þ
3

ðy� y0Þ
3

l0½y� � l0½y0�

2
þ

Z y

y0

l2½w�dw

 !
. ð62Þ

The proof of c4½y� is unwieldy and omitted to save on space (available from the authors).
Appendix B. Expressions for cj½yjy0; y� in Proposition 3

c1½yjy0; y� ¼ l0 þ
l1D

2
þ

l2D2

6
þ

l3D3

24
þ

l4D4

120
þ

l5D5

720
þ

l6D6

5040
, (63)

c2½yjy0; y� ¼ c21½y0� þ
l2
6
þ

l3D

12
þ

l4D2

40
þ

l5D3
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þ

l6D4

1008
, (64)

c3½yjy0; y� ¼ c31½y0� þ
l21
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þ

l0l2
2
þ
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� �
þ
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þ
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D6 and ð65Þ

c4½yjy0; y� ¼ c41½y0� þ l0l
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þ
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þ
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þ
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where D ¼ y� y0 is given in Eq. (24). In terms of m½X 0� and s½X 0�, each required li can be
recursively derived as

l0 ¼ �ðf
2
½X 0� þ f 0½X 0�s½X 0�Þ=2 and (67)

li ¼ l0i�1s½X 0�; i ¼ 1; 2; 3; 4; 5; 6, (68)

which completes the characterization of the density approximation.

Appendix C. Expressions for lj in the SEV-ND model

To develop the expressions for lj, let

S0 ¼ s½X 0� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0 þ b1X 0 þ b2X

b3
0

q
. (69)

Then S2
0 ¼ b0 þ b1X 0 þ b2X

b3
0 ¼ V0. The derivatives of S0 with respect to X 0 are

S1 ¼ V 1=ð2S0Þ, (70)

S2 ¼ ðV2 � 2S2
1Þ=ð2S0Þ, (71)

S3 ¼ ðV3 � 6S1S2Þ=ð2S0Þ, (72)

S4 ¼ ðV4 � 8S1S3 � 6S2
2Þ=ð2S0Þ, (73)

S5 ¼ ðV5 � 10S1S4 � 20S2S3Þ=ð2S0Þ, (74)

S6 ¼ ðV6 � 12S1S5 � 30S2S4 � 20S2
3Þ=ð2S0Þ and (75)

S7 ¼ ðV7 � 14S1S6 � 42S2S5 � 70S3S4Þ=ð2S0Þ, (76)

where V 7 ¼ ðb3 � 6ÞV 6=X 0.
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Let F0 ¼ f ½X � ¼ m½X 0�=s½X 0� � s0½X 0�=2 ¼ U0=S0. So S0F 0 ¼ U0. Obeying the above
successive differentiation rules we arrive at

F 0 ¼ U0=S0, (77)

F 1 ¼ ðU1 � F 0S1Þ=S0, (78)

F 2 ¼ ðU2 � 2F 1S1 � F0S2Þ=S0, (79)

F 3 ¼ ðU3 � 3F 2S1 � 3F1S2 � F 0S3Þ=S0, (80)

F 4 ¼ ðU4 � 4F 3S1 � 6F2S2 � 4F 1S3 � F0S4Þ=S0, (81)

F 5 ¼ ðU5 � 5F 4S1 � 10F3S2 � 10F 2S3 � 5F1S4 � F 0S5Þ=S0, (82)

F 6 ¼ ðU6 � 6F 5S1 � 15F4S2 � 20F 3S3 � 15F2S4 � 6F 1S5 � F0S6Þ=S0 and (83)

F 7 ¼ ðU7 � 7F 6S1 � 21F5S2 � 35F 4S3 � 35F3S4 � 21F2S5 � 7F 1S6 � F0S7Þ=S0,

(84)

where U6 ¼ 720a3=X 7
0 � V 7=4, U7 ¼ �5040a3=X 8

0 � V8=4, and V 8 ¼ ðb3 � 7ÞV 7=X 0.
We can now conveniently write

H0 ¼ �ðf
2
½X 0� þ f 0½X 0�s½X 0�Þ=2 ¼ �ðF

2
0 þ F1S0Þ=2. (85)

The first six derivatives of H0 with respect to X 0 are

H1 ¼ �ð2F0F1 þ F2S0 þ F1S1Þ=2, (86)

H2 ¼ �ð2F2
1 þ 2F 0F2 þ 2F2S1 þ F 3S0 þ F1S2Þ=2, (87)

H3 ¼ �ð6F1F2 þ 2F0F3 þ F 4S0 þ 3F3S1 þ 3F2S2 þ F1S3Þ=2, (88)

H4 ¼ �ð6F2
2 þ 8F 1F3 þ 2F0F 4 þ F5S0 þ 4F 4S1 þ 6F3S2 þ 4F2S3 þ F 1S4Þ=2, (89)

H5 ¼ � ð20F2F3 þ 10F 1F4 þ 2F0F 5 þ F6S0 þ 5F5S1 þ 10F 4S2 þ 10F3S3

þ 5F 2S4 þ F1S5Þ=2 and ð90Þ

H6 ¼ � ð20F2
3 þ 30F 2F 4 þ 12F1F5 þ 2F 0F6 þ F7S0 þ 6F 6S1 þ 15F5S2

þ 20F 4S3 þ 15F3S4 þ 6F 2S5 þ F1S6Þ=2. ð91Þ
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