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I. Introduction

The problem of optimal capital structure has long been
an intriguing one among researchers. Brennan and
Schwartz (1978) were perhaps the first to study this
problem using the contingent-claims analysis ap-
proach of Black and Scholes (1973), Merton (1974),
and Black and Cox (1976).1 More recently, Leland
(1994) introduced a model of optimal capital structure
based on a perpetuity. Leland and Toft (1996) ex-
tended Leland (1994) to examine the effect of debt
maturity on bond prices, credit spreads, and optimal
leverage. The debt maturity in Leland and Toft is as-
sumed rather than optimally determined.2 Titman and
Tsyplakov (2002) and Hennessy and Whited (2004)
show that a dynamic trade-off model with features
that are not typically included in previous capital struc-
ture models can explain many stylized facts.

* Contact the corresponding author, Hui Ou-Yang, at huiou@
duke.edu. We are grateful to an anonymous referee for the detailed
and thoughtful comments that have improved the article tremen-
dously. We also thank Henry Cao, Hua He, Hayne Leland, Mark
Rubinstein, and Matt Spiegel for their advice on an earlier version
in which a static model was developed.

1. See also Kim (1978) for a mean-variance analysis of optimal
capital structure.

2. See also Kane, Marcus, and McDonald 1985; Fischer, Heinkel,
and Zechner 1989; Mello and Parsons 1992; Leland 1998; Fan and
Sundaresan 2000; Goldstein, Ju, and Leland 2001; Morellec 2004;
and Miao 2005.

This article develops a
model in which optimal
capital structure and debt
maturity are jointly deter-
mined in a stochastic in-
terest rate environment.
The model yields lever-
age ratios that are consis-
tent in spirit with empiri-
cal observations. The
optimal maturity and
credit spread of an opti-
mally issued debt are
found to be smaller than
observed values. The
long-run mean of the in-
terest rate is found to be
a key variable in deter-
mining optimal capital
structure and debt matur-
ity. Furthermore, the in-
terest rate volatility and
the correlation between
the interest rate and the
firm’s asset value play
important roles in deter-
mining debt maturity.
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The traditional capital structure models, as represented by Brennan and
Schwartz (1978), Leland (1994), and others, assume constant risk-free interest
rates. Leland (1994) and Goldstein et al. (2001) show that the optimal capital
structure is very sensitive to the changes in the level of the interest rate. In
other words, the level of the interest rate is a key input in those models. In
the absence of explicit modeling of the interest rate process, however, the
traditional capital structure models do not provide any guidance on which
interest rate, such as the spot rate, the yield-to-maturity (YTM) of a risk-free
bond, or other interest-related variables, should be used in the determination
of the optimal capital structure. Because their results depend critically on the
interest rate, without knowing which interest rate to use, the traditional capital
structure models cannot be employed directly to explain the empirical ob-
servations. Another restrictive assumption that limits the applicability of the
traditional models is that debt maturity is exogenously specified. Because the
leverage ratio and the credit spread depend crucially on debt maturity, it is
of great importance to determine jointly the optimal capital structure and the
optimal debt maturity. In the absence of an optimal maturity structure, the
optimal capital structure, as obtained in the traditional models, is of limited
empirical relevance.

In this article, we develop a dynamic model in which an optimal capital structure
and an optimal debt maturity structure are jointly determined in a stochastic interest
environment.3 At time zero, the firm issues a T-year coupon bond. If the firm has
not gone bankrupt in T years, the firm issues a new T-year coupon bond at time
T. The optimal value of the new bond will depend on the firm value at time T.
If at the end of the second T-year period the firm is still solvent, it issues another
T-year coupon bond optimally. This process goes on indefinitely as long as the
firm is solvent. The optimally levered firm value at time zero takes into account
the tax benefits associated with all future leverages. To obtain the optimally
levered firm value, we need to compute explicitly the total tax benefit, the
total bankruptcy cost, and the total transactions cost of all future issues of
debt. Generally, this is a difficult problem because the issuance of future debt
depends on the fact that the firm has not gone bankrupt. We employ a scaling
property and a fixed-point argument to obtain the present values of the total
tax benefit, the total bankruptcy cost, and the total transactions cost explicitly.
Valuation formulas are derived in closed form, and numerical solutions are
used to obtain comparative statics.

In our model, the trade-off between tax shields and bankruptcy costs as-
sociated with debts yields an optimal capital structure. Firms may issue new
debt as firm values change over time. The trade-off between the gains from
dynamically adjusting the debt level and the transactions costs of doing so
yields an optimal debt maturity structure. The optimal capital structure and

3. In the absence of optimal capital structure and optimal debt maturity, an active and growing
body of work has studied the valuation of risky corporate bonds and other derivative instruments
in a stochastic interest rate environment (e.g., Kim, Ramaswamy, and Sundaresan 1993; Jarrow
and Turnbull 1995; Longstaff and Schwartz 1995; and Duffie and Singleton 1999).
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the optimal maturity structure are interdependent. The interest rate is modeled
as a Vasicek (1977) mean-reverting process. Modeling the interest rate as a
mean-reverting process allows us to examine separately the impact of the
long-run mean and the initial value of the interest rate.

When the interest rate is assumed to be a constant, the level of the constant
interest rate plays an important role in determining the optimal leverage ratio
and debt maturity. In our model with stochastic interest rates, however, the
optimal leverage ratio and debt maturity are mainly determined by the long-
run mean of the interest rate process. If the initial interest rate is below/above
the long-run mean (an upward- or downward-sloping term structure), the firm
optimally adjusts downward/upward the coupon and principal of the debt so
that its market value (the present value of the coupon and principal) is in-
dependent of the initial interest rate level and is proportional to the prevailing
asset value when the debt is issued. Consequently, the optimal leverage ratio
and debt maturity are independent of the spot interest rate level. These results
are quite different from those in a model with constant interest rates, in which
the optimal leverage ratio, debt maturity, coupon rate, and principal all depend
on the interest rate level.

We find that the long-run mean of the stochastic interest rate process is the
most important variable in the determination of the optimal capital structure.
This is intuitive because the long-run mean plays a key role in the determi-
nation of the tax shields and bankruptcy costs associated with all future debt
issues. The reason is that while at any one point in time there is only one
bond outstanding in our model, the capital structure and debt maturity are
determined by taking into account all future debt issues, and the best infor-
mation for the future interest rate is its long-run mean. Unlike the spot interest
rate and a YTM, the long-run mean of a short-term interest rate process is
not an empirical observable; one must estimate it using historical data as well
as a specific model for the interest rate process. Therefore, it is essential to
consider a stochastic interest rate process in the determination of a firm’s
capital structure.

The optimal leverage ratio of about 35% obtained from our dynamic model
compares favorably with the historical average for a typical large publicly
traded firm in the United States. By contrast, most static models typically
predict very high leverage ratios.4

We find that the tax rate and the transactions cost are the two most important
parameters in determining the optimal maturity because the optimal maturity
is the result of the trade-off between the transactions cost of and the gain
from adjusting the debt level in the future. On the one hand, the firm should
issue short-maturity debt and therefore give itself the opportunity to issue new
debt optimally, depending on the firm value when the old debt matures. On
the other hand, if new debt is issued too often, transactions costs will become

4. Note that dynamic models with constant interest rates can also bring the predicted leverage
ratios more in line with observed values (see, e.g., Goldstein et al. 2001).
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too large. When the firm behaves optimally, in addition to an optimal capital
structure, an optimal maturity structure emerges. Consistent with Childs,
Mauer, and Ott (2003), a higher transaction cost yields a longer debt maturity
because it is more costly to rebalance a firm’s capital structure, and thus the
firm does so less frequently. By contrast, it is more valuable to recapitalize
the firm’s capital structure if the corporate tax rate is higher. Therefore, a
higher tax rate yields a shorter (optimal) debt maturity. The relationship among
the tax rate, transaction cost, and optimal debt maturity is consistent with the
predictions in Childs et al. (2003). However, the reasons behind the results
of transactions cost and tax rate are not the same. Our explanation is the trade-
off between tax benefits and the transactions costs of dynamically adjusting
a firm’s capital structure, whereas that in Childs et al. (2003) is based on
minimizing the agency cost of the second-best exercising policy of the growth
options.5

Another interesting result is that the optimal maturity is inversely related
to the asset volatility level. This result is easy to understand in our framework
because the flexibility to rebalance capital structure is an option. When the
firm’s asset return process is more volatile, the firm would like to issue debt
more frequently to capture the tax benefit or reduce the bankruptcy cost. Due
to a high volatility, the firm’s asset value may change in greater magnitude.
When its asset value goes up, the firm wants to issue more debt to capture
the tax benefit. When its asset value goes down, the firm wants to issue less
debt to reduce the bankruptcy cost. Consequently, the firm may want to issue
debt with shorter maturity so that it can issue debt more frequently in response
to the changes in its asset values. Similarly, we find that in addition to the
long-run mean of the interest rate process, the volatility of the interest rate
process and the correlation between the interest rate process and the firm’s
asset value process play nontrivial roles in the determination of the debt
maturity structure.

The joint determination of the optimal capital structure and the optimal
debt maturity leads to results that would not have been obtained in a model
in which only the optimal capital structure is determined. For example, when
the volatility of the asset return process or the interest rate process increases,
one may expect that the credit spread of the firm’s debt increases as well.
When the firm can choose its debt maturity, however, it optimally issues debt
with shorter maturity so that the credit spread of the firm’s debt may not
increase. The reason is that a debt with a shorter maturity has a lower default
risk.

For further comparative statics, we calculate the optimal capital structure
while fixing the maturity structure as well as the optimal maturity structure
while fixing the capital structure. Some interesting results arise. For example,
we find that the firm’s optimal leverage ratio is not a monotone function of
the debt maturity. Intuitively, one may believe that when the firm is constrained

5. There are no agency conflicts in our model.
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to issue long-term debt, the firm may want to issue less debt because of a
potentially higher probability of default risk. By contrast, however, if a firm
is constrained to issue long-term debt, it means that the firm cannot issue debt
as often as it desires. If a firm cannot issue debt more frequently, then it may
want to issue a higher amount per debt to capture the tax benefit. The trade-
off between the firm’s desire to capture the tax benefit and its need to reduce
bankruptcy costs leads to a nonmonotone relation between leverage ratio and
debt maturity.

The remainder of this article is organized as follows. Section II describes
the model. It summarizes the assumptions and introduces the variables and
parameters to be used in the rest of the article. Section III derives various
valuation expressions in closed form. Section IV presents numerical results.
Section V summarizes and concludes. More technical materials are provided
in the three appendices. Appendix A reviews the forward risk-neutral measure
used to derive the valuation formulas in Section III. Complex derivations are
deferred to appendix B. A formal proof of the optimality of our solution in
Section III.C is provided in appendix C.

II. Model Description

Assumption 1. Financial markets are dynamically complete, and trading
takes place continuously. Therefore, there exists an equivalent martingale
measure (Harrison and Kreps 1979) or a risk-neutral measure (Cox and Ross
1976), Q, under which discounted price processes are martingales.

Assumption 2. The total before-tax value of the firm’s unlevered assets
under Q is described by a geometric Brownian motion process,

dVt Qp (r � y)dt � j dW , (1)t v vtVt

where rt is the interest rate at time t, y is a constant payout rate, jv denotes
the constant volatility of asset returns, and is a standard Wiener processQWvt

defined on a complete probability space (Q, P, F ).
This assumption implies that the after-tax value of the firm’s unlevered

assets, , is simply , where v is the corporate tax rate. If a∗ ∗V V p V(1 � v)t t t

firm has debts in its capital structure, its after-tax levered value will be different
from .∗Vt

Assumption 3. The interest rate under Q is modeled by a Vasicek (1977)
process,

Qdr p b(a � r )dt � j dW . (2)t t r rt

The coefficients a, b, and jr are constants, and is another standard WienerQWrt

process on the same probability space (Q, P, F ). The instantaneous correlation
between and is given by rdt, with r being a constant.Q QdW dWvt rt
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As in the Vasicek model, the price of a zero-coupon bond at time t with
a maturity of T is given by

A(t;T )�B(t;T )rtL(r , t; T ) p e , (3)t

where

2 2 �b(T�t)j j 1 � er r
A(t; T ) p � a (T � t) � � a2 2( ) ( )2b b b

2 �2b(T�t)j 1 � er
� , (4)2( )2b 2b

�b(T�t)1 � e
B(t; T ) p . (5)

b

Assumption 4. The firm issues coupon debt with a finite maturity date.
Coupon payments are tax deductible at the corporate tax rate v, and the full
loss offset is assumed. Let (C, P, T) be the coupon, principal, and maturity
of the debt, respectively. Assumption 2 implies that when the firm pays coupon
C, it deducts taxes by the amount of vC.

Assumption 5. Bankruptcy occurs when the firm’s unlevered asset value
falls to an exogenous default boundary VB(rt, t;P, T), which is specified by

y(T�t)V (r , t; P, T) p PL(r , t; T )e /(1 � v). (6)B t t

If , the firm is solvent and makes the contractual couponV 1 V (r , t; P, T)t B t

payment to its bondholders. In the event of default, fraction of thef � (0, 1)
firm’s unlevered value is lost to the bankruptcy procedure, and the bondholders
receive the after-tax value of the rest, .(1 � v)(1 � f)V (r , t; P, T)B t

This specification of the default boundary is for tractability. Note that VB(rt,
t; P, T) has the desired property that, at the maturity date, to avoid default
the after-tax unlevered asset value has to be at least as large as the face value
of the debt. For example, if the firm decides to retire the debt at T, VB(rT, T;
P, T) ensures that the firm has just enough after-tax assets to pay off the face
value of the debt.6 Furthermore, this assumption suggests that, given the drift
of the firm’s unlevered asset value process, the firm defaults (before maturity)
at the first time its after-tax value declines below the present value of the
principal, P, adjusted for the convenience yield, y, of the value process. In
other words, the firm defaults as soon as its value declines to the point at
which the expected after-tax firm value at maturity will be below the principal,
P.

Assumption 6. The firm rebalances its capital structure every T years.
At time zero, the firm issues a T-year coupon bond. If the firm has not gone

6. We have also considered the case where the factor is omitted in eq. (6). Although1/(1 � v)
the results are similar, we feel that eq. (6) is a more reasonable specification because the asset
process in eq. (1) is for before-tax value.
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bankrupt in T years, it issues another T-year coupon bond at time T. This
process continues indefinitely as long as the firm is solvent. Each bond is
issued at (the same) times of the value of a risk-free zero-l p 1/L(a, 0; T)
coupon bond with the same face value.

We have two comments concerning assumption 6. First, the capital struc-
tures in Leland (1994) and Leland and Toft (1996) are static in the sense that
as the firm’s asset value evolves, the coupon and the face value of the debt
remain the same. This is not optimal because the firm may want to change
the debt structure when its asset value changes. When the firm rebalances its
capital structure, assumption 6 allows the firm to scale up (down) the coupon
and the face value if the firm’s asset value has increased (decreased). Given
this assumption, we show in Section III.C that the optimal initial debt value
at each restructuring point is proportional to the prevailing asset value. For
example, if the firm’s asset value has doubled since the previous bond issue,
the initial market value of the new bond should be twice that of the previous
bond.

Second, the assumption that debt is issued at the same constant l times of
the price of a risk-free, zero-coupon bond with the same face value is a critical
one for tractability. However, how the constant l is chosen is not important
for tractability, and different reasonable choices are possible. For example, if
we require that the initial debt be priced at par, then we need to set l p

.7 By contrast, if we set , where a is the long-1/L(r , 0; T) l p 1/L(a, 0; T)0

run mean of the mean-reverting interest rate process, then the debt will be
priced at par if the prevailing spot interest rate level is the long-run mean, a.
With this choice of l, half of the future debts will be priced above par (with
the other half below par) over a long horizon. This latter choice of l is state
independent while the first one depends on the initial interest rate, r0. We will
choose in our calculations.8 The coupon rate is appropriatelyl p 1/L(a, 0; T)
chosen to satisfy .D p lPL(r , 0; T)0

Assumption 7. The transactions cost of issuing and serving a bond is
fraction of the market value of the bond issued.k � (0, 1)

To examine the optimal maturity in a dynamic capital structure model, we
need to introduce a transactions cost associated with issuing and serving the
debt. The reason is that without it, the firm will rebalance its capital structure
continuously.9 The proportional cost structure is for tractability.

7. Since the debt is issued at l times of the value of a riskless bond with the same face value,
the debt value can be written as . If , (initial debt pricedD p lPL(r , 0; T) l p 1/L(r , 0; T) D p P0 0

at par). If , then the debt value will be issued atl p 1/L(a, 0; T) D p P p lPL(r , 0; T) p0

, which equals P (priced at par) when the initial spot rate , the long-PL(r , 0; T)/L(a, 0; T) r p a0 0

run mean.
8. While most debts are issued at par in practice, we do need to assume the same l for all

debts for tractability. Our choice of l should minimize any effects of deviating from par pricing
since half/half of the future debts over the long run will be issued above/below par.

9. Our assumption on the transactions cost is similar to those in Kane et al. (1985), Fischer
et al. (1989), Goldstein et al. (2001), and Childs et al. (2003).
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III. Model Derivation

The stochastic nature of the interest rate complicates the pricing of securities
in this model tremendously. Nevertheless, the change of measure technique
can be used to obtain valuation formulas in closed form.

A. Preliminary Development

Before we present the valuation formulas in the next two subsections, we
provide some preliminary results. First, define the first passage time t as

t p min [t : V ≤ V (r , t; P, T)], (7)t B t

which is the first time at which the asset value Vt hits VB(rt, t;P, T) in some
state under Q. Next, defineq � Q

X p log [V/V (r , t; P, T)]. (8)t t B t

It is clear that equivalently, t is the first passage time that Xt reaches the origin
from above, starting at . Ito’s lemma yieldsX p log [V /V (r , 0; P, T)] 1 00 0 B 0

2 2 Q QdX p [j (t; T )/2 � j /2]dt � j dW � j (t; T )dW , (9)t p v v vt p rt

where

j (t; T ) p j B(t; T ). (10)p r

Note that although the drifts of dVt /Vt and are sto-dV (r , t; P, T)/V (r , t; P, T)B t B t

chastic, that of dXt is time dependent and deterministic. We emphasize that
the nonstochastic (time-dependent only) nature of the drift and diffusion of
dXt is one key feature that allows us to derive valuation formulas in closed
form.10

In the next two subsections, we need the following two quantities:

T� ∫ r (u)du0e
QG(t; T, X ) p E 1(t ! t) , (11)0 0 [ ]L(r , 0; T)0

Q2Q �j t/2�j Wv v vtH(t; T, X ) p E e 1(t 1 t) , (12)[ ]0 0

where 1(7) is the indicator function. Note that both H(7) and G(7) depend on
T because jp(t; T) in equation (10) does. The derivations that lead to the
closed-form expressions for H(7) and G(7) are given in appendix B.

10. Another key aspect of closed-form derivations is the use of the change of measure technique
introduced in app. A.
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B. Valuation Formulas in Closed Form

Consider a bond that pays a coupon rate C, has a face value P, and matures
at time T. The payment rate d(s) to the bondholders at any time s ( ) iss ≤ T
equal to

d(s) p C1(s ≤ t) � Pd(s� T)1(T ≤ t)

� (1 � v)(1 � f)V (r , s; P, T)1(t ! T)d(s� t), (13)B s

where d(7) is the Dirac delta function. The factor ( ), in the last term in1 � v

equation (13), reflects the fact that the firm must still pay taxes for the value
of the remaining assets, , if default occurs. Given the pay-(1 � f)V (r , s; P, T)B s

ment rate in (13), we have the debt value (with derivation in app. B):

T

sQ � ∫ r (u)du0D(T, X ; r , P) p C E [e 1(s ≤ t)]ds0 0 � 0
0

� PL(r , 0; T)[1 � G(T; T, X )] (14)0 0

ˆ� (1 � f)PL(r , 0; T)[G(T; T, X ) � G(T; T, X )],0 0 0

where

T

y(T�s)Ĝ(T; T, X ) p y e G(s; T, X )ds. (15)0 � 0
0

When the coupon of C is paid, vC, where v is the tax rate, is deducted
from corporate taxes. Thus, the tax shield from the current issue of debt is v

times of the first term in (14). That is, the tax shield is given by

T

sQ � ∫ r (u)du0tb(T, X ) p vC E [e 1(s ≤ t)]ds. (16)0 � 0
0

Given that

�X �yT0D(T, X ; r , P) p lPL(r , 0; T) p l(1 � v)V e , (17)0 0 0 0

from (14) we have

�X �yT0tb(T, X ) p v(1 � v)V e [l � 10 0

ˆ� fG(T; T, X ) � (1 � f)G(T; T, X )]. (18)0 0

When bankruptcy occurs, f fraction of the asset value is lost to the bank-
ruptcy procedure. It can be seen that the bankruptcy cost is given by11

�X �yT ˆ0bc(T, X ) p fV e [G(T; T, X ) � G(T; T, X )]. (19)0 0 0 0

11. From eq. (13), fraction of the last term in eq. (14) is the present value1/[(1 � f)(1 � v)]
of the asset value when default occurs; f fraction of this value is the default cost.
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The (proportional) transactions cost of issuing and serving the debt is given
by

�X �yT0tc(T, X ) p kD(T, X ; r , P) p kl(1 � v)V e , (20)0 0 0 0

where k is the transactions cost per dollar issued.
From (18–20), it is clear that, given both T and those parameters exogenous

to the model, the tax shield, bankruptcy cost, and transactions cost depend
only on one choice variable, X0, which in turn determines P through X p0

.yTlog {V (1 � v)/[PL(r , 0; T)e ]}0 0

C. Total Values in the Presence of Future Periods

Even though at any one point in time there is only one issue of debt out-
standing, the total levered firm value will reflect the benefits and costs of all
future issues of debt. Therefore, we need to find the total tax benefit, total
bankruptcy cost, and total transactions cost from all future periods. Notice
that the existence of future periods depends on the firm being solvent in all
previous periods. This is a multiperiod, conditional, first-passage time prob-
lem. Generally, such problems are very difficult to solve. Fortunately, we are
able to transform this difficult problem into a simple one-period, fixed-point
one as we show now.

Consider the value of the tax shield at time T from the debt issued at time
T. Similar to (18), the tax shield is given by

�X �yTTtb (T, X ) p v(1 � v)V e [l � 12 T T

ˆ� fG(T; T, X ) � (1 � f)G(T; T, X )], (21)T T

where , with PT being the face valueyTX p log {V (1 � v)/[P L(r , 0; T)e ]}T T T T

of the debt issued at time T. Note that (21) has exactly the same functional
form as (18) except for the scaling factor, VT versus V0. Indeed, it is clear that
the tax benefit of any debt issued in the future will have the same functional
form as (18) but scale with the firm’s asset value. Note that the scaling factor
of the firm’s asset value does not affect the optimal X. Hence, if the initial
optimal capital structure corresponds with an optimal value X* for X0, X*
must also be the optimal value for XT for the optimal capital structure at time
T. In fact, X* will be the optimal value for all future debt issues. Appendix
C presents a detailed proof of this result.

Consequently, the total optimal tax shield from the current and all future
issues of debt also scales with the asset value when the debt is issued. Formally,
if we let TB(T, X*) denote the total optimal tax benefit at time zero from the
first issue of debt at time zero to all subsequent issues of debt, and if we let
TB2(T, X*) denote the total optimal tax benefit at time T from the debt issued
at time T to all subsequent issues of debt, then it follows that ∗TB (T, X ) p2

. However, the total tax benefit TB(T, X*) at time zero is the∗TB(T, X ) ∗ V /VT 0

tax benefit tb(T, X*) from the debt issued at time zero, plus the present value
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of the total tax benefit at time T, conditional∗ ∗TB (T, X ) p TB(T, X ) ∗ V /V2 T 0

on no default occurred. Therefore, we have

VT T∗ ∗ Q ∗ � ∫ r (u)du ∗0TB(T, X ) p tb(T, X ) � E TB(T, X )1(t 1 T)e p tb(T, X )0 [ ]V0

QT 2 T∗ Q ∫ [r (u)�y�j /2]du�j W � ∫ r (u)duv v0 vT 0� TB(T, X )E e 1(t 1 T)e{ }0

Q2∗ ∗ �yT Q �j T/2�j Wv v vTp tb(T, X ) � TB(T, X )e E e 1(t 1 T)[ ]0

∗ ∗ �yT ∗p tb(T, X ) � TB(T, X )e H(T; T, X ),

(22)

where
Q2∗ Q �j T/2�j Wv v vTH(T; T, X ) p E [e 1(t 1 T)].0

Equation (22) indicates that the total optimal tax shield TB(T, X*) is a linear
function of itself. Thus, we have reduced a complex multiperiod problem to
a simple fixed-point one whose solution is given by

∗tb(T, X )∗TB(T, X ) p . (23)
�yT ∗1 � e H(T; T, X )

Similar arguments show that the total bankruptcy cost BC and transactions
cost TC are, respectively, given by

∗bc(T, X )∗BC(T, X ) p , (24)
�yT ∗1 � e H(T; T, X )

∗tc(T, X )∗TC(T, X ) p . (25)
�yT ∗1 � e H(T; T, X )

Finally, the total levered firm value, TV(T, X*), equals the unlevered firm
value, V0( ), plus the value of tax shields, TB(T, X*), less the value of1 � v

default and transaction costs, :∗ ∗BC(T, X ) � TC(T, X )

∗ ∗ ∗ ∗TB(T, X ) p V (1 � v) � TB(T, X ) � [BC(T, X ) � TC(T, X )]. (26)0

Note that given other parameters of the model, the total levered firm value
TV(T, X*) is a function of only T and X*. The firm chooses these two variables
to maximize TV(T, X*). This is a simple unconstrained bivariate maximization
problem, and a number of efficient library routines are well suited for this
problem.12

We caution that without explicit solutions we cannot prove that local max-
imums do not exist, even though this is unlikely. The reason that an optimal

12. For example, “bconf” from the IMSL Math Library (2003) or “frprmn” from Numerical
Recipes(Press et al. 2003).
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capital structure exists is due to the trade-off between tax shields and the
default costs of debt. The marginal tax benefit of debt declines while the
marginal default cost of debt increases. Hence, too little or too much debt is
unlikely to be optimal, and local maximums are not likely. Similarly, an
optimal maturity structure exists because of the trade-off between the gains
of tax shields of dynamically adjusting capital structure and the transaction
costs of doing so. Again, adjusting too infrequently or too often is unlikely
to be optimal, and local maximums are not likely. In our calculations, we
have used wide ranges of T and X* to locate the optimal (T, X*).

D. Some General Properties of the Optimal Solution

Before we proceed to the numerical results in the next section, we make
several general observations about the optimal solution. For notational pur-
pose, let denote the time of each restructuring point wheret p nT npn

and so on.0, 1, 2,
First, note that since our choice of does not depend onl p 1/L(a, 0; T)

the initial interest level r0, the optimal X* does not depend on it either. The
reason is that equations (19–21) and (24–27) make it clear that the optimal
X* depends on all model parameters and l, but not on r0. At first glance, this
result may appear puzzling because the initial value at each restructuring point,

, appears to depend on . However, ityTX p log (V (1 � v)/[P L(r , 0; T)e )] rt t t t tn n n n n

is to be noted that it is the optimal face value of the bond that depends on
through . Thus, the bond face value de-

∗∗ �X �yTr P p V (1 � v)e /L(r , 0; T)t t t tn n n n

pends on the initial interest rate level in a particular way such that, given the
assumptions of the model, X* is independent of it. It is noted that, unlike in
models with constant interest rates, the optimal coupon and face value at
different restructuring points do not scale with the asset value because of their
interest rate dependence.

Second, because X* is the same, the probability of default is the same for
all debt issues. The reason is that the drift and diffusion of Xt do not depend
on the interest rate levels or the asset values (the two state variables).

Third, like in the Leland (1998)-type dynamic models with constant interest
rates, the initial leverage ratio (market debt value over after-tax total levered
firm value), D/TV, is the same at each restructuring point. The reason is that
from equations (19–21) and (24–27) it is clear that the after-tax total levered
firm value depends only on T and X*, which are the same for all debt issues.
The initial market value of any future debt also depends only on T and X*
because . Therefore, the initial leverage ratio depends

∗�X �yTD p l(1 � v)V et tn n

only on T and X* as well and is the same for all debt issues.13

Finally, unlike in the Leland (1998)-type dynamic models with constant
interest rates, the ratio of the coupon C to the face value P of each debt is

13. The asset value factor, , cancels out in the ratio since the after-tax total levered firmVtn

value is also proportional to it.
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different and depends on the interest rate level. Note that by the definition of
Xt, the optimal face value is given by

∗∗ �X �yTP p V (1 � v)e /L(r , 0; T), (27)t t tn n n

where X* is period independent. Thus is proportional to and inversely∗P Vt tn n

proportional to . Equations (16) and (18) and the similar equationsL(r , 0; T)tn

at tn imply that the optimal coupon, , is given by∗Ctn

∗�X �yT ∗ ∗ˆ(1 � v)V e [l � 1 � fG(T; T, X ) � (1 � f)G(T; T, X )]tn∗C p . (28)st Tn Q � ∫ r (t �u)dun0E [e 1(s ≤ t)]ds∫0 tn

Therefore, is also proportional to . Although depends on , it is not∗ ∗C V C rt t t tn n n n

inversely proportional to . It follows that is independent of∗ ∗L(r , 0; T) C /Pt t tn n n

but not of , and generally unless it happens that∗ ∗ ∗ ∗V r C /P ( C /Pt t t t t tn n n n n�1 n�1

.r p rt tn n�1

IV. Numerical Results and Comparative Statics

In this section, we implement the dynamic model developed in the previous
section. Although the valuation formulas are obtained in closed form, the joint
determination of the optimal capital structure and optimal debt maturity struc-
ture needs to be performed numerically. In the numerical calculations, the base
parameters are fixed as follows: the initial asset value, ; the assetV p $1000

return volatility, ; the corporate tax rate, ; the per dollar trans-j p 0.2 v p 0.35v

actions cost of issuing debt, ;14 the bankruptcy cost parameter,k p 2% f p
; the initial interest rate, ; the correlation coefficient between the0.5 r p 0.070

firm’s asset return and the interest rate, ; and the payout rate,r p 0 y p
. The parameter values for the interest rate process are ,0.05 a p 0.0716

, and .15 The numerical results are reported in tables 1b p 0.261 j p 0.0224r

and 2.

A. Optimal Capital Structure

Table 1 reports the comparative statics when the interest rate is constant, and
table 2 reports the comparative statics when the interest rate is stochastic.
Several features are notable.

First, the long-run mean a of the interest rate process, rather than the spot
interest rate, has the greater impact on firms’ optimal leverage ratios. The
reason is that while at any time there is only one finite maturity debt out-
standing, the optimal capital structure is based on the total tax shield and total

14. The transactions cost of issuing bonds is usually between 1% and 4%. Fischer et al. (1989)
have used transactions costs ranging from 1% to 10%, while Kane et al. (1985) have considered
1% and 2% in their calculations.

15. These values are taken from the empirical estimates in Aı̈t-Sahalia (1999). In particular,
the long-run mean, a, is about 7%.
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TABLE 1

(1)

T
(Years)

(2)

C
($)
(3)

P
($)
(4)

Credit
Spread
( )4#10

(5)

Leverage
Ratio
(%)
(6)

TB
($)
(7)

BC
($)
(8)

TC
($)
(9)

Debt
Benefit

(%)
(10)

TV
($)
(11)

Base 3.50 1.81 25.35 14.92 34.81 11.99 1.07 3.10 12.03 72.82
k p 0.015 2.64 1.93 27.16 12.45 36.83 12.93 .98 3.23 13.43 73.73
k p 0.025 4.42 1.72 24.01 17.44 33.28 11.27 1.16 2.96 10.99 72.14
v p 0.2 5.81 1.83 25.72 13.32 30.59 6.83 .76 2.01 5.07 84.05
v p 0.5 2.52 1.53 21.40 13.49 35.70 14.56 1.08 3.54 19.88 59.94
j p 0.15v 4.34 2.21 31.02 13.00 41.22 14.50 1.13 3.11 15.80 75.27
j p 0.25v 3.02 1.50 20.94 16.71 29.47 9.98 1.00 2.93 9.31 71.05
r p 0.050 4.15 1.08 21.11 11.20 30.37 7.44 .72 2.22 6.92 69.50
r p 0.090 3.16 2.63 28.66 18.38 37.42 16.83 1.41 3.81 17.85 76.60
f p 0.4 3.64 1.85 25.83 15.19 35.38 12.13 1.09 3.03 12.32 73.01
f p 0.6 3.39 1.78 24.97 14.67 34.35 11.86 1.05 3.14 11.80 72.67
y p 0.04 3.64 1.86 25.95 15.06 34.65 14.98 1.33 3.73 15.25 74.91
y p 0.06 3.37 1.77 24.76 14.62 34.67 9.97 .89 2.66 9.88 71.42

Note.—Column 1 denotes the changing parameter. The other parameters are fixed at their base values.
Columns 2–11 represent the optimal maturity, optimal coupon rate, optimal principal, credit spread in basis
points, optimal leverage ratio, total tax benefit, total bankruptcy cost, total transaction cost, debt benefit as a
percentage of the after-tax unlevered firm value, , and optimal after-tax levered100(TB� BC� TC)/[V (1 � v)]0

firm value, respectively.

default cost associated with both the existing debt and all future debts. It is
the long-run mean rather than the spot interest rate level that has the greatest
impact on the values of these future debts.

Our calculations indicate that the results with stochastic interest rates are
similar to a model with a constant interest rate whose value is calibrated to
the long-run mean of the stochastic interest rate process. Thus, our model
provides a justification for the use of constant interest rates in capital structure
models, provided that the long-run mean of the interest rate process instead
of the spot interest rate or a YTM is used as the input for the constant interest
rate. Without this insight, the traditional capital structure models could not
be used to explain empirical findings. Because the long-run mean is not an
empirical observable, one must estimate it using historical data as well as a
specific model for the interest rate process. Hence, it is essential to consider
a stochastic interest rate process in the determination of the capital structure.

When the interest rate is assumed to be a constant, its level does have a
significant impact on a firm’s capital structure decisions. For example, when
the constant interest rate is 5%, the optimal levered firm value, net debt benefit,
and the market value of debt (leverage times levered firm value) are $69.5,
6.92%, and $21.11, respectively, whereas the corresponding values are $76.6,
17.85%, and $28.66, respectively, when the constant interest rate is 9%. There
are two reasons that the interest rate level is important in a constant interest
rate model. First, the usual explanation is that at a higher interest rate, the
risk-neutral drift of the asset value process is higher, and the risk-neutral default
probability becomes lower for the same coupon and principal. Therefore, the
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TABLE 2

(1)

T
(Years)

(2)

C
($)
(3)

P
($)
(4)

Credit
Spread
( )4#10

(5)

Leverage
Ratio
(%)
(6)

TB
($)
(7)

BC
($)
(8)

TC
($)
(9)

Debt
Benefit

(%)
(10)

TV
($)
(11)

A. Changing one parameter value at a time:
Base 3.20 1.86 25.59 14.15 35.22 12.35 1.03 3.40 12.17 72.91
k p 0.015 2.48 1.99 27.42 12.08 37.21 13.33 .96 3.47 13.69 73.90
k p 0.025 3.93 1.76 24.20 16.09 33.67 11.58 1.10 3.33 11.02 72.16
v p 0.2 5.06 1.86 25.80 11.94 30.85 6.98 .70 2.29 4.99 84.00
v p 0.5 2.37 1.57 21.60 13.11 36.01 15.01 1.07 3.80 20.29 60.14
j p 0.15v 3.68 2.26 31.20 11.67 41.62 14.92 1.03 3.65 15.75 75.23
j p 0.25v 2.85 1.54 21.18 16.23 29.85 10.30 .99 3.14 9.50 71.17
r p 0.050 3.20 1.82 24.50 14.15 35.22 12.35 1.03 3.40 12.17 72.91
r p 0.090 3.20 1.90 26.73 14.15 35.22 12.35 1.03 3.40 12.17 72.91
f p 0.4 3.30 1.89 26.07 14.28 35.79 12.49 1.05 3.35 12.45 73.09
f p 0.6 3.13 1.83 25.21 14.00 34.77 12.22 1.02 3.44 11.95 72.77
y p 0.04 3.29 1.90 26.16 14.10 35.00 15.43 1.27 4.15 15.40 75.01
y p 0.06 3.12 1.82 25.03 14.01 35.13 10.26 .86 2.90 10.01 71.50
r p �0.3 3.53 1.90 26.11 14.78 35.77 12.54 1.09 3.17 12.73 73.28
r p 0.3 2.99 1.83 25.12 13.77 34.72 12.16 .99 3.56 11.70 72.60
a p 0.04 4.35 .77 19.93 8.31 27.16 5.24 .48 1.87 4.44 67.88
a p 0.10 2.80 2.96 28.33 18.58 38.35 19.36 1.48 4.46 20.64 78.42
b p 0.15 3.12 1.86 25.64 13.80 35.33 12.37 1.01 3.49 12.10 72.86
b p 0.35 3.26 1.86 25.57 14.38 35.16 12.33 1.05 3.34 12.22 72.94
j p 0.01r 3.40 1.87 25.56 14.96 35.11 12.36 1.09 3.21 12.41 73.07
j p 0.04r 2.87 1.84 25.61 12.74 35.41 12.27 .94 3.77 11.62 72.55

B. Holding r0 at 4% and 6-year risk-free yield at 7%:
a p 0.1028 2.78 2.97 26.90 19.01 38.55 20.07 1.52 4.55 21.53 79.00
b p 3.3352 3.46 1.86 25.39 15.19 35.06 12.36 1.10 3.16 12.46 73.10
a p 0.0415 4.26 .86 21.95 8.62 27.73 5.55 .51 1.95 4.75 68.09
j p 0.0859r 2.23 1.79 26.63 9.67 35.59 11.76 .72 4.74 9.70 71.31

Note.—Column 1 denotes the changing parameter. The other parameters are fixed at their base values.
Columns 2–11 represent the optimal maturity, optimal coupon rate, optimal principal, credit spread in basis
points, optimal leverage ratio, total tax benefit, total bankruptcy cost, total transaction cost, debt benefit as a
percentage of the after-tax unlevered firm value, , and optimal after-tax levered100(TB� BC� TC)/[V (1 � v)]0

firm value, respectively. In panels B and C, a, b, or is chosen so that given the initial interest rate, 4% orjt

10%, the 6-year risk-free yield is 7%.

firm optimally levers more if the interest rate is higher, 30.37% versus 37.42%,
when the constant interest rate is 5% versus 9%. An alternative explanation
for this result is that at a higher interest rate, to reduce the impact of more
discounting to obtain the present value of tax shields, the firm optimally takes
on more debt in earlier periods, resulting in a higher initial leverage ratio.16

By contrast, when the interest rate is stochastic, the firm makes capital
structure decisions based mainly on the long-run mean of the interest rate
process. Given that all debts are issued at times of the valuel p 1/L(a, 0; T)
of a risk-free, zero-coupon debt with the same face value (assumption 6), the
optimal X* is independent of the initial (spot) interest rate level. Consequently,
the levered firm value, net debt benefit, and optimal leverage ratio are all
independent of the initial interest rate. Furthermore, the initial leverage ratio

16. We are grateful to the anonymous referee for this explanation.
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at each restructuring point is the same, although the prevailing interest rate
at each restructuring point is different.17

As discussed in Section III.D, we note that the optimal coupon and principal
of the debt in our model do depend on the initial interest rate level, although
the debt value (the present value of the coupon and principal) and initial
leverage ratio do not. Thus, the firm’s optimal strategy is to issue debt at each
restructuring point whose market value is proportional to the prevailing asset
value but independent of the interest rate level. This can be achieved by issuing
debt with higher/lower coupon and principal if the interest rate has increased/
decreased but by keeping the present value of coupon and principal indepen-
dent of the interest rate level.

To examine further how the changes in the term structure affect the capital
structure decisions, we fix the initial interest rate at 4% in panel B and 10%
in panel C in table 2 but change a, b, or jr of the interest rate process so
that the 6-year risk-free yield is kept at 7%. The corresponding long-run means,
a, in the last four entries in table 2 are 10.28%, 7.16%, 4.15%, and 7.16%,
respectively. Thus, relative to the 6-year, risk-free yield or the long-run mean,
the two entries in panel B correspond with an upward sloping term structure,
and those in panel C correspond with a downward sloping one. The results
are consistent with the previous observation that the most important interest
rate parameter is the long-run mean of the interest rate process. For example,
the first entry in panel B with a long-run mean of 10.28% levers more ag-
gressively than the first entry in panel C with a long-run mean of 4.15%. The
reason is that the long-run mean is more important than the initial interest
rate in determining capital structures. A model with constant interest rates
would have predicted that the firm would lever more aggressively at 10%
than at 4% of the interest rate.

Second, the leverage ratios obtained from our model (around 35%) compare
more favorably with the historical average of about 30% for a typical large
publicly traded firm in the United States than the predictions of most static
optimal capital structure models. The reason for the lower leverage ratio in
our dynamic model is that, in a static model, a firm cannot adjust its debt
level in the future and, therefore, issues debt more aggressively. By contrast,
a firm with an option to restructure in the future issues debt less aggressively,
for it can adjust its capital structure when the firm’s asset value changes.18

Moreover, the cost of default for the firm includes not only the cost of bank-
ruptcy but also the loss of the option value of adjusting the debt level in the
future. Hence, default is more costly in the dynamic setting, further decreasing
the initial optimal leverage ratio.

Third, the comparative static results with respect to the correlation coef-

17. This result is the same as in some dynamic capital structure models with constant interest
rates (see, e.g., Goldstein et al. 2001; Ju et al. 2005). In those models, however, the leverage
ratio is the same at each restructuring point, but it is different when the interest rate is different.

18. This was first noted in Goldstein et al. (2001) in a different setting with constant interest
rates. A similar implication is also noted in Titman and Tsyplakov (2002).



Capital Structure, Debt, and Interest Rates 2485

ficient between the interest rate process and the firm’s asset value process in
table 2 reveal that the correlation coefficient has little impact on a firm’s
capital structure decisions. The reason is that the covariance jvri ji between
the asset value return and the interest rate process is much smaller than the
typical values of the variance of the asset value returns, .19 Thus, jv has a2jv

first-order effect on the pricing of securities.
Finally, in the last six rows of panel A in table 2, we examine the com-

parative statics on the term structure parameters a, b, and jr. When a changes,
the long-run mean of the interest rate also changes. Note that a firm optimally
issues more debt when the long-run mean of the interest rate process is higher,
similar to the effects of a higher interest rate level in a model with constant
interest rates.20 The two rows with and consider the effectb p 0.15 b p 0.35
of the speed of the mean-reverting parameter b. Given that the initial interest
rate of 7% is close to the long-run mean of 7.16%, the mean-reversion pa-
rameter b has a small impact on model outputs. The last two rows of panel
A in table 2 indicate that although the interest rate volatility increases four
times from 0.01 to 0.04, the increase in the leverage ratio is quite small. The
reason is that the return of the asset value is much more volatile than the
interest rate process, and thus the added volatility in the interest rate process
has little impact on the first-passage time to the default boundary.

In sum, our calculations suggest that the long-run mean is the most important
variable of a stochastic interest rate process in determining the optimal capital
structure.

B. Optimal Maturity Structure

The shareholders’ strategic consideration of dynamic adjustments of the debt
level yields an optimal maturity structure. The trade-off in this case is between
the transactions costs of issuing debt and the gains from adjusting debt level
dynamically. On the one hand, the firm should issue short-maturity debt and
therefore afford itself the opportunity to issue new debt optimally, depending
on the firm value when the old debt matures. On the other hand, if new debts
are issued too often, transactions costs will become too large. When the firm
behaves optimally, in addition to an optimal capital structure, an optimal
maturity structure emerges.

The optimal maturities are reported in column 2 in table 1 and in table 2.
The tables show that the two most important parameters are the tax rate and
the transactions cost because the optimal maturity is the result of the trade-
off between the transactions cost of and the gain from adjusting the debt level
in the future.

Barclay and Smith (1995) find that during the period of 1974–92, firms in
their sample have 51.7% of their debts due in more than 3 years. Because on
average, the debt would have existed for half of its lifetime at any point in

19. See, e.g., eq. (B7).
20. Compare the two rows with and in table 1.r p 5% r p 9%0 0
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time, the median maturity at issue appears to be a little over 6 years. Stohs
and Mauer (1996) find that the median time to maturity is 3.38 years for their
sample. Therefore, the mean maturity of all debts at issue appears to be
between 6 and 7 years, consistent with Barclay and Smith (1995). Most of
the optimal maturities in the two tables are between 3 and 4 years, shorter
than the empirical values. While our theoretical values are smaller than 6
years, it is to be noted that the optimal maturities in the two tables with a
20% tax rate are close to 6 years. Even though 35% is the top corporate tax
rate, the effective corporate tax rate for most firms is likely to be lower due
to investment credit, loss-carry forward, and personal tax effects.

The comparative static results with respect to the firm’s asset volatility
indicate that the optimal debt maturity is inversely related to it.21 This is due
to an optionlike effect. The higher the asset volatility, the greater the value
of the option to adjust the capital structure in the future. The gains from
dynamically adjusting the debt level are reduced if the firm’s asset value is
less volatile. In this case the firm recapitalizes its capital structure less fre-
quently. This appears to be consistent with the empirical evidence. For ex-
ample, in the sample of Barclay and Smith (1995), 36.6% of equally weighted
debts mature in more than 5 years, but the percentage increases to 45.9%
with value-weighted debts. Therefore, larger firms tend to have longer maturity
debts. Because larger and more mature firms are less volatile than smaller
and less mature ones, it follows that less volatile firms have longer maturity
debts. We also note a similar inverse relation between optimal maturity and
the interest rate process volatility, because a higher interest rate volatility
implies more variability in the risk-neural firm asset value process. For ex-
ample, the optimal maturity is 3.4 years when , while it is 2.87j p 0.01r

years when . Similarly, the correlation between the interest ratej p 0.04r

process and the asset value process has a similar impact on debt maturity
structure.

The comparative static results with respect to the long-run mean a reveal
that the optimal maturity is inversely related to a. When the long-run mean
is low, the future growth rate in the firm’s asset value, as given in equation
(1), is likely low as well. With a small asset growth rate, the potential benefit
of adjusting the debt level is small. Therefore, the firm optimally issues longer
maturity debts when the long-run mean is smaller.

C. Credit Spreads

To compute the credit spread, let Dd (yd) and Df (yf) be the prices (yields) of
the defaultable and risk-free debts with maturity T, respectively. Solve yd from

. Similarly, solve yf fromT �y ds �y T �y T �y Td d d dD p C e � Pe p C/y (1 � e ) � Pe∫0d d

. The credit spread (in ba-T �y ds �y T �y T �y Tf f f fD p C e � Pe p C/y (1 � e ) � Pe∫0f f

sis points) is computed as 10,000( ).y � yd f

Table 1 and table 2 indicate that with our model inputs, when firms are

21. In Childs et al. (2003) the optimal maturity is increasing in the assets-in-place volatility.
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optimally levered, the credit spreads are around 14 basis points. These values
are lower than the historical credit spread. Leland (1994) reports that the
average historical credit spread is about 52 basis points after the impact of
call provisions is eliminated. There are two main reasons that the credit spreads
in our model are small. First, debt maturities in the two tables are generally
quite short. Shorter maturity debts normally have lower default risks and thus
lower credit spreads. Second, it is well known that structural models like ours
generally yield credit spreads that are too small, indicating that factors not
considered in a typical contingent-claim structural model play important roles
in determining the credit spread.22 For example, Tang and Yan (2004) dem-
onstrate that macroeconomic conditions can affect credit spreads significantly.
Childs et al. (2003), by contrast, show that incorporating agency conflicts
between bondholders and shareholders can generate credit spreads that are
more consistent with observations.

While our calculations show that the model predictions of credit spreads
are small, comparative static calculations do indicate that the various under-
lying variables affect the credit spreads in expected ways. For example, with
the coupon and principal fixed at their optimal base case values, that is, 1.86
and 25.59, respectively, increasing the debt maturity to 6 years increases the
credit spread to 47.27 basis points from 14.15, while it increases to 65.63
basis points if the asset volatility increases to 0.25. When the fraction of the
asset value lost to default increases to 0.6, the credit spread increases to 16.87.
When the correlation coefficient between the interest rate process and the asset
value process increases from 0 to 0.3, the credit spread increases to 19.44.

D. Optimal Capital Structure with Fixed Maturity or Optimal Maturity
with Fixed Debt Capacity

So far we have discussed the model implications assuming that the firm
optimizes both its capital structure and its debt maturity. With a dynamic
framework, our model is flexible enough to allow for the determination of
the optimal capital structure with a fixed debt maturity or for the optimal debt
maturity with a fixed amount of debt to issue. The resulting model is still
dynamic in that the firm optimally rebalances its capital structure with an
exogenously given frequency (debt maturity) or optimally chooses its debt
maturity in meeting its requirement of issuing a certain amount of debt. The
results are reported in table 3. Since the initial interest rate of 7% is close to
the long-run mean of 7.16%, the results for constant and stochastic interest
rates are similar, and we will focus only on panel C and panel D. When the
maturity is shorter, the default risk is smaller for a given level of debt, and
thus the firm can optimally issue more debt. This results in a higher leverage
ratio. However, since the default risk is quite small even at high leverage
ratios when the debt maturity is short, the credit spread is quite low. When
the firm is constrained to issue longer maturity debts, as expected, the credit

22. Jones, Mason, and Rosenfeld 1984; Tang and Yan 2004.
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TABLE 3

(1)

DFT
($FYears)

(2)

C
($)
(3)

P ($)

(4)

Credit
Spread
( )4#10

(5)

Leverage
Ratio
(%)
(6)

TB
($)
(7)

BC
($)
(8)

TC
($)
(9)

Debt
Benefit

(%)
(10)

TV
($)

(11)

A. Constant interest rate and changing maturity:
T p 2.0 28.44 2.01 28.44 8.00 39.46 13.63 .67 5.90 10.87 72.07
T p 4.0 24.70 1.77 24.70 16.99 33.93 11.63 1.18 2.66 11.99 72.79
T p 6.0 23.15 1.68 23.15 24.55 31.95 10.72 1.52 1.74 11.49 72.47
T p 8.0 22.61 1.65 22.61 31.55 31.33 10.29 1.80 1.33 11.01 72.16
T p 10.0 22.67 1.67 22.67 38.29 31.51 10.14 2.08 1.11 10.70 71.95
T p 12.0 23.16 1.73 23.16 44.97 32.24 10.17 2.34 .99 10.53 71.84

B. Constant interest rate and changing debt ca-
pacity:

D p 10.0 9.35 .70 10.0 .87 14.50 4.50 .02 .54 6.07 68.95
D p 15.0 7.32 1.06 15.0 3.63 21.20 6.88 .15 .98 8.85 70.75
D p 20.0 5.27 1.42 20.0 8.16 27.71 9.34 .46 1.71 11.03 72.17
D p 25.0 3.59 1.79 25.0 14.40 34.33 11.82 1.02 2.98 12.03 72.82
D p 30.0 2.39 2.17 30.0 23.67 41.61 14.23 2.01 5.12 10.93 72.10
D p 35.0 1.57 2.59 35.0 40.50 50.72 16.45 3.91 8.54 6.16 69.00
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C. Stochastic interest rate and changing maturity:
T p 2.0 28.47 2.05 28.40 8.30 39.37 13.89 .69 5.90 11.22 72.30
T p 4.0 24.47 1.78 24.37 17.60 33.60 11.66 1.20 2.64 12.02 72.82
T p 6.0 22.62 1.65 22.51 25.53 31.28 10.54 1.53 1.70 11.24 72.31
T p 8.0 21.76 1.60 21.64 32.85 30.28 9.93 1.81 1.28 10.53 71.84
T p 10.0 21.49 1.59 21.37 39.84 30.06 9.61 2.05 1.05 10.01 71.50
T p 12.0 21.66 1.61 21.53 46.66 30.38 9.49 2.29 .92 9.66 71.28

D. Stochastic interest rate and changing debt ca-
pacity:

D p 10.0 8.32 .70 9.95 .85 14.51 4.55 .02 .59 6.06 68.94
D p 15.0 6.45 1.06 14.93 3.24 21.20 6.96 .13 1.08 8.83 70.74
D p 20.0 4.75 1.43 19.91 7.19 27.71 9.47 .41 1.88 11.05 72.18
D p 25.0 3.36 1.81 24.91 13.13 34.29 12.00 .93 3.17 12.15 72.90
D p 30.0 2.31 2.20 29.92 22.45 41.50 14.49 1.91 5.29 11.21 72.29
D p 35.0 1.55 2.64 34.93 39.34 50.50 16.77 3.80 8.67 6.62 69.30

Note.—Column 1 denotes the changing debt maturity or debt capacity. Column 2 denotes the optimal debt capacity given maturity or the optimal maturity given debt capacity. Columns
3–11 represent the coupon rate, principal, credit spread in basis points, leverage ratio, total tax benefit, total bankruptcy cost, total transaction cost, debt benefit as a percentage of the after-
tax unlevered firm value, , and the after-tax levered firm value, respectively. In panels A and B, the interest rate is kept at a constant 7%, while in panels C100(TB� BC� TC)/[V (1 � v)]0

and D, the spot rate r0 is kept at 7%, and the interest rate process parameters, a, b, , and , are kept at their base values.j rt
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spread widens. For example, the credit spread of the optimally issued debt
increases from 8.3 basis points when debt maturity is fixed at 2 years to 46.7
basis points when debt maturity is fixed at 12 years.

Note that the optimal leverage ratio is not monotonically decreasing in debt
maturity. When the debt maturity is short, the firm can afford to optimally
issue more debt because the default risk is small. By contrast, if the firm is
constrained to rebalance less frequently (longer debt maturity), then the gain
of dynamically adjusting capital structure is small. As a result, the firm issues
debt more aggressively. The reasons for issuing debt more aggressively at
shorter and longer maturity are different. Neither too short nor too long ma-
turity may be optimal because rebalancing too often increases transaction costs
and because rebalancing too infrequently reduces the tax benefits.

Panel D in table 3 examines a firm’s debt maturity choice given that it
needs to issue a certain amount of debt. When the firm is constrained to have
low leverage, the firm optimally issues longer maturity debt because the benefit
of rebalancing is limited. By contrast, when the firm is constrained to issue
higher amounts of debt, it optimally chooses short maturity to reduce the risk
of default. Constraining the firm to too low leverage or too high leverage is
not optimal for the firm value. Given the choice, the firm will optimally lever
moderately.

In figures 1–4, we continue to exploit the relationships among firm value,
leverage, and maturity. Figure 1 plots the optimal leverage ratio as a function
of debt maturity. As we discussed above, a firm optimally levers more ag-
gressively when the debt maturity is low or high. Figures 2–4 plot the levered
firm value as a function of the leverage ratio when the debt maturity is fixed
at 2, 6, and 10 years, respectively. Initially, the levered firm value increases
as the leverage increases. However, after a point, the marginal benefit of
leveraging becomes smaller than the marginal cost. The peak in each figure
denotes the optimal levered firm value versus the optimal leverage ratio.

V. Concluding Remarks

The existing models of the optimal capital structure consider neither stochastic
interest rates nor optimal maturity structure. This article develops a model of
optimal capital structure and optimal maturity structure with a Vasicek (1977)
interest rate process. Valuation formulas are obtained in closed form. A novel
fixed-point argument is used to obtain the total tax shield, default cost, and
transactions cost for a dynamic model with potentially an infinite number of
debt issues.

The trade-off between the bankruptcy costs and the tax shields of debts
yields an optimal capital structure. The trade-off between the gains from
adjusting the capital structure periodically and the costs of doing so yields an
optimal maturity structure. In our model the optimal capital structure and
optimal maturity structure are interdependent and determined jointly.

When the interest rate is a constant, the level of the interest rate affects
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Fig. 1.—Optimal leverage ration as a function of debt maturity. The short-term
interest rate is assumed to follow a Vasicek process. Its parameter values are a p

, , and . The correlation between the interest rate process0.0716 b p 0.261 j p 0.0224t

and the firm asset value procedure is assumed to be zero.

both the optimal leverage ratio and the optimal maturity. When the interest
rate follows a mean-reverting stochastic process, the initial level as well as
the long-run mean of the interest rate process affect the pricing of both the
coupon and the principal of the debt. The coupon and principal are determined
in such a way that the market value of the debt (the present value of both
the coupon payments and the principal) is independent of the spot interest
rate level. In particular, when the interest rate is higher/lower, coupon and
principal are also higher/lower, but their present values remain the same.
Consequently, the optimal leverage ratio and optimal maturity are independent
of the spot interest rate level.

While the long-run mean is shown to be important in determining the
optimal capital structure, numerical results show that the correlation between
the stochastic interest rate and the return of the firm’s asset has little impact.
The leverage ratios obtained from our model are consistent in spirit with the
empirical observations.

The optimal maturity and the credit spread of optimally issued debt in our
model appear to be small compared with observed values, indicating that
factors not considered play important roles in determining them. The trade-
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Fig. 2.—Levered firm value as a function of leverage ratio. Debt maturity is fixed
at years. The short-term interest rate is assumed to follow a Vasicek process.T p 2.0
Its parameter values are , , and . The correlationa p 0.0716 b p 0.261 j p 0.0224t

between the interest rate process and the firm asset value process is assumed to be
zero.

off between the transactions costs of issuing bonds and the gains from adjusting
bonds dynamically may not be the only factor determining the optimal maturity
structure. It is well known that contingent-claim-based structural models tend
to generate credit spreads that are too small. Models that incorporate mac-
roeconomic variables and agency conflicts seem to be able to yield credit
spreads that are closer to observed values (Childs et al. 2003; Tang and Yan
2004).

For tractability, the default boundary VB(yt, t; P, T) is exogenously specified.
Extending our model to allow for an endogenous default boundary, in the
spirit of Leland (1994) and Leland and Toft (1996), would be an important
but challenging topic for future research. In addition, Darrough and Stoughton
(1986) develop a capital structure model in which moral hazard and adverse
selection problems exist and financing decisions affect investments. Titman
and Tsyplakov (2002) also allow a firm’s financing decisions to affect its
investments. Incorporating these features would be another fruitful but difficult
topic for future research.
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Fig. 3.—Levered firm value as a function of leverage ratio. Debt maturity is fixed
at years. The short-term interest rate is assumed to follow a Vasicek process.T p 6.0
Its parameter values are , , and . The correlationa p 0.0716 b p 0.261 j p 0.0224t

between the interest rate process and the firm asset value process is assumed to be
zero.

Appendix A

The Forward Risk-Neutral Measure

In this appendix, we use the Girsanov theorem to derive the T-forward risk-neutral
measure in a multidimensional setting. Without loss of generality, we assume a prob-
ability space Q generated by two standard Wiener processes:

QWQ 1tW p , (A1)t Q( )W2t

with correlation matrix

1 r(t)
r̃(t)p . (A2)( )r(t) 1

In the following, Q should be interpreted as the risk-neutral probability measure and
rt as the risk-free interest rate given by

Qdr p m(r, t)dt� j(r, t)dW . (A3)t 2t
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Fig. 4.—Levered firm value as a function of leverage ratio. Debt maturity is fixed
at years. The short-term interest rate is assumed to follow a Vasicek process.T p 10.0
Its parameter values are , , and . The correlationa p 0.0716 b p 0.261 j p 0.0224t

between the interest rate process and the firm asset value process is assumed to be
zero.

We leave other random variables generated by and unspecified.Q QW W1t 2t

Suppose we want to compute the following expectation

T� ∫ r (u)du0e
Q …h p E Z({ },T) , (A4)0 [ ]L(r , 0; T)0

where is the discount bond price at with ma-TQL(r , 0; T) p E exp � r(u)du tp 0{ [ ]}∫00 0

turity T, and the curly brackets {…} indicate that the random variable Z({…}, T) may
depend on the sample path in probability space Q from 0 to T. Define

T� ∫ r (u)du0e
y p . (A5)T

L(r , 0; T)0

We then have

Q …h p E [y Z({ },T)]. (A6)0 T

It is clear that yT is strictly positive and . Therefore, yT can be used as aQE (y ) p 10 T



Capital Structure, Debt, and Interest Rates 2495

Radon-Nikodym derivative to define a new probability measure RT equivalent to the
original measure Q. That is,

R QTE (1 ) p E (y 1 ) (A7)0 {A} 0 T {A}

for any event A. Under the new (forward) risk-neutral measure RT,

R …Th p E [Z({ },T)]. (A8)0

To find the Wiener processes under RT, define the likelihood ratio
t� ∫ r (s)ds0e L(r , t;T )tQy p E (y ) p . (A9)t t T
L(r , 0; T)0

Ito’s lemma implies that

dL(r , t;T ) 1 dL(r , t;T )t t
dlog y p �rdt � �t [ ]L(r , t;T ) 2 L(r , t;T )t t

2p [�rL � L � u(r, t)L � (1/2)j (r, t)L ]dt/L (A10)t r rr

j(r, t)L 1 j(r, t)Lr rQ� dW (t) � dt.2 [ ]L 2 L

The term inside the square bracket on the second line of (A10) is the fundamental
partial differential equation satisfied by the discounted bond price L and equals zero.
Therefore (with ), we havey p 10

Qt T T�(1/2) ∫ J (s)J(s)ds�J (s)dW0 ty p e , (A11)t

where T denotes the transpose and

Q0  dW1tQJ(t)p , dW p . (A12)tj(r, t)L ( Q)r dW  2t
L 

Thus, using (A11) we can rewrite (A4) as

t

Q T T Q R… …Th p E exp �J (s)J(s)ds/2 � J (s)dW Z({ },T) p E [Z({ },T)]. (A13)0 � t 0{ [ ] }
0

Now the multidimensional Girsanov theorem means that defined by23RTWt

t
RTWR 1t QT ˜W p p W � r(s)J(s)ds (A14)t R t �T( )W2t 0

are two standard Wiener processes under RT with the correlation matrix . In dif-r̃(t)
ferential form, we have

R QT ˜dW p dW � r(t)J(t)dt. (A15)t t

23. See, e.g., Duffie (2001) for a review.
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Appendix B

Derivation of G(t;T, X0), H(t;T, X0) and (14)

Recall that
T� ∫ r (u)du0e

QG(t;T, X ) p E 1(t ! t) , (B1)0 0 [ ]L(r , 0; T)0

Q2Q �j t/2�j Wv v vtH(t;T, X ) p E [e 1(t 1 t)], (B2)0 0

where 1(7) is the indicator function, and where is the first passaget p min {t : X ≤ 0}t

time that Xt, defined in (9), crosses the origin from above ( ).X 1 00

A. Derivation of G(t;T, X0)

Note that (B1) has the form of (A4). Therefore, we can define a new probability
measure RT under which

RTG(t;T, X ) p E [1(t ! t)] (B3)0 0

and is the distribution function of t under RT. With the interest rate given by the
Vasicek process in (2), the corresponding J(t) in (A12) becomes ,TJ (t) p [0

, and the new standard Wiener processes in (A15) are�j B(t;T )] p [0, � j (t;T )]r p

given by

R QTdW p dW � rj (t;T )dt, (B4)vt vt p

R QTdW p dW � j (t;T )dt. (B5)rt rt p

Rewriting (9) using the new and , we haveR RT TdW dWvt rt

2 2 R RT TdX p �[j � j (t;T ) � 2rj (t;T )j ]/2 � j dW � j (t;T )dWt v p p v v vt p rt

2 RTp �j (t;T )dt/2 � j(t;T )dW , (B6)t

where

2 2�j(t;T ) p j � j (t;T ) � 2rj j (t;T ) (B7)v p v p

and is a one-dimensional standard Wiener process.24RTWt

For the process Xt defined in (B6), the distribution function in (B3) is given by25

�X � m (t;T ) �X � m (t;T )0 g 0 g�2m (t;T )X /S(t;T )g 0G(t;T, X ) p N � e N , (B8)0 [ ] [ ]� �S(t;T ) S(t;T )

24. No confusion should occur with the generic two-dimensional in (A14).RTWt

25. For a Brownian motion with constant drift m and diffusion j, the distribution function
of its first-passage time to reach the origin from above ( ) is given byX 1 0 Pr (t ! t) p0

. See, e.g., eq. 4 in Leland and Toft2� �N[(�X � mt)/(j t)] �exp (�2mX /j )N[(�X � mt)/(j t)]0 0 0

(1996) or eq. 34b in Ingersoll (1987, 353). Note that there is a typo in eq. 34b of Ingersoll,
where the minus sign in the second term should be the plus sign. The constant drift and diffusion
solution provides a guidance for the solution in (B8) when the drift and diffusion are deterministic
functions of time.
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where

t t

2 2 2 2S(t;T ) p j (s;T)dsp [j � j (t;T ) � 2rj (t;T )j ]dsp j t� � v p p v v
0 0

2j jr r�2b(T�t) �b(T�t) �b(T�t)� [t � e B (t) � 2e B (t)] � [t � e B (t)], (B9)2 1 12b b

t

2m (t;T ) p � j (s;T)ds/2 p �S(t;T )/2, (B10)g �
0

, and .�bt �2btB (t) p (1 � e )/b B (t) p (1 � e )/(2b)1 2

Proof. Given Xt in (B6), it is well known that the distribution function G(t;T,
X0) satisfies the Kolmogorov backward (not the forward) equation,

21 �G 1 � G �G
2 2� j (t;T ) � j (t;T ) � p 0, (B11)22 �X 2 �X �t0 0

with boundary conditions for and .G(0;T, X ) p 0 X 1 0 G(t;T, 0) p 10 0

It is easy to check that (B8) satisfies the two boundary conditions. So we need to
verify that (B8) satisfies (B11). To this end, let be the

2�x /2 �n(x) p n(�x) p e / 2p

standard normal density function. It is easy to see that . Note that given′n (x) p �xn(x)
the definition of mg and . Straightforward calculations yieldS, � 2m /S p 1g

X0�G X � S/2 1 X � S/2 e �X � S/20 0 0X0p �n � n � e N , (B12)( ) ( ) ( )� � � � ��X S S S S S0

2 X0� G X � S/2 X � S/2 X � S/2 (X � S/2)e0 0 0 0
p n � n2 3/2 3/2( ) ( )� ��X S SS S0

X0X � S/2 e �X � S/20 0X0� 2n � e N , (B13)( ) ( )� � �S S S

2 2�G X � S/2 X j (t;T ) j (t;T )0 0
p n �3/2 1/2( )[ ]��t 2S 4SS

2 2X � S/2 X j (t;T ) j (t;T )0 0X0�e n � . (B14)3/2 1/2( )[ ]� 2S 4SS

Plugging (B12–B14) into (B11), we see that G satisfies (B11). Q.E.D.

B. Derivation of H(t;T, X0)

To obtain H(t;T, X0) in closed form, we note that (B2) is already in the standard form
of the Girsanov theorem. The corresponding JT(t) is given by . We canTJ (t) p (j , 0)v

define another equivalent measure (to Q), , such that and , defined by
′ ′′ R RT TR W WT vt rt

′R QTdW p dW � j dt, (B15)vt vt v

′R QTdW p dW � rj dt, (B16)rt rt v
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are standard Wiener processes under , with the instantaneous correlation between′RT

and being given by rdt. It can be seen that under ,
′ ′R R ′T TdW dW Rvt rt T

′2 RTdX p j (t;T )dt/2 � j(t;T )dW , (B17)t t

where is a new standard Wiener process under .
′R ′TW Rt T

Using the Girsanov theorem and the newly defined , we have′RT

′ ′R RT TH(t;T, X ) p E [1(t 1 t)] p 1 � E [1(t ! t)]. (B18)0 0 0

Thus, H(t;T, X0) is the complementary distribution function of t under . With Xt
′RT

defined by (B17), H(t;T, X0) is given by

�X � m (t;T ) �X � m (t;T )0 h 0 h�2m (t;T )X /S(t;T )h 0H(t;T, X ) p 1 � N � e N ,0 [ ] [ ]� �S(t;T ) S(t;T )

X � m (t;T ) �X � m (t;T )0 h 0 h�2m (t;T )X /S(t;T )h 0p N � e N , (B19)[ ] [ ]� �S(t;T ) S(t;T )

where

t

2m (t;T ) p j (s;T)/2 p S(t;T )/2. (B20)h �
0

Proof. Let be the distribution function of t under .
′R ′ˆ TH(t;T, X ) p E [1(t ! t)] R0 0 T

Comparing (B17) with (B6) reveals that dXt under differs from dXt under RT only′RT

by the sign of its drift function. Therefore, by changing mg(t;T) to �mg(t;T) in (B8),
it becomes . That is, is given byˆ ˆH(t;T, X ) H(t;T, X )0 0

�X � m (t;T ) �X � m (t;T )0 h 0 h�2m (t;T )X /S(t;T )ˆ h 0H(t;T, X ) p N � e N , (B21)0 [ ] [ ]� �S(t;T ) S(t;T )

where . Now yields (B19). Q.E.D.ˆm (t;T ) p �m (t;T ) p S(t;T )/2 1 � H(t;T, X )h g 0

C. Derivation of (14)

First, we note that for an arbitrary random variable , the expectation, ,˜ ˜x E[d(x� x)]
yields its density at x. To see this, let f(t) be the density function of . It follows thenx̃
that . Second, we note that�˜E[d(x� x)] p d(t � x) f (t)dt p f (x) (1 � v)V (r , s; P,∫�� B s

TQ � ∫ r (u)du y(T�s)sT) p E [e ]Pe .s

Let PV3 denote the present value of the third (last) term in (13). Using the risk-
neutral valuation we have

T

s TQ � ∫ r (u)du Q � ∫ r (u)du y(T�s)s0PV p (1 � f)P E e E [e ]e d(s� t) ds{ }3 � 0 s
0

T

TQ � ∫ r (u)du y(T�s)0p (1 � f)P E [e e d(s� t)]ds, (B22)� 0
0

T T� ∫ r (u)du0e
Q y(T�s)p (1 � f)PL(r , 0; T) E d(s� t) e ds,0 � 0 [ ]L(r , 0; T)0 0
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where the second equality follows from the law of iterated expectations, and thus the
expectation operator drops out. Note that the third equality has the form of (A4).QEs

Using the new probability measure RT, defined in Sec. B of this appendix, we can
rewrite (B22) as

T

R y(T�s)TPV p (1 � f)PL(r , 0; T) E [d(s� t)]e ds3 0 � 0
0

T

y(T�s)p (1 � f)PL(r , 0; T) g(s;T, X )e ds0 � 0
0

T

y(T�s)p (1 � f)PL(r , 0; T) e dG(s;T, X ) (B23)0 � 0
0

ˆp (1 � f)PL(r , 0; T)[G(T;T, X ) � G(T;T, X )],0 0 0

where is defined in (15), is the density of t underRˆ TG(T;T, X ) g(s;T, X ) p E [d(s� t)]0 0 0

RT, and G(s;T, X0), defined in (B3), is its distribution function.
To prove (14), using the risk-neutral pricing, we have the debt value given by

T

sQ � ∫ r (u)du0D(T, X ; r , P) p E [e d(s)]ds0 0 � 0
0

T

s TQ � ∫ r (u)du Q � ∫ r (u)du0 0p C E [e 1(s≤ t)]ds� PE [e 1(T ≤ t)] � PV� 0 0 3
0

T

sQ � ∫ r (u)du RT0p C E [e 1(s≤ t)]ds� PL(r , 0; T)E [1(T ≤ t)] � PV� 0 0 0 3
0

T

sQ � ∫ r (u)du0p C E [e 1(s≤ t)]ds� PL(r , 0; T)[1 � G(T;T, X )]� 0 0 0
0

ˆ� (1 � f)PL(r , 0; T)[G(T;T, X ) � G(T;T, X )].0 0 0

(B24)

Appendix C

Further Discussion of the Scaling Property

In this appendix, we provide a detailed discussion of the scaling property used in
Section III.C to calculate the total levered firm value with potentially an infinite number
of periods. A key result is that the optimal solution X* remains the same for all the
bonds optimally issued by the firm.

Let tn be the first passage time when in period n. Note that fromV p V (y , t;P, T)t B t
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(18–20), the net benefit of debt (tax benefit of debt less the after-tax cost of default
and transaction) from the debt issued at time zero can be rewritten as26

NB (T, X ) { tb(T, X ) � [bc(T, X ) � tc(T, X )](1 � v) p V f(T, X ), (C1)0 0 0 0 0 0 t0

where is given byf (T, X )t0

�X �yT ˆt0f (T, X ) p e v((1 � v)[(l � 1) � fG(T;T, X ) � (1 � f)G(T;T, X )]t t t0 0 0

ˆ�(1 � v){f[G(T;T, X ) � G(T;T, X )] � kl(1 � v)}). (C2)t t0 0

Similarly, the net benefit of debt in period n is given by

NB p V f(T, X ). (C3)t t tn�1 n�1 n�1

Therefore, the total net benefit at , is given byt p 0, F0 0

�
tn�1Q � ∫ n�10 r (s)dsF (T, X , X , …) p E [e V f(T, X )P 1(t 1 T)]�0 0 T 0 t t ip1 in�1 n�1

np1

�
Q2�yt Q �j t /2�j W n�1n�1 v n�1 v vtn�1p V e E [e f(T, X )P 1(t 1 T)], (C4)�0 0 t ip1 in�1

np1

where is the product of indicator func-n�1P 1(t 1 T) p 1(t 1 T)1(t 1 T)…1(t 1 T)ip1 i 1 2 n�1

tions and if . Notice that the relation,n�1P 1(t 1 T) p 1 n p 1ip1 i

tn

2 QV p V exp [r(s) � y� j /2]ds� j W , (C5)t 0 � v v vTn n{ }
0

has been used to obtain the second equality, and, as a result, the second equality no
longer depends directly on the stochastic interest rate. In (C4), is the choiceXtn�1

variable of the firm in period n.
Now consider the total net benefit at . It is easy to see that it is given byt p T, F1 T

�
Q2′ ′ �yt Q �j t /2�j W ′ m�1m�1 v m�1 v vtm�1F (T, X , X , …) p V e E [e f(T, X )P 1(t 1 T)], (C6)�T 0 T T 0 t ip1 im�1

mp1

where is the choice variable of the firm in period m.27′Xtm�1

Note that, besides the factors V0 and VT, (C4) and (C6) have the same functional
form of the choice variables. That is, if we let

F (T, X , X , …) p V U(T, X F ), (C7)0 0 T 0 t ip0,1,…,�i

then we have

′ ′ ′F (T, X , X , …) p V U(T, X F ) (C8)T 0 T T t ip0,1,…,�i

with the same function U(7). Therefore, if the optimal value of X0 in (C4), which is
the choice variable at time zero, is X*, X* must also be the optimal value for in′X0

(C6), which is the choice variable at time T. Note that at time zero the firm’s objective
is to maximize the total after-tax firm value given by V (1 � v) � F p V [(1 � v) �0 0 0

26. Remember that , where , denotes the time of each restructuring point.t p nT np 0, 1, 2, …n

27. For notational purpose, we have renamed T as time zero. In other words, the first period
starts at T when we compute the total net benefit of debts at T.
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. Equivalently, the firm maximizes , which is inde-U(T, X F )] U(T, X F )t ip0,1,…,� t ip0,1,…,�i i

pendent of the firm’s initial value V0. Likewise, the firm maximizes ′U(T, X F )t ip0,1,…,�i

at time T. Suppose that at time zero the optimal solution for the first period is given
by . At time T, the optimal solution for the first period, which is the second period∗X0

viewed at time zero, must be the same as or , because∗ ′∗ ∗X X p X U(T, X F )0 0 0 t ip0,1,…,�i

and have the same form. In other words, the optimal solutions for X0
′U(T, X F )t ip0,1,…,�i

and XT are the same in the first two periods. Similarly, it can be seen that the optimal
value for in all periods must be the same.Xti

Denote the (same) optimal solution by X*.28 Equations (C7) and (C8) and the
proceeding discussion show that at the optimal , the total net benefit at time∗X p Xt

zero, F0(T, X*), and that at time T, FT(T, X*), are related by ∗F (T, X ) pT

. This relation is used in Section III.C to obtain the optimal total net∗F (T, X ) ∗ V /V0 T 0

benefit in closed form.

References

Aı̈t-Sahalia, Yacine. 1999. Transition densities for interest rate and other nonlinear diffusions.
Journal of Finance54:1361–95.

Barclay, Michael, and Clifford Smith. 1995. The maturity structure of corporate debt. Journal
of Finance50:609–31.

Black, Fischer, and John Cox. 1976. Valuing corporate securities: Some effects of bond indenture
provisions. Journal of Finance31:351–67.

Black, Fischer, and Myron Scholes. 1973. The pricing of options and corporate liabilities. Journal
of Political Economy81:637–54.

Brennan, Michael, and Eduardo Schwartz. 1978. Corporate income taxes, valuation, and the
problem of optimal capital structure. Journal of Business51:103–14.

Childs, Paul, David Mauer, and Steven Ott. 2003. Interaction of corporate financing and in-
vestment decision: The effects of agency conflicts. Journal of Financial Economics76:667–90.

Cox, John, and Stephen Ross. 1976. The valuation of options for alternative stochastic processes.
Journal of Financial Economics3:145–66.

Darrough, Masako, and Neal Stoughton. 1986. Moral hazard and adverse selection: The question
of financial structure. Journal of Finance41:501–13.

Duffie, Darrell. 2001. Dynamic asset pricing theory. Princeton, NJ: Princeton University Press.
Duffie, Darrell, and Kenneth Singleton. 1999. Modelling term structures of defaultable bond.

Review of Financial Studies12:687–720.
Fan, Hua, and Suresh Sundaresan. 2000. Debt valuation, renegotiation, and optimal dividend

policy. Review of Financial Studies13:1057–99.
Fischer, Edwin, Robert Heinkel, and Josef Zechner. 1989. Dynamic capital structure choice:

Theory and tests. Journal of Finance44:19–40.
Goldstein, Robert, Nengjin Ju, and Hayne Leland. 2001. An EBIT-based model of dynamic

capital structure. Journal of Business74:483–512.
Harrison, Michael, and David Kreps. 1979. Martingales and arbitrage in multi-period securities

markets. Journal of Economic Theory20:381–408.
Hennessy, Christopher, and Toni Whited. 2004. Debt dynamics. Journal of Finance60:1129–65.
IMSL Math Library. 2003. Visual numerics incorporated, http://www.vni.com.
Ingersoll, John. 1987. Theory of financial decision making. Totowa, NJ: Rowman & Littlefield.
Jarrow, Robert, and Stuart Turnbull. 1995. Pricing options on financial securities subject to default

risk. Journal of Finance50:53–86.
Jones, Philip, Scott Mason, and Eric Rosenfeld. 1984. Contingent-claims analysis of corporate

capital structures: An empirical investigation. Journal of Finance39:611–27.
Ju, Nengjiu, Robert Parrino, Allen Poteshman, and Michael Weisbach. 2005. Horses and rabbits?

28. A key point is that at times 0, T, 2T, … , the firm faces an infinite time horizon, and the
U functions take the same form. Hence, the optimal solution for the first period viewed at different
times must be the same.



2502 Journal of Business

Trade-off theory and optimal capital structure. Journal of Financial and Quantitative Analysis
40:259–81.

Kane, Alex, Alan Marcus, and Robert McDonald. 1985. Debt policy and the rate of return
premium to leverage. Journal of Financial and Quantitative Analysis20:479–99.

Kim, Han. 1978. A mean-variance theory of optimal capital structure and corporate debt capacity.
Journal of Finance33:45–64.

Kim, In Joon, Krishna Ramaswamy, and Suresh Sundaresan. 1993. Valuation of corporate fix-
income securities. Financial Management22:117–31.

Leland, Hayne. 1994. Risky debt, bond covenants and optimal capital structure. Journal of
Finance49:1213–52.

———. 1998. Agency costs, risk management, and capital structure. Journal of Finance53:
1213–43.

Leland, Hayne, and Klaus Toft. 1996. Optimal capital structure, endogenous bankruptcy, and the
term structure of credit spreads. Journal of Finance51:987–1019.

Longstaff, Francis, and Eduardo Schwartz. 1995. A simple approach to valuing risky fixed and
floating rate debt. Journal of Finance50:789–819.

Mello, Antonio, and John Parsons. 1992. Measuring the agency cost of debt. Journal of Finance
47:1887–1904.

Merton, Robert. 1974. On the pricing of corporate debt: The risk structure of interest rates.
Journal of Finance29:449–69.

Miao, Jianjun. 2005. Optimal capital structure and industry dynamics in stationary equilibrium.
Journal of Finance60:2621–59.

Morellec, Erwan. 2004. Can managerial discretion explain observed leverage ratios? Review of
Financial Studies17:257–94.

Press, William, Brian Flannery, Saul Teukolsky, and William Vetterling. 2003. Numerical recipes.
New York: Cambridge University Press.

Stohs, Mark, and David Mauer. 1996. The determinants of corporate debt maturity structure.
Journal of Business69:279–312.

Tang, Yongjun, and Hong Yan. 2004. Macroeconomic conditions and credit spread dynamics:
A theoretical exploration. Working paper, University of Texas at Austin, Department of Finance.

Titman, Sheridan, and Sergey Tsyplakov. 2002. A dynamic model of optimal capital structure.
Working paper, University of Texas at Austin and University of South Carolina, Department
of Finance.

Vasicek, Oldrich. 1977. An equilibrium characterization of the term structure. Journal of Financial
Economics5:177–88.






